Understanding Object-Oriented Design 2 = 7

Benefits of Object-Orientation

Software systems that incorporate object-oriented

design techniques realize several benefits:

m Complex systems are simplified

An object-oriented system can be viewed as a
collection of building blocks (objects) that interact
with each other, as shown in the previous diagram.
Objects can be built from other objects, and complete
systems can be developed using proven components
and standard messages.

Accurate models of reality are created

An object-oriented system models the way that
reality is understood by people. Analysts,
programmers, and users can all think and
communicate about a software system in similar
terms.

Code is reusable, and maintainable
Object-orientation enables objects to be
independently designed, coded, and tested. Since
objects can be reused without having to code
additional programs, programs tend to be much
smaller than procedural programs. There is less
code to debug and maintain, and modifications that
would normally be applied to multiple programs can
often be made to a single object.

Programs are modular

Retail business processes change more frequently
than the actual data requirements. Therefore, data
attributes should be maintained separately from the
business logic and business logic should be modular
so that a change made to one processes does not
affect another process. Object-orientation services
both of these objectives, as shown in the following
diagram. In this example, the data attributes for a
Stock Keeping Unit (SKU) are distinctly separate
from business processes. Also, the replenishment
processes are coded separately from each other.

GENESIS 3.0
A

GENESIS 4.0
A

Common Systems

A

Applications
A

&= . B

- v §
Computer Development Inc.



2 - 8 Understanding Object-Orientation

Benefits of Object-Orientation

Modularity of an Object-Oriented System

drop-ship
process

stored

process

o description
@ cost

e sell price

e mark-up

warehouse

allocation
Cross- process
dock
process

pre-
packed
process

GENESIS 3.0
A

GENESIS 4.0 Common Systems
A A

Applications
A

GENESIS Programming Reference Guide




Understanding Object-Oriented Design 2 - 9

Benefits of Object-Orientation

B Programming productivity increases
The software industry is currently experiencing a
demand for more software at a lower production cost.
Object-orientation, because of its simplicity and
reusability, enables systems to be designed and
implemented in less time, using less code.

m Programs are portable
Object-oriented design techniques are ideal for
planning and organizing client/server applications
because a significant amount of code can be written
without regard to the physical computing platform.
Platform-independent processing logic can be located
anywhere on the network, and platform-dependent
data logic can be easily moved to the same platform
as the data.

The following diagram shows how platform-specific
data and data logic can be kept separate from the
processing logic.

Portability of an Object-Oriented System

A single set of

processing logic can
be used on any platfo:m—\

Data and data
logic are unique to
specific platforms

UNIX
Platform

cics
Platform

Windows
Platform

GENESIS 3.0 GENESIS 4.0 Common Systems Applications
A A A A




2 - 10 Understanding Object-Orientation

Benefits of Object-Orientation

B Source code can be easily deployed

Object-oriented design techniques facilitate
client/server computing by enabling source code to
be deployed to various platforms. Two source code

deployment methods can be used:

— Dynamic reusability

Source code is moved between platforms
without being recompiled. This method is
dependent upon a number of factors, including
the use of an object-oriented programming

language, such as Object COBOL.

— Static reusability

A deployment strategy in which a single set of
source code is recompiled for execution on

various platforms.

The following diagram illustrates the concepts of
static and dynamic reusability.

Platform Deployment Strategies

Static Reusability Strategy

cics

Windows
Unix

Dynamic Reusability Strategy

GENESIS 3.0
A

GENESIS 4.0
A

Common Systems
A

Applications
A

GENESIS Programming Reference Guide




Attributes

The properties of data elements
within a system.

Business item

A single, discrete item within a
business software system, such as
a purchase order or an invoice.

CICS Data Link Interface

The interface between the
GENESIS Data Access Objects
and data that resides in files.

Class

Defines the data structures and
routines for a group of similar
objects. A GENESIS class is a
program shell that contains parts
of working storage and procedure
division code. This information is
used as a template by each
instance (object) of the class.

See also: object

Client/server

Any software system, regardless
of platform, where one
application asks for service

" (client) and another application
performs the requested service
(server).

Common System programs

Core programs and objects that
are used by all application
programs.

Configuration section

The portion of a COBOL II
program that provides
information such as the type of
computer on which the program
will be compiled and the type of
computer on which it will run.

Conversational Program

A type of program or system that
interacts with a user, alternately
accepting input and then
responding to the input quickly
enough for the user to maintain
his or her train of thought.
Contrast with: Pseudo-
Conversational Program

Copybook

Standard, reusable code that is
copied into an object when the
object is compiled. In GENESIS,
copybooks are used to define
discrete components such as
paragraphs of code, file layouts,
or to simulate messages.

See also: Messages

€)

i

r Development Inc.



D-2 Glossary

Division is only used by Common
Systems programs.

See also: Configuration
Section, Input-Output Section

Data Division
The portion of a COBOL II
program that declares all
variables and data structures.

The Data Division consists of the

File Section, the Working-Storage File Section

Section, and the Linkage Section.
See also: File Section,
Working Storage Section,
Linkage Section

Data Entity

An item of data that can be
treated as a unit, often as a
member of a particular category
or type.

The portion of a COBOL II
program that defines file formats
and characteristics. For
GENESIS, this section is only
used by Common Systems batch
programs, and it only contains
the companion copybooks for the
sequential files defined in the
Environment Division.

Identification Division
Encapsulation (Information The portion of a COBOL II
Hiding) program that specifies

A protective encasement that
hides the implementation details
of an object, making its data
accessible only by operations that
are also encased within the
object. This technique simplifies
maintenance, defines ownership
of data, and ensures platform-
independence and data integrity.

Environment Division

The portion of a COBOL II
program that describes hardware
the program needs and relates
that information to the files used
by the program. The
Environment Division consists of
the Configuration Section and the
Input-Output Section. For
GENESIS, the Environment

information about the program,
such as the program and object
class identification, program
description, and a record of all
changes made to the program.

Inheritance

Enables the features of an object
class to be physically available to,
or reusable by, its subclasses as
though they were features of the
subclass. Class-to-object
inheritance allows instances of a
class (objects) to inherit default
values from the class. Object-to-
object inheritance transfers the
state of one object to another.

GENESIS Programming Reference Guide



