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1 The Field Axioms

4. Uniqueness of Additive Inverses

Let x be a real number. Prove that there is only one real number y such that
x+ y = 0.

For x1, x2, y1, y2 ∈ R, let x1 + y1 = x2 + y2.

x1 + (−x1) + y1 = x2 + (−x2) + y2 Add. Inv. (2d)

0 + y1 = 0 + y2 Add. ID (2c)

y1 = y2

∴ y1 = y2 so the additive identity must be unique.

�

5. No. 4 (Cont.)

Prove that if a, b, and c are real numbers such that a + b = 0 and a + c = 0,
then b = c.
Because a + b = 0, b must be the Additive ID of a according to 2c, which is
unique, according to 4. Likewise, because a+ c = 0, c too must be the Additive
ID of a according to 2c, which is unique, according to 4. Since both b and c are
the additive identities of a, and an additive identity must be unique, b = c.

�

6. Multiplication by Zero

Prove that if x is a real number then x · 0 = 0.

x · 0 = x · 0
= x · 0 + 0 Add. Id (2c)

= x · 0 + (x− x) Add. Id (2c)

= (x · 0 + x)− x Assoc. (2b)

= x(0 + 1)− x Distrib. (2e)

= x(1)− x Add. Id (2c)

= x− x Mult. Id (2c)

= 0 Add. Id (2c)

∴ x ∈ R+ ⇒ x · 0 = 0

�
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7. Assoc. & Comm. with (-1)(x)(y)

Prove that if x and y are real numbers then (−x)y = −(xy) = x(−y).

(−x)y = (−1 · x)y Mult. by -1 (8)

= −1(x · y) Assoc. (2b)

= −(xy) Mult. by -1 (8)

(−x)y = (−1 · x)y Mult. by -1 (8)

= (x · −1)y Comm. (2a)

= x(−1 · y) Assoc. (2b)

= x(−y) Mult. by -1 (8)

∴ x, y ∈ R ⇒ (−xy) = −(xy) = x(−y)

�

8. Multiplication by -1

Prove that if x is any real number then (-1)x = -x.

−1 · x = −1 · x+ 0 Add. Id (2c)

= −1 · x+ x− x Add. Id (2c)

= x(−1 + 1)− x Distrib. (2e)

= x(0)− x Add. Inv. (2d)

= 0− x Mult. by 0 (6) = −x Add. Id (2c)

∴ x ∈ R ⇒ (−1)x = −x

�
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9. xy = 0 ⇒ at least x or y = 0

Prove that if x and y are real numbers then x · y = 0 then x = 0 or y = 0.
Let x, y ∈ R : x · y = 0.

i) If x 6= 0:

x · y = 0

x · y = (x+ (−x)) Add. Id (2c)

1

x
· x · y =

1

x
(x+ (−x)) Add. Id (2c)

1

x
· x · y =

1

x
(x+ (−x)) Mult. Inv (2c)

1

x
· x · y =

1

x
(x) +

1

x
(−x) Distrib. (2e)

y = 1 + (−1) Mult Inv. (2c)

y = 0 Mult Inv. (2c)

ii) If both x, y = 0 then x · y = 0 · 0 = 0 by No. 6.

∴ If the product of two elements is 0, then one or both elements must equal zero.

6



2 Order

11. Verifying facts with Order Axioms

(a) a is positive ⇒ -a is negative

Let a be a real number. Show that if a is positive, then −a is negative. Con-
versely, if a is negative, show that −a is positive.

Let a ∈ R+. By (10b): −a must be ∈ R− ∪ {0}. For a ∈ R+, a + 0 6= 0,
so −a can’t be ∈ {0}. Accordingly, −a must be an element of the last of the
disjoint sets, R−. Thus when a is positive, −a is negative.

Similarly, if a ∈ R−, then by the Multiplicative ID (2c), −a∗1 = −(−a)(1) = a
by (10b). If −a ∈ {0}, then −a ∗ 1 = 0 by multiplication by zero (2c), so −a
can’t be zero. If −a ∈ R+, then −a ∗ 1 = −a 6= a, so −a can’t be ∈ R+.
Accordingly, if a is negative, −a is positive.

�

(b) 1 ∈ R is positive

Show that the real number 1 is positive:
Let x ∈ R. Then by the multiplicative ID (2c), 1·x = x. Since 1 ∈ R, 1 is either
positive, negative, or 0 (10b). But since 1 6= 0, 1 is either positive or negative.
If 1 ∈ R−, then 1 ·x = −x because of multiplication by -a (8). This contradicts
the multiplicative identity (2c), so 1 cannot be negative. Accordingly, 1 must
be an element of the last disjoint set: 1 must be positive.

�

(c) ∃ a negative number

Show that there exists a negative number.
Let x ∈ R+. Then by Additive Inverses (2d), exists. Because of disjoint sets of
real numbers (10b), −x can not be positive. Because of Multiplicative Identities
(2c), −x cannot be zero. Therefore, when x is positive −x is negative, so there
exists a negative number.

�
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13. The relation ≤ on R
(a) Symmetry

For all real numbers x, x ≤ x.

x− x = 0 Add. Id (2c)

0 ∈ {0} vacuously true

{0} ∈ R+ ∪ {0}
x− x ∈ R+ ∪ {0}
x ≤ x Defn. less than (12)

�

(b) Reflexivity

For all real numbers x and y, if x ≤ y and y ≤ x then x = y.

Let c, d ∈ R+ ∪ {0}.
x ≥ y ⇒ x− y = c Def. GEQ (12)

y ≥ x ⇒ y − x = d Def. GEQ (12)

c+ d = x− y + y − x substitution

c+ d = 0 Add. Id (2c)

Then because c and d are each either positive or zero by Order Axiom 10b, we
will consider the combinations of each to determine which satisfies the above
finding that c+ d = 0:

1. c, d ∈ R+

By Order Axiom 10a, the positive reals are closed under addition, thus
c+ d ∈ R+ ⇒ c+ d 6= 0 so c, d /∈ R+.

2. c ∈ R+, d ∈ {0}
By the Additive Identity (2c), c + d = c ∈ R+ ⇒ c + d 6= 0 so c /∈ R+

while d = 0.

3. c, d ∈ {0} With c, d both ∈ {0}, c+ d = 0 + 0 = 0.

By substituting the equations found from Def. GEQ (12), c = x − y = 0, so
x = y by the Additive Identity. WLOG, d = y − x = 0 ⇒ x = y.

∴ x ≤ y and y ≤ x ⇒ x = y

�
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(c) Transitivity

For all real numbers x, y, z, if x ≤ y and y ≤ z, then x ≤ z.

Let c, d ∈ R+ ∪ {0}.
x ≤ y ⇒ y − x = c

⇒ y = c+ x

y ≤ z ⇒ z − y = d

⇒ y = z − d
c+ x = z − d y = y

z − x = c+ d

⇒ c+ d ∈ R+ ∪ {0} (10a) & Add Id (2c)

z − x ∈ R+ ∪ {0}
x ≤ z Def. LEQ (12)

�

14. Operations with Inequalities

(a) a > b and c ≥ d ⇒ a+c > b+d

Let x ∈ R+ and y ∈ R+ ∪ {0}.
a > b ⇒ a− b = x Def. greater than (12)

c ≥ d ⇒ c− d = y Def. GEQ (12)

x+ y = a− b+ c− d substitution

x+ y = (a+ c)− (b+ d) Distr. (2e)

If y ∈ R+, then x+ y ∈ R+ (10a)

If y ∈ {0}, then x+ y ∈ R+ Add. ID (2c)

⇒ (a+ c)− (b+ d) ∈ R+ equality with x + y

⇒ a+ c > b+ d Def greater than (12)

�
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(b) a > b > 0 and c ≥ d >0 ⇒ ac > bd

If a > b and c ≥ d then a+ c > b+ d.

Let x, y ∈ R+ and x ∈ R+ ∪ {0}.
a > b ⇒ a− b = x ⇒ a = x+ b (12)

b > 0 ⇒ b− 0 = y ⇒ b = y (12)

c ≥ d ⇒ c− d = z ⇒ c = z + d (12)

ac = (x+ b)(z + d) substitution

ac = xz + xd+ bz + bd Distr. (2e)

ac− bd = xz + xd+ bz

ac− bd = xd+ z(x+ b) Distr. (2e)

x, d ∈ R+ ⇒ xd ∈ R+ (10a)

z(x+ b) ∈ R+ ∪ {0} ⇒ xd+ z(x+ b) ∈ R+ (10a) and (2c)

⇒ ac− bd ∈ R+ equality with xd + z(x + b)

⇒ ac > bd Def. greater than (12)

�

(c) a > b and c < 0 ⇒ ac < bc

If a > b and c < 0 then ac < bc.

Let x, y ∈ R+

a > b ⇒ a− b = x Def. greater than (12)

c < 0 ⇒ 0− c = y ⇒ c = −y Def. greater than (12)

cx = c(a− b) substitution

ca− cb = cx Distr. (2e)

(−y)a− (−y)b = (−y)x substitution of c

− ya+ yb = −yx (7) & (11a)

− 1(yb− ya = −yx) Comm. (2a) and Mult. by -1

− yb− (−ya) = yx Distr. (2e)

cb− ca = yx ∈ R+ substitution of -y

⇒ yx ∈ R+ Closure (10a)

⇒ cb− ca ∈ R+ equality with yx

⇒ cb > ca Def. greater than (12)

�
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15. Negation in Inequalities

b− a = x ∈ R+ Defn. less than (12)

−a+ b = x Commut. (2a)

−a+ (−1)(−1)b = x (11a)

−a+ (−(−b)) = x (8)

(−a)− (−b) = x ∈ R+ (11a)

−a > −b Defn. greater than

∴ a < b ⇒ -b < -a

�

16. For a ∈ R, a2 ≥ 0

Prove that a2 ≥ 0 for any real number a.
By Order Axiom No. 10b:

a ∈ R ⇒ a ∈ R+ ∪ a ∈ {0} ∪ a ∈ R−

Accordingly, it needs to be shown that a in all three disjoint sets is ∈ R ∪ {0}:

1. a ∈ R+:
By Order Axiom 10a, a is closed under multiplication.
So a2 = (a)(a) ∈ R+ ⇒ a2 ∈ R ∪ {0}.

2. a ∈ {0}:
By No. 6, x(0) = 0.
So a2 = (a)(a) = (0)(0) = 0 ∈ {0} ⇒ a2 ∈ R ∪ {0}

3. a ∈ R−:
By 11a, if a is negative, then -a is positive.
Let a = -b, where b ∈ R+.
So, a2 = (a)(a) = (a)(−b), which by No. 7 = (−a)(b).
Then because of 11a, −a must = c ∈ R+.
Accordingly, (a)(a) = (c)(b) ∈ R+ because both b and c are ∈ R+, and
thus are closed under multiplication by Order Axiom 10a.
So, a2 ∈ R ∪ {0}.

∴ a2 ≥ 0 for any real number a.

�
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3 Absolute Value

19. |a| = | − a|
Prove that if a is a real number then |a| = | − a|.
First consider the case that a = 0. Then |a| = |0| = 0 by No. 18 and | − a| =
|(−1)(0)| = |0| = 0 by No. 8 (multiplication by -1), No. 6 (multiplication by
zero), and No. 18 (Def. abs. val.). So when a = 0, 0 = |a| = | − a| so the proof
is satisfied. By Order Axiom 10b, if a is not zero, then a can only be positive
or negative:

Let a ∈ R+

⇒ a ≥ 0 |a| = a Def. Abs. Val (18)

If a ∈ R+, then − a ∈ R− (11a)

⇒ −a < 0 ⇒ | − a| = −(−a) Def. Abs. Val. (18)

| − a| = (−1)(−1)(a) = a (11a)

WLOG, beginning with a ∈ R− produces the same result.
∴ |a| = a = | − a| so |a| = | − a|.

�
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20. Properties of Abs. Val

a) Addition

Show: |a+ b| ≤ |a|+ |b|
i) Let a, b ∈ R+ ∪ {0}

a+ b ∈ R + ∪{0} closure (10a)

|a+ b| = a+ b Def. Abs. Val (18)

|a| = a Def. Abs. Val (18)

|b| = b Def. Abs. Val (18)

⇒ |a|+ |b| = a+ b substitution

|a+ b| = ab = |a|+ |b| substitution

|a+ b| ≤ |a|+ |b|

ii) Let −a ∈ R+ ∪ {0} and b ∈ R−.
(WLOG, this case pertains to −b ∈ R+ ∪ {0} and a ∈ R−).

If −a+ b ≥ 0, | − a+ b| = b− a:

NTS: | − a|+ |b| − | − a+ b| ∈ R+.

| − a|+ |b| − (b− a) substitution

| − a|+ |b| − b+ a Mult. by -1 (11a)

− (−a) + b− b+ a Def. Abs. Val. (18)

a+ a Add. Id (2c)

2a,∈ R+ (11a)

If −a+ b < 0, | − a+ b| = −(−a+ b) = a− b:

NTS: | − a|+ |b| − | − a+ b| ∈ R+.

| − a|+ |b| − (a− b) substitution

| − a|+ |b| − a+ b Mult. by -1 (11a)

− (−a) + b− a+ b Def. Abs. Val. (18)

a+ b− a+ b Add. Id (2c)

2b ∈ R+ (11a)

13



iii) Let −a,−b ∈ R−

− a+−b ∈ R− closure (10a)

| − a+−b| = −(−a− b) Def. Abs. Val (18)

| − a+−b| = a+ b (11a)

| − a| = −(−a) = a Def. Abs. Val (18), (11a)

| − b| = −(−b) = b Def. Abs. Val (18), (11a)

⇒ |a|+ |b| = a+ b substitution

| − a+−b| = ab = | − a|+ | − b| substitution

|a+ b| ≤ |a|+ |b|

b) Multiplication

Show: |a · b| = |a| · |b|

i) Let a, b ∈ R+ ∪ {0}

|a · b| = ab Def. Abs. Val (18)

|a| = a Def. Abs. Val (18)

|b| = b Def. Abs. Val (18)

⇒ |a| · |b| = ab substitution

|a · b| = ab = |a| · |b| substitution

ii) Let a ∈ R+ ∪ {0} and b ∈ R−.
(WLOG, this case pertains to b ∈ R+ ∪ {0} and a ∈ R−).

a · b ∈ R− (11a)

|a · b| = −ab Def. Abs. Val (18)

|a| = a Def. Abs. Val (18)

|b| = −b Def. Abs. Val (18)

⇒ |a| · |b| = a(−b) = −ab substitution & (7)

|a| = −ab = |a| · |b| substitution

14



iii) Let a, b ∈ R−

a · b ∈ R+ (11a)

|a · b| = ab Def. Abs. Val (18)

|a| = −a Def. Abs. Val (18)

|b| = −b Def. Abs. Val (18)

⇒ |a| · |b| = (−a)(−b) = (−1)(−1)(ab) = ab (2a), (11a)

|a · b| = ab = |a| · |b| substitution

c) Subtraction

Show: |a− b| ≥ ||a| − |b||
Note: By 19, |a− b| = | − (a− b)| = |b− a|
NTS: both |a| − |b| and |b| − |a| are less than or equal to |a− b| = |b− a|.

i) When |a| − |b| ≥ 0, ||a| − |b|| = |a| − |b|.

|a| = |a|
|a| = |a+ 0| Add. Id (2c)

|a| = |a+ b− b| Add. Id (2c)

|a| = |(a− b) + b| Add. Id (2c)

|a| ≤ |a− b|+ |b| Add. Abs. Val (20a)

|a| − |b| ≤ |a− b| Add. Id (2c)

ii) When |a| − |b| ≤ 0 ||a| − |b|| = |b| − |a|.

|b| = |b|
|b| = |b+ 0| Add. Id (2c)

|b| = |b+ a− a| Add. Id (2c)

|b| = |(b− a) + a| Add. Id (2c)

|b| ≤ |b− a|+ |a| Add. Abs. Val (20a)

|b| − |a| ≤ |b− a| Add. Id (2c)

∴ |a− b| ≥ ||a| − |b||

�
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21. ε > 0 ⇒ |a| < ε ⇐⇒ −ε < a < ε

Prove that if ε > 0 then |a| < ε if and only if −ε < a < ε.

1. NTS: |a| < ε ⇒ −ε < a < ε

i) |a| ≥ 0 ⇒ |a| = a Def. Abs. Val (18)

|a| < ε⇒ a < ε substitution

ii) |a| < 0 ⇒ |a| = −a Def. Abs. Val (18)

|a| < ε⇒ −a < ε substitution

⇒ −1(−a) > −1(ε) (15)

a > −ε (11)

Thus combining the two inequalities attained from (i) and (ii) gives:
−ε < a < ε

2. NTS: −ε < a < ε ⇒ |a| < ε

i) a > −ε
a− (−ε) ∈ R+ Def. Greater Than (12)

− (−a) + ε ∈ R+ (11)

ε− (−a) ∈ R+ Comm. (2a)

− a < ε Def. Less Than (12)

ii) a < ε given as right side of inequality

Thus because |a| = −a or a by Def. Abs. Val (18), and both −a an a
have been shown to be less than ε, |a| < ε.

∴ ε > 0 ⇒ |a| < ε ⇐⇒ −ε < a < ε

�
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22. Satisfying Abs. Val. Inequalities

Find the values of x that satisfy the following inequalities.

a) |1− x| < 4

−4 < 1− x < 4 Abs. Val. Ineq. (21)

−4 + (−1) < 1− x+ (−1) < 4 + (−1) addition of -1

−5 < −x < 3 Add. ID (3)

(−1)(−5) > (−1)(−x) > (−1)(3) multiplication by -1 (15)

5 > x > −3 (11a)

∴ {x ∈ R : −3 < x < 5}.

b) |x2 − x− 1| < x2

−x2 < x2 − x− 1 < x2 Abs. Val. Ineq (21)

−x2 + (−x2) < x2 − x− 1 + (−x2) < x2 + (−x2)

−2x2 < −x− 1 < 0 Add. Id (2c) / Comm. (2a)

−2x2 + 1 < −x− 1 + 1 < 0 + 1 add +1

−2x2 + 1 < −x < 1 Add. Id (2c)

−1(−2x2 + 1) < −1(−x) < −1(1) Mult. by -1

2x2 − 1 > x > −1 Distr. (2e), 8, 11a

From the right side we can see that x > −1.
Now consider the left:

2x2 − 1 > x

2x2 − x− 1 > 0 Add. Id (2c)

(2x+ 1)(x− 1) > 0 Distr. (2e)

If (2x + 1)(x − 1) is going to be greater than 0, then by 10a either (i) or

17



(ii) most occur:

i) both factors must ∈ R+ :

(2x+ 1) > 0 ⇒ x > −1

2
(x− 1) > 0 ⇒ x > 1

ii) both must be ∈ R− :

(2x+ 1) < 0 ⇒ x < −1

2
(x− 1) < 0 ⇒ x < 1

Because x > − 1
2 together with x > 1 gives x > 1, and x < − 1

2 together
with x < 1 gives x < − 1

2 , the final constraints on x are x > −1, x < − 1
2

and x > 1.

∴ {x ∈ R : −1 < x < − 1
2 , x ≥ 1}.

�

23. |x| ≤ 1 ⇒ |x2 − 1| ≤ 2|x− 1|

|x| ≤ 1 ⇒ −1 ≤ x ≤ 1 No. 21

− 1 + 1 ≤ x+ 1 ≤ 1 + 1 Addition of 1

0 ≤ x+ 1 ≤ 2 simplify

x+ 1 ≥ 0 ⇒ |x+ 1| = x+ 1 Def. Abs. Val. (18)

0 ≤ |x+ 1| ≤ 2 substitution

On the left this gives − 1 ≤ x ≤ 1 which is given.

On the right, consider |x+ 1| ≤ 2 :

|x+ 1|(1) ≤ 2(1) Mult. Id (2c)

|x+ 1||x− 1|| 1

|x− 1|
| ≤ 2|x− 1|| 1

|x− 1|
| Mult. Inv. (2d)

|x+ 1||x− 1| ≤ 2|x− 1| Cancellation

|(x+ 1)(x− 1)| ≤ 2|x− 1| (20b)

|x2 − 1| ≤ 2|x− 1| Distr. (2e)

∴ |x| ≤ 1 ⇒ |x2 − 1| ≤ 2|x− 1|

�
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4 Limit Points

27. Example of No. 29

The statement - The point 6 is not a limit point of the interval (6, 9) - is false.

By No. 29, a is a limit point of (a, b). Accordingly, 6 is a limit point of (6, 9).

19



28. Element of open interval an L.P.

Let p ∈ (a, b). Prove p is a limit point of (a, b).

By the definition of an open interval, p ∈ (a, b) ⇒ a < p < b. It needs to
be shown that there exists some m distinct from p that is also in this interval
(a, b). Such an m will be either less than p or greater than p. WLOG, let us
consider the case that m is less than p. To show that p is a limit point of (a, b),
we need to show that every interval containing p also contains m. Let p1 be the
lower bound of the open interval containing p. This lower bound of the interval
containing p will be either less than a or greater than a. First, for p1 < a :

a < p ⇒ p− a = δ ∈ R+

a = p− δ

p− δ < p− δ

2
< p

Let m = p− δ

2
a < m < p

p1 < p < m < a < b

Accordingly, there exists m both in the given interval (a, b) and open intervals
of p when the lower bound of the open interval containing p is less than a.

If instead p1 is greater than a, then a similar positive δ can be found between
p and some p1 < p. So for p1 > a :

p < p1 ⇒ p1 − p = δ ∈ R+

p = p1 − δ

p1 − δ < p− δ

2
< p

Letm = p− δ

2
p1 < m < p

a < p1 < m < p < b

Accordingly, there exists m both in the given interval (a, b) and open intervals
of p when the lower bound of the open interval containing p is greater than a.

As an equivalent procedure can be shown for m > p, this accounts for all nec-
essary cases of p bounded by real elements inside of or outside of the given
interval (a, b). For all open intervals of p, there exists m, m 6= p such that m
is an element of both the open interval containing p and the given interval (a, b).

∴ p ∈ (a, b) ⇒ p is a limit point of (a, b).

�
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29. Bound of open interval

Prove that a is a limit point of (a, b).

NTS: Any open interval that contains a must also contain m distinct from a
such that m is in both the open interval containing a and the open interval (a, b).

For δ, ε ∈ R+, let (a − δ, a + ε) represent any open interval containing a. Be-
cause the open interval (a, b), only concerns values > a, we need only consider
the upper half of open intervals containing a, or the interval (a, a+ ε).

If a+ε ≥ b, there must exist m in the interval (a, b), so we consider the a subset
(a, b) of the larger interval (a, a + ε), as what is true for the sub-interval (a, b)
regarding the existence of m will also be true for (a, a+ ε) when a+ ε ≥ b.

a < b ⇒ b− a = γ ∈ R+

a = b− γ

b− γ < b− γ

2
< b

Let m = b− γ

2
a− δ < a < m < b < a+ ε

Accordingly, if the upper bound of the interval containing a is greater than
the upper bound of the given set, then there exists m distinct from a both the
interval containing p and the given interval (a, b). If a+ ε < b, then we instead
consider γ between a and a+ ε:

a < a+ ε < b

a < a+ ε ⇒ a+ ε− a = γ ∈ R+

a = (a− ε)− γ

(a− ε)− γ < (a− ε)− γ

2
< a− ε

Let m = (a− ε)− γ

2
a− δ < a < m < a+ ε < b

Accordingly, if the upper bound of the interval containing a is less than the up-
per bound of the given set, then there exists m distinct from a both the interval
containing p and the given interval (a, b).

Thus for the given set (a, b) whether the upper bound of the open interval con-
taining p is less than or greater than b, there will always be m,m 6= a both in
(a, b) and (a− δ, a+ ε).

∴ a is a limit point of (a, b).

�
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30. Non-element of closed interval

Suppose p /∈ [a, b]. Prove p is not a limit point of (a, b).

Because p /∈ [a, b], either p < a or p > b. WLOG, let us consider the case that
p < a:

p < a ⇒ a− p = d, d ∈ R+

Accordingly, a = p + d, and we need to show that there exists a point in an
open interval containing p but not also in the open interval [a, b]. Consider the
open interval M = (p− d, p+ d) such that p ∈ M :

p− d < p− d

2
< p+ d

Thus p− d
2 ∈ M , but p− d

2 /∈ [a, b].

So for (p− d, p+ d) containing p, ∃ m ∈ (p− d, p+ d) : m /∈ [a, b]. Thus for
p < a, ∃ an open interval containing p which contains no element of [a, b], so p
can not be a limit point of [a, b].

Similarly, if p > b then p − b = g, g ∈ R+. So for M = (p − g, p + g), p ∈ M
and (p− g

2 ) ∈ M, but (p− g
2 ) /∈ [a, b]. Thus for p > b, ∃ an interval containing

p which contains no element of [a, b], so p can not be a limit point of [a, b].

Thus when p < a and when p > b, p is not a limit point of [a, b].
∴ p /∈ [a, b] ⇒ p is not a limit point of (a, b).

�
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31. M with a L.P. has 2 elements and is infinite

Suppose M is a point set that contains a limit point. Prove that M has at least
two points.

Because p ∈ M and p is a limit point, for all open intervals (a, b) containing
p, there must exist another point, m ∈ (a, b) : m 6= p so that m is also in M .
Thus because p and m are both in M , M contains at least two points.

�

Accordingly because p is a limit point in M , for all open intervals (a, b) con-
taining p there must exist two distinct points in M .

Consider the interval (a, b)\m. As shown above, there must exist some other
m1 ∈ M : m1 6= m,m1 6= p.

Again if we consider (a, b)\{m,m1}, because M contains p and thus must con-
tain at least 2 distinct points as shown above, there must exist another point
m2 ∈ M .

Because the existence of mi : mi 6= p must be true for all open intervals con-
taining p, this process can be repeated infinitely many times. Thus there must
be an infinite number of mi’s in M .

32. Limit Point of 2 + 1
n
, n ∈ N

Prove that 2 is a limit point of M = {2 + 1
n : n ∈ N}

For δ, ε ∈ R+ consider the open interval (2 − δ, 2 + ε). For all such intervals,
there exists 1

n > δ and 1
n < ε so the set S described below is a fair representa-

tion of all open intervals containing 2.

S = (2− 1

n
, 2 +

1

n
)

2− 1

n
< 2 < 2 +

1

2n
< 2 +

1

n

Let m = 2 + 1
2n . So we have m 6= 2 such that m ∈ M and m ∈ S.

∴ 2 is a limit point of M = {2 + 1
n : n ∈ N}

�
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33. Nonexistence of limit point of discrete finite set

Unbridgability: For m1,m2,mx ∈ M, m1 6= m2, if ∀ mx inM @ mx in the open
interval (m1,m2), then there exists an open interval which contains no elements
of M . If such an interval exists, then for p ∈ R, every open interval containing p
contains a smaller open interval which will not include an element of M distinct
from p, so M can have no limit points.

Let M = {1, 2, 3}. Prove that M has no limit points.

The open interval (1, 2) contains neither 1, 2, nor 3 (by the definition of an
open interval and greater than). Thus there exists an open interval in M such
that ∀ mx ∈ M @mx ∈ (1, 2). Thus because of unbridgability, M has no limit
points.
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34. Z has no friends

Prove that Z has no limit points.

FSOC, suppose p is a limit point of the integers. Then there can be no open
interval containing p which does not also include an integer distinct from p.
Thus if p is not a limit point of Z, it must be shown that for all possible p’s
there exists an an open interval containing p with no other integers besides p.

1. p ∈ Z
If p is itself an integer, then consider the open interval (p−1, p+1). Because
the distance between two consecutive integers is 1, the only integers in this
interval is p. The same is true for any smaller open interval containing p.
Any larger open interval containing p must include such a smaller open
interval, so for all open intervals containing p ∈ Z: @ z ∈ Z : p 6= z.
Accordingly by the definition of a limit point, p ∈ Z cannot not be a limit
point of Z.

2. p /∈ Z
If p is not an integer, then let z1 = bpc, z2 = dpe, and consider the
open interval (z1, z2). Because the distance between z1 and z2 is 1 and
z1 and z2 are not themselves in the open interval (z1, z2), there are no
integers in the open interval (z1, z2). The same is true for any smaller
open interval containing p. Any larger open interval containing p must
include such a smaller open interval, so for all open intervals containing
p /∈ Z : @ z ∈ Z. Accordingly by the definition of a limit point, p /∈ Z
cannot not be a limit point of Z.

Thus for neither p ∈ Z nor p /∈ Z can p be a limit point of Z.

∴ Z has no limit points.

�
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35. Implications of H ∩ K

Suppose H,K are nonempty point sets. Assume p is a limit point of the set
H ∩ K. Prove that p is a limit point of H and p is a limit point of K.

p is a limit point of H ∩ K ⇒
∀ intervals containing p, ∃ m ∈ H ∩ K : m 6= p

Because, (H ∩ K) ⊂ H and (H ∩ K) ⊂ K,
m ∈ H ∩ K ⇒ m ∈ H andm ∈ K.

Accordingly, the necessary m exists in H and K considered separately, so p is
a limit point of H and p is a limit point of K.

�

36. Implications of H ∪ K

Let H,K be nonempty point sets. Then the statement ”If p is a limit point of
H ∪K, then p is a limit point of H and p is a limit point of K” is false.

FSOC, assume the statement is true, that p a limit point of H ∪K implies that
p is a limit point of both H and K alone.

Let H be the open interval (1, 2), and K the open interval (3, 4), where 2 is a
limit point of H ∪ K. Accordingly, by No. 29, 2 is a limit point of H because
in all intervals containing 2, there can be found another element in H that is
not equal to 2. But between 2 and the lower bound of K there is a positive real
distance of 1. Thus for all intervals containing 2, i.e. the open interval (1.5,
2.5), there does not necessarily exist another element of the interval such that
the element is also in K. So while 2 is a limit point of H, it is not also a limit
point of K.

Thus by counter example, the statement must be false.

�
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5 Supremum, Infimum

42. Min, Max, Inf, Sup

What are the min, max, infimum and supremum of the setM1 = {−2, 1.31, 7, 10},
and M2 = (−2, 9)

∀ m ∈ M1, −2 ≤ m, so -2 is the min of M1. Furthermore, every number in
M1 greater than 2 is not a lower bound of M , so 2 is the greatest lower bound
and thus the infimum of M1.

∀ m ∈ M, 10 ≥ m, 10 is the max of M1. Furthermore, every number in M1

less than 10 is not an upper bound of M1, so 10 is the least upper bound of M1

and thus the supremeum of M1.

The open interval M2 = (−2, 9) is infinitely large and does not have a min
or max. Rather, ∀ m ∈ M2, −2 < m, so -2 is the infimum. Similarly,
∀ m ∈ M2, 9 > m, so 9 in the supremum.

43. Infimum of M = {3 + 1
n
}

Prove the infimum of the set M = {3 + 1
n : n ∈ N} is 3.

Let x ∈M . So x = 3 + 1
n .

x− 3 = (3 +
1

n
)− 3 =

1

n
= d ∈ R+

Accordingly, 3 ≤ x ∀ x ∈M , so 3 is a lower bound of M.

Furthermore, for q ∈M , let q = 3 + 1
2n .

3 < 3 +
1

2n
< 3 +

1

n

Accordingly, ∃ q ∈M such that 3 < q < x ∀ x ∈M , so x is not a lower bound
for all x > 3. Thus 3 must be the greatest lower bound of x.

∴ For M = {3 + 1
n : n ∈ N}, infM = 3.

�
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44. Supremum of 1
t
, t ∈ (2,∞)

What is the supremum of the set M = { 1
t : t ∈ (2,∞)}? Prove that your answer

is correct.

t ∈ (2,∞) ⇒ 2 < t <∞
2

t
<
t

t
1

t
<

1

2

Thus t < 1
2 ∀ t ∈ (2,∞), so 1

2 is an upper bound of M .

For ε ∈ R+, let S′ = 2 + ε : S′ ∈ M . Let S′′ = 1
2+(ε\2) .

2 < 2 +
ε

2
< 2+

1

2+
<

1

2 + (ε\2)
<

1

2

S′ < S′′ < supM

Thus for every S′ < 1
2 , ∃S

′′ : S′′ > S′.
So for every S′ < 1

2 , S
′ is not an upper bound of M , so 1

2 is the least upper
bound.

∴ Because 1
2 is the least upper bound of M , 1

2 is the supremum of M

�
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45. ∃ a ∈M : supM − ε < a ≤ supM

Show that if M has a supremum then for any ε > 0 there exists a ∈ M such
that supM − ε < a ≤ supM .

Let supM = S.

Case 1: S ∈M . If S ∈ M , then let a = S. Thus a = supM .

Case 2: S /∈M . FSOC, Suppose @ a such that S − ε < a < S.

⇒ @ S′ ∈ M such that S − ε < S′ < S

⇒ S − ε is the greatest upper bound

⇒ S − ε = S →←

Thus ∃ a such that supM − ε < a < supM .

Accordingly, when supM ∈ M, ∃ a : a = supM and when supM /∈ M, ∃ a
such that supM − ε < a < supM .

∴ If M has a supremum then for any ε > 0 there exists a ∈ M such that
supM − ε < a ≤ supM .

�
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46. Multiplication by a positive number

Theorem. If x ∈ R, y ∈ R and x > 0, then there exists a positive integer n
such that nx > y.

Taylor’s Lemma: The natural numbers are not bounded from above.

FSOC, suppose that N is bounded above. Then by the LUBP, the supremum
of N exists, call it α.

Consider α−1. This cannot be an upper bound because α−1 is less then α and
α is the least upper bound. So there exists n ∈ N : n > α − 1, which further
implies n + 1 > α. This is a contradiction because n + 1 ∈ N and n + 1 > α,
but we assumed that for all n ∈ N, n ≤ α.

Accordingly, N is not bounded above.

Let z = y
x for x > 0. FSOC, suppose there exists z ∈ R : n ≤ z. Then z

would be an upper bound for N, but by Taylor’s Lemma this cannot be so.
Accordingly, for all z ∈ R, there exists n ∈ N such that n > z.

n > z ⇒ n >
y

x
⇒ nx > y

∴ For x ∈ R, y ∈ R and x > 0 ⇒ ∃ n : nx > y.

�
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48. The Bounded Sum of Monotonically Increasing and
Decreasing Unbounded and Bounded Sequences

If a bounded sequence is the sum of a monotone increasing and monotone de-
creasing sequence (xn = yn + zn where (yn) is monotone increasing and (zn) is
monotone decreasing) (1) does it follow that the sequence converges? (2) What
if (yn) and (zn) are bounded?

(1) If yn and zn are not bounded, then xn does not necessarily converge. For
sake of contradiction, suppose xn does converge.

Let yn be the unbounded monotonically increasing sequence 10n+ (−1)n.
Let zn be the unbounded monotonically decreasing sequence −10n+(−1)n.

Then xn = yn + zn = 10n+ (−1)n +−10n+ (−1)n = (−1)n. So xn = (−1)n is
a bounded sequence, but it does not converge (by No. 60).

∴ xn does not converge when (yn) and (zn) are not bounded.

�

(2) If instead (yn) and (zn) are bounded, xn does converge:

By the Least Upper Bound Property, the supremum of yn, sup y exists, and the
infimum of zn, inf z exists. Let L = sup y + inf z.
Need to show:

∃ N : ∀ ε > 0, |xn − L| < ε, ∀ n ≥ N

where |xn − L| = |yn + zn − (sup y + inf z)|
Because (yn) is increasing and bounded, by 62 it converges. So for every ε,
particularly ε

2 , it must be true that ∃ Ny : |yn − Ly| < ε
2 ∀n ≥ Ny. Let

Ly = sup y. Similarly, ∃ Nz : |zn − Lz| < ε
2 , ∀n ≥ N . Let Lz = inf z. Thus,

|yn − supY | < ε

2
and |zn − inf z| < ε

2

|yn − sup y|+ |zn − inf z| < ε

2
+
ε

2
|yn − sup y + zn − inf z| ≤ |yn + sup y|+ |zn + inf z| < ε

|yn − sup y + zn − inf z| < ε

|yn + zn − (sup y + inf z)| < ε

|xn − L| < ε

Let Nmax = max(Ny, Nz), Accordingly, ∃N = Nmax such that

∀ ε > 0, |xn − L| < ε, ∀ n ≥ Nmax

∴, xn converges when yn and zn are bounded.

�
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49. sup(A ∪B) ≥ supA and sup(A ∩B) ≤ supA

Prove that given two sets A and B, then sup(A∪B) ≥ supA and sup(A∩B) ≤
supA. Give examples of sets A and B such that the inequalities are strict.

Regarding the union of two sets:
If supB = supA, then sup(A ∪B) = supA
If supB > supA, then sup(A ∪B) = supB > supA
If supB < supA, then sup(A ∪B) = supA

Accordingly, the supremum of the union of A and B will be greater than or
equal to supA.

Regarding the intersection of two sets:
If supB = supA, then sup(A ∩B) = supA
If supB > supA, then sup(A ∩B) = supA
If supB < supA, then sup(A ∩B) = supB < supA

Accordingly, the supremum of the intersection of A and B will be greater than
or equal to supA.

�

Examples where the inequalities are strict:

A = {3, 4, 8, 12} and B = {2, 4, 8, 20} Thus supA = 12 and supB = {20}.

A ∪B = {2, 3, 4, 8, 12, 20} ⇒ sup(A ∪B) = 20 > supA
A ∩B = {4, 8} ⇒ sup(A ∩B) = 8 < supA
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6 Convergence - The Heart of the Matter

53. Graphs with and without Limits

Graph each of the following sequences in 1D along the real number line, and in
2D as functions from N to R, indicating limits where they exist.

(a)
(

1
logn

)∞
n=2

. Limit = 0.

1D number line

2D graph

Proof : Does converge.
Let ε > 0. Let L = 0. Let N = de(1/ε)e. Let n > N .

| 1

logN − 0
| = | 1

logN
|

1

logN
=

1

logde(1/ε)e
≤ 1

log e(1/ε)
=

1

1/ε
= ε

Accordingly, ∀ ε > 0, ∃ N : ∀ ε > 0, |an − L| < ε, so the sequence
converges to 0.

�
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(b) (−10 + n
n+1 )∞n=1. Limit = -9.

1D number line

2D graph

(c)
(
(−1)n

)∞
n=1

. Limit DNE.

1D number line

2D graph
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(d) (2n)∞n=1. Limit DNE.

1D number line

2D graph

(e)
(

1
2n

)∞
n=1

. Limit = 0.

1D number line

2D graph
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(f) (cos(n))∞n=1. Limit DNE.

1D number line

2D graph

Proof : Does not converge
FSOC, suppose cosn does converge to some L. Because the range of
cosn is [−1, 1], −1 ≤ L ≤ 1. Since L is the limit point, consider all
neighborhoods of L of the form (L − ε, L + ε). Because cosn repeatedly
cycles through values of its range from -1 to 1, whenever |ε| < 1, there are
infinitely many sequence terms outside of the neighborhood of L. Thus
by No. 70, the sequence does not converge.

�
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54. Developing Limit Intuition

Consider the sequence (an)∞n=1 = (1.3 + 1
n )∞n=1.

(a) What is the limit L of this sequence?
L = 1.3

(b) If ε = 0.1 then what can N be so that |an − L| < ε for all n ≥ N?

|an − L| < ε

|(1.3− 1

N
)− 1.3| < 0.1

1

N
<

1

10
N > 10

(c) If ε = 0.05 then what can N be so that |an − L| < ε for all n ≥ N?

1

N
<

1

20
N > 20

(d) If ε = 10−4 then what can N be so that |an − L| < ε for all n ≥ N?

1

N
<

1

1000
N > 1000

55. Convergence of (1.3 + 1
n
)∞n=1

Prove (1.3 + 1
n )∞n=1 converges.

Let ε > 0. Let L = 1.3. Let N =
⌈

1
ε

⌉
. Let n > N .

|1.3 +
1

N
− 1.3| =

∣∣ 1

N

∣∣
1

N
=

1⌈
1
ε

⌉ ≤ 1
1
ε

= ε

Accordingly, ∀ ε > 0, 1
N ≤ ε ∀ n > N.

∴ (1.3 + 1
n )∞n=1 converges.
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56. Convergence of (−10 + n
n+1

)∞n=1

Prove (−10 + n
n+1 )∞n=1 converges.

Let ε > 0. Let L = −9. Let N =
⌈

1−ε
ε

⌉
. Let n > N .

∣∣∣∣− 10 +
N

N + 1
+ 9

∣∣∣∣ =

∣∣∣∣ N

N + 1
− 1

∣∣∣∣
=

∣∣∣∣ 1
ε − 1

1
ε − 1 + 1

− 1

∣∣∣∣
=

∣∣∣∣ε(1

ε
− 1

)
− 1

∣∣∣∣
= |1− ε− 1|
= ε

Accordingly, ∀ ε > 0,

∣∣∣∣ N
N+1 − 1

∣∣∣∣ ≤ ε ∀ n > N.

∴ (−10 + n
n+1 )∞n=1 converges.

�

57. Convergence of (3 + 1
n2 )

∞
n=1

Prove (3 + 1
n2 )∞n=1 converges.

Let ε > 0. Let L = 3. Let N =

⌈√
1
ε

⌉
. Let n > N .

|3 +
1

N2
− 3| = | 1

N2
|

1

N2
=

1⌈√
1
ε

⌉2 ≤
1(√
1
ε

)2 = ε

Accordingly, ∀ ε > 0, 1
N2 ≤ ε ∀ n > N.

∴ (3 + 1
n2 )∞n=1 converges.
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58. Convergence of a Constant

Prove that (1.7)∞n=1 converges.

Let L = 1.7 and N = 1. Then for ε > 0: |1.7− 1.7| = 0 < ε.

Accordingly, ∀ ε > 0 ∃ N such that |an − L| < ε, ∀ n ≥ N .

∴ (1.7)∞n=1 converges.

�

59. Convergence of ((1
2
)n)∞n=1

Prove that (( 1
2 )n)∞n=1 converges.

Let ε > 0. Let L = 0. Let N =
⌈

log2( 1
ε )
⌉
. Let n > N .

∣∣∣∣(1

2

)n
− 0

∣∣∣∣ =

∣∣∣∣(1

2

)n∣∣∣∣
=

(
1

2

)n
=

1

2n

<
1

2N

=
1

2log2( 1
ε )

=
1
1
ε

= ε

Accordingly, ∀ ε > 0 ∃ N such that

∣∣∣∣( 1
2

)n∣∣∣∣ < ε, ∀ n ≥ N .

∴ (( 1
2 )n)∞n=1 converges.
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60. Convergence of ((−1)n)∞n=1

Prove that ((−1)n)∞n=1 does not converge.

FSOC suppose (−1)n converges to L ∈ R. Then:
∀ ε > 0, ∃N ∈ N : |(−1)n − L| < ε ∀ n > N

Let ε = 1. Then ∃ N ∈ N : |(−1)n − L| < 1 ∀ n > N .

Case 1: n > N and n is odd:

|(−1)n − L| < 1

| − 1− L| < 1

−1 < −1− L < 1

0 < −L < 2

−2 < L < 0

Case 2: n > N and n is even:

|(−1)n − L| < 1

|1− L| < 1

−1 < 1− L < 1

−2 < −L < 0

2 > L > 0

This is a contradiction because L can’t satisfy both inequalities. Thus in the
definition of convergence, |an − L| < ε, no such L exists.

∴ ((−1)n)∞n=1 does not converge.
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61. Sequence converging to α

Let α = supM . Prove there exists a sequence (an)∞n=1 that converges to α such
that an ∈ M for all natural numbers n. (A similar statement is also true for
inf M .)

Case 1: α ∈M . Then let an = α and L = α, so that an converges to L by No.
58 (convergence of a constant).

Case 2: α /∈ M . Then by the definition of supremum, ∀ m ∈ M, ∃ m′ ∈ M
such that m < m′ < α.Let a1 = m′. Likewise, for m′′ ∈ M such that
m′ < m′′ < α. Let a2 = m′′. Continue in this manner to establish an ∈ M
for all natural numbers n. Furthermore, because an > ... > a3 > a2 > a1, the
sequence is monotone increasing and bounded above by its least upper bound,
the supremum of M = α. Thus by No. 62, an converges to α.

∴ For both α ∈M and α /∈M , there exists a sequence (an)∞n=1 that converges
to α such that an ∈ M for all natural numbers n.

�

62. Convergence of Monotonically Increasing Above Bounded
Sequence

Suppose a sequence (an)∞n=1 is monotonically increasing. That is, an ≤ an+1 ∀ n =
1, 2, 3, .... Assume (an)∞n=1 is also bounded above. Prove (an)∞n=1 converges.

Because (an)∞n=1 is bounded above, by the Least Upper Bound Property, the
supremum of (an)∞n=1 exists. Let L = sup a.

Because (an)∞n=1 is monotonically increasing, an ≤ an+1 so an+1 is closer to or
the same distance from L than an, or |an+1 − L| ≤ |an − L|. Thus, there must
exist some N at which the difference between aN and sup a must only decrease
as n increases past N .

Let ε > 0. Let L = sup a. At N , let aN = L− ε. Let n > N . Then |aN − L| =
| sup a− ε− sup a| = ε ≤ ε. Thus the N that satisfies aN = supA− ε is the N
at which convergence begins. Accordingly,

∀ ε > 0, ∃ N : |an − L| < ε, ∀ n ≥ N

∴ When monotonically increasing and bounded above, (an)∞n=1 converges.
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7 Properties of Convergent Sequences

64. Convergent sequence ⇒ Bounded point set

Prove that if a sequence (an)∞n=1 converges to L, then the point set M = {an :
n ∈ N} is bounded.

(an)→ L ⇒ ∀ ε > 0, ∃ N ∈ N :

|an − L| < ε ∀ n ≥ N
||an| − |L|| < |an − L| < ε

|an| − |L| < ε

|an| < ε+ |L|

Let C = ε+ |L|. Thus |an| ≤ C for all n > N . For the finite number of elements
of an such that 1 ≤ n < N , let X = max(|an − L|). Because X is the greatest
distance between an and L for n in the interval 1 ≤ n < N , |an−L| < X. Thus:

|an − L| < X ∀ 1 ≤ n > N

||an| − |L|| < |an − L| < X

|an| − |L| < X

|an| < X + |L|

Let D = X+|L|. Thus |an| < D for all 1 ≤ n < N . Accordingly, for n ≥ N , (an)
is bounded and for 1 ≤ n < N , (an) is bounded. So for all n ∈ N, an is bounded.

∴ (an)∞n=1 converges to L ⇒ M = {an : n ∈ N} is bounded.
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65. (can)
∞
n=1 converges to cL

Suppose (an)∞n=1 converges to L and c is a constant. Prove (can)∞n=1 converges
to cL.

Because (an)∞n=1 converges to L, for all ε > 0, there exists N > 0 such that
|an − L| < ε, ∀ n ≥ N . Because this is true for all ε > 0, it is true for ε

c :

|an − L| <
ε

c

− ε
c
< an − L <

ε

c

c

(
− ε

c

)
< can − cL < c

(
ε

c

)
−ε < can− cL < ε

|can− cL| < ε

Accordingly, because ∀ ε > 0, ∃ N : |an − L| < ε, ∀ n > N , by the same N
∀ ε > 0, |can − cL| < ε, ∀ n > N .

∴ (can)∞n=1 converges to cL.

�

66. Convergence of Added Converging Functions

Suppose (an)∞n=1 converges to L and (bn)∞n=1 converges to K. Prove that
(an + bn)∞n=1 converges to L+K.

(an)→ L ⇒ |an − L| < ε ∀ n > Na

|an − L| <
ε

2
∀ n > Na

(bn)→ L ⇒ |bn −K| < ε ∀ n > Nb

|bn −K| <
ε

2
∀ n > Nb

Let N = max(Na, Nb). Then:

|an − L|+ |bn −K| <
ε

2
+
ε

2
∀ n > N

|(an − L) + (bn −K)| ≤ |an − L|+ |bn −K| <
ε

2
+
ε

2
= ε ∀ n > N

|(an + bn)− (L+K)| < ε ∀ n > N

Thus by the definition of convergence, (an + bn) converges to L+K.
∴ (an)∞n=1 → L and (bn)∞n=1 → K ⇒ (an + bn) → L+K.
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67. Convergence of Multiplied Converging Functions

Suppose (an)∞n=1 converges to L and (bn)∞n=1 converges to K. Prove that
(anbn)∞n=1 converges to LK.

|anbn − LK| = |anbn + Lbn − Lbn − LK|
= |bn(an − L) + L(bn −K)|
≤ |bn(an − L)|+ |L(bn −K)|
= |bn||an − L|+ |L(bnK)|

By No. 64 because bn → K, bn is bounded. Thus, for some constant C,
|bn| < C ∀ n ∈ N.

≤ C|an − L|+ |L(bn −K)|
≤ |Can − CL|+ |Lbn − LK|

By No. 65, Can converges to CL and Lbn converges to LK. By No. 66, the
sum of these two converging sequences converges to the sum of their limits,
CL+ LK. Thus ∀ ε > 0:

|Can + Lbn − (CL+ LK)| ≤ |Can − CL|+ |Lbn − LK| < ε

By the definition of convergence:

∀ ε > 0, ∃ N : |Can + Lbn − (CL+ LK)| < ε, ∀ n > N

Because we have shown the following inquality:

|anbn − LK| ≤ |Can + Lbn − (CL+ LK)| < ε

we can apply the definition of convergence as follows:

∀ ε > 0, ∃ N : |anbn − LK| < ε, ∀ n > N.

∴ (anbn)∞n=1 converges to LK.

�

44



68. Convergence of Divided Converging Functions

Suppose (an)∞n=1 converges to L and (bn)∞n=1 converges to K. Prove that
(anbn )∞n=1 converges to L

K .

Because (bn)∞n=1 → K 6= 0, by No. 70, all except finitely many elements of bn
are in any neighborhood of K, the interval (K − ε,K + ε). Because there are
only finitely elements outside of (K− ε,K+ ε), let these outside elements be Q,
and there exists a minimum element q ∈ Q outside of the neighborhood. Let
M = min(|q|, |K − ε|, |K − ε|). Then M < |bn|.

Because (bn)∞n=1 converges to K,

∀ ε > 0, ∃ N ∈ N : |bn −K| < ε, ∀ n > N

Because this is true for all epsilon, it is true for KMε:

|bn −K| < KMε

1

KM
|bn −K| <

1

KM
(KM)ε

1

KM
|bn −K| < ε

1

K|bn|
|bn −K| ≤

1

KM
|bn −K| < ε∣∣∣∣bn −KKbn

∣∣∣∣ < ε∣∣∣∣ 1

bn
− 1

K

∣∣∣∣ < ε

Accordingly, ∀ ε > 0, ∃ N ∈ N :

∣∣∣∣ 1
bn
− 1

K

∣∣∣∣ < ε, ∀ n > N , so by the definition

of convergence, ( 1
bn

)∞n=1 converges to 1
K .

By 67, because (an)∞n=1 converges to L and ( 1
bn

)∞n=1 converges to 1
K :(

an

(
1

bn

))∞
n=1

= (L)

(
1

K

)
=
L

K

∴ (anbn )∞n=1 converges to L
K .
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70. an → L ⇐⇒ neighborhoods of L contain all but finitely
many of the terms of (an)

∞
n=1

Let (an)∞n=1 be a sequence. Show that an → L if and only if every neighborhood
of L contains all but finitely many of the terms of (an)∞n=1.

1. First assume an → L. Then by the definition of convergence, ∀ ε > 0,
there exists N > 0 such that |an − L| < ε for all n ≥ N . Accordingly

−ε+ L < an < ε+ L ∀ n > N

So there is some N, past which all of the sequence is within every neigh-
borhood of L. The elements of the sequence such that 1 ≤ n < N are
outside of the neighborhood of L but are finitely numbered. Accordingly,
if an → L, then every neighborhood of L contains all except finitely many
of the terms of (an)∞n=1.

2. Then assume every neighborhood of L contains all but finitely many of the
terms of (an)∞n=1. For ε > 0, let all neighborhoods of L be (L − ε, L + ε)
so that L − ε < an < L + ε for all n > N but not 1 ≤ n < N . Thus
the elements of the sequence when 1 ≤ n < N are finitely numbered, and
the elements of the sequence n > N comprise the rest of the sequence.
Then by the definition of absolute value, for all ε > 0, there exists N such
that |an − L| < ε for all n > N , so an converges to L. Accordingly, if
every neighborhood of L contains all except finitely many of the terms of
(an)∞n=1, then an → L.
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71. Uniqueness of Limits

Let (an)∞n=1 be a sequence. Let L and L′ be in R. Show that if (an)∞n=1 con-
verges to L and L′, then L = L′.

FSOC, suppose L 6= L′. Then ∃ d ∈ R such that d = |L− L′|.

By the definition of convergence, ∀ ε > 0, ∃ N :

|an − L| < ε and |an − L′| < ε

Then let ε = d
2 :

|an − L| <
d

2
and |an − L′| <

d

2
Accordingly:

d = |L− L′| = |L+ an − an − L′| ≤ |L− an|+ |an − L|

= |an − L|+ |an − L| <
d

2
+
d

2
This implies that d < d, which is a contradiction.

∴ If (an)∞n=1 → L and (an)∞n=1 → L′, then L = L’.

�

72. L = Limit point of S ⇒ convergence to L

If S ⊂ R and L is a limit point of S then there is a sequence (an)∞n=1 in S such
that L = limn→∞ an.

Because L is a limit point of S, every open interval of with L contains a point
of S different from L.

∀ ε > 0, ∃ q ∈ (L− ε, L+ ε), q ∈ S, q 6= L

So for some ε1, ∃ q1, call it a1.

Let ε2 = |a1−L|
2 . Thus ∃ q2 ∈ S, q2 6= q1 call it a2.

Likewise, let ε3 = |a2−L|
2 . Thus ∃ q3 ∈ S, q3 6= q2 call it a3.

Continuing in this manner of choosing εn = |an−1−L|
2 , by the definition of a limit

point, for all ε there must always exist a unique an. Because ε < a1 < L, the
first term of the sequence is within the neighborhood of L. Every term after
a1 is greater than a1, so an is always within the closed interval (L − ε, L + ε)
∀ n > 1. Accordingly, ∀ ε > 0 ∃ N,N = 1 : |an − L| < ε, ∀ n > N , so (an)∞n=1

converges to L.

∴ There is a sequence (an)∞n=1 in S such that L = limn→∞ an.
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8 Continuity

80. Continuity of Linear function

Let f(x) = 2x for all x ∈ R. Prove that f is continuous at c = 3.

(a) The domain of f(x) is all x ∈ R, so c = 3 is in the domain of f(x).

(b) Let an → c = 3. Let f(an) = 2(an). Let bn = 2 such that bn → 2 by No.
58. Thus f(an) = (bn)(an) which converges to (2)(3) = 6 = f(3) by No.
67. Accordingly, while an → c, f(an)→ f(c).

∴ f is continuous at c = 3.

�

81. Continuity of Quadratic Function

Let f(x) = x2 for all x ∈ R. Prove that f is continuous at c = −2.

(a) The domain of f is all x ∈ R. Because c = −2 ∈ R, c ∈ domain(f).

(b) Let an → −2.
Notice f(an) = (an)2 = (an)(an). Because an → −2, by No. 67:

f(an) = (an)(an) → (−2)(−2) = 4 = (−2)2 = f(−2)

Thus while an → −2, f(an) → f(−2).

∴ f is continuous at c = −2.

�

82. Continuity of Constant Function

Let f(x) = π+1 for all x ∈ R. Prove that f is continuous for all real numbers x.

The domain of f is R, for some c in R, c is in the domain of f .

Note: ∀ x ∈ R, f(x) = π + 1. Thus ∀ x ∈ R:

∀ ε > 0, |f(an)− f(c)| = |(π + 1)− (π + 1)| = |0| < ε

Accordingly, |f(an) − f(c)| is always less than ε, and by No. 58 the constant
term |f(an)−f(c)| is convergent for any c, so it is always true that f(an)→ f(c).
Let an → c. Accordingly, when an → c, f(an)→ f(c).

∴ f is continuous for all real numbers x.
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83. Interval with f(x) > 0 for continuous f

If a function f is continuous on [a, b] and there exists x ∈ (a, b) such that
f(x) > 0, then there exists an open interval T , containing x, such that f(t) > 0
for all t ∈ T.

Because f is continuous on [a, b]:

∀ ε > 0, ∃ δ > 0 : |f(y)− f(x)| < ε, ∀ |y − x| < δ

Because f(x) > 0, let ε = f(x). Accordingly:

|f(y)− f(x)| < f(x) is true ∀ y such that |y − x| < δ

−f(x) < f(y)− f(x) < f(x) is true ∀ y such that − δ < y − x < δ

0 < f(y) < 2f(x) is true ∀ y such that − δ + x < y < δ + x

0 < f(y) < 2f(x) is true ∀ y such that − δ + x < y < δ + x

Let T = (x− δ, x+ δ) and t = y so that ∀ t ∈ T, f(t) > 0.

∴ ∃ T with x ∈ T such that f(t) > 0, ∀ t ∈ T .

�

84. Continuity of f(x) = xn for all real numbers

Let f(x) = xn for some n ∈ N. Prove that f is continuous for all x ∈ R.

(a) The domain of f is all x ∈ R. Thus all x ∈ R is in the domain of f .

(b) For x ∈ R, let ak → x.
Notice f(ak) = (ak)(ak + 1)...(an). Because ak → x, by No. 67:

f(ak) = (ak)(ak + 1)...(an) → (x)(x)...(x) = xn = f(x)

Thus while ak → x, f(ak) → f(x).

∴ f is continuous for all x ∈ R.
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86. Equivalence of Continuity Definitions 1 and 2

Prove that the two definitions of continuity are equivalent.

(⇒)First assume Definition No. 2 and the the condition of Definition of No. 1:

Definition No. 2:

∀ ε > 0, ∃ δ > 0, ∀ y : |y − x| < δ ⇒ |f(y)− f(x)| < ε

Condition of Definition No. 1:

an → c ⇒ ∀ δ > 0, ∃ N : |an − c| < δ ∀n > N

Let y = an and c = x so that the condition of Definition No. 1 becomes:

∃ N : |y − x| < δ, ∀n > N

Then by the Definition of No. 2:

∀ ε > 0, ∃ N : |f(an)− f(c)| < ε, ∀n > N

Accordingly, for every an → c, f(an) → c.

(⇐)Then assume Definition No. 1 and the condition of Definition NO. 2:

Definition No. 1:
∀ an → c, f(an)→ f(c)

Condition of Definition No. 2:

∀ ε > 0, ∃ δ > 0, ∃ y : |y − x| < δ

FSOC, suppose that while |y − x| < δ, |f(y) − f(x)| ≥ ε. So while δ = 1
n ,

∃ y : |f(y)− f(x)| ≥ ε. If y = an and x = c, then |f(an)− f(c)| ≥ ε. But this
implies that f(an) does not converge to f(c), which contradicts Definition No.
1. Accordingly, |f(an)− f(c)| must be < ε, and thus |f(y)− f(x)| < ε.

∴ The first two definitions of continuity are equivalent.
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87. Continuous + Continuous = Continuous

Let f and g be continuous functions on [a, b]. Prove the functions h = f + g is
also continuous on [a, b].

Because f is continuous on [a, b]:

∀ ε > 0, ∃ δf : |f(y)− f(x)| < ε

2
, ∀ y : |y − x| < δf

Similarly, because g is continuous on [a, b]:

∀ ε > 0, ∃ δg : |g(y)− g(x)| < ε

2
, ∀ y : |y − x| < δg

Both of these statements are simultaneously true for δh = min(δf , δg).

|h(y)− h(x)| = |(f(x) + f(y))− (g(y) + g(x))|
= |f(x) + f(y)− g(y)− g(x)|
= |(f(y)− g(y)) + (f(x)− g(x))|
≤ |f(y)− g(y)|+ |f(x)− g(x)|

<

∣∣∣∣ ε2
∣∣∣∣+

∣∣∣∣ ε2
∣∣∣∣

<

∣∣∣∣ ε2 +
ε

2

∣∣∣∣
< ε

Accordingly, with h representing the sum of f and g:

∀ ε > 0, ∃ δh : |h(y)− h(x)| < ε, ∀ y : |y − x| < δh

∴ For two continuous functions f and g on [a, b], h = f + g is also continuous
on [a, b].
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88. (Continuous)(Continuous) = Continuous

Let f and g be continuous functions on [a, b]. Prove the functions h = f · g is
also continuous on [a, b].

Because f is continuous, for all x ∈ [a, b], while an → x, f(an)→ f(x).

Because g is continuous, for all y ∈ [a, b], while bn → x, g(bn)→ g(x).

By No. 67, (an)(bn)→ (x)(x).

By No. 67, f(an)(bn)→ f(x)g(x) = h(x).

Accordingly, for every (an)(bn)→ (x)(x), f((an)(bn))→ f(x)g(x) = h((x)(x)).

∴ h(x) = f(x)g(x) is continuous on [a, b].

�

89. Discontinuity Example

Prove that the function f is not continuous at x = c if f(x) = 1 for all x 6= c
and f(c) = 2.

Let an → c. Then by No. 51, ∀ δ > 0, |an − c| < δ. Consider ε = 1
2 . Then:

|f(x)− f(c)| = |1− 2| = 1 > ε =
1

2

Because when |an − c| < δ, ∃ ε : |f(x) − f(c)| > ε, by No. 85, f(x) does not
converge to f(c) while an converges to c.

∴ f is not continuous at x = c.
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90. Discontinuity Example

Prove that for any real number x,

f(x) =

{
1 x ∈ Q
0 x /∈ Q

is not continuous.

FSOC suppose f is continuous for all x ∈ R. Then while (an)→ c, WLOG for
c ∈ Q, f(an) → f(c) = 1. Consider an /∈ Q. Then f(an) → 1 but this is a
contradiction because f(an) = 0. Thus while an → c, f(an) does not converge
to f(c).

∴ f is not continuous for any real number.
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92. Equivalence of Continuity Definitions

Prove that the third definition of continuity is equivalent to the other two.

Definition 3:
A function f is said to be continuous at a point x if for every n ∈ N there exists
an m ∈ N such that |f(y)− f(x)| < 1

n for all y such that |y − x| < 1
m .

Definition 2:
A function f is said to be continuous at a point x if for every ε > 0 there exists
a δ > 0 such that |f(y)− f(x)| < ε for all y such that |y − x| < δ.

(2 ⇒ 3) Assume the condition of Definition 3 and Definition 2, ∀ ε, δ > 0:

|y − x| < 1

m
and |y − x| < δ ⇒ ∃ δ : |f(y)− f(x)| < ε

Consider 0 < ε < 1
n and 0 < δ < 1

m . Accordingly,

|y − x| < δ <
1

m

|f(y)− f(x)| < ε <
1

n

Thus whenever |y − x| < 1
m , it is true that |f(y)− f(x)| < 1

n .

∀ n ∈ N, ∃ m ∈ N : |f(y)− f(x)| < 1

n
∀ y : |y − x| < 1

m

(3 ⇒ 2) Assume the condition of Definition 2 and Definition 3, ∀ ε, δ > 0:

|y − x| < δ and |y − x| < 1

m
⇒ ∃ ∈ N : |f(y)− f(x)| < 1

n

Consider 0 < 1
nε and 0 < 1

mδ. Accordingly,

|y − x| < 1

m
δ

|f(y)− f(x)| < 1

n
< ε

Thus whenever |y − x| < δ, it is true that |f(y)− f(x)| < ε.

∀ ε > 0 ∃ δ > 0 : |f(y)− f(x)| < epsilon ∀ y : |y − x| < δ

Accordingly, Definitions 2 and 3 are equivalent. By 86, Definitions 1 and 2 are
equivalent.

∴ Definitions 1, 2, and 3 are equivalent.
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93. Continuous at Q
Suppose f has domain (0, 1) and is defined to be

f(x) =

{
1
n x = m

n in lowest terms

0 x /∈ Q

Prove that f is not continuous at every rational number in (0, 1) and that f is
continuous at every irrational in (0, 1).

For x ∈ Q : Consider (an) = x + Φ
n so that (an) → x, and thus f(x) 6= 0.

Because (x + Φ
n ) /∈ Q, f(x + Φ

n ) = 0 and thus f(an) → 0 6= f(x). Accordingly,
while an → x, f(an) does not converge to f(x) and thus f is not continuous at
the rationals.

For r /∈ Q: For all ε > 0, there exists 1
n < ε. Consider a fixed N such that

∀ n ∈ N, n > N , and thus 1
n < 1

N ⇒ m
n < 1

N . So 1
N < ε. Because there

is a finite number of points for f(r) > ε, there is a minimum distance d from
irrational r to rational x such that f(x) > ε. Using this minimum distance,
there exists δ, 0 < δ < d.

In the interval (0, δ), there is no rational 1
n2

: n2 < n. Thus for all y such that

|y − x| < δ, either 0 < 1
N < ε or |f(y) − f(x)| = 0 < ε. Either way, for all

n > N , by Definition No. 2 of continuity, f is continuous at the irrationals.

∴ On the interval (0, 1) f is not continuous at the rationals and continuous at
the irrationals.

�

94. Continuity of f(x) = 1
x

Show that the function f(x) = 1
x is continuous over its domain.

Let an → x such that ∀ n ∈ R, an 6= 0. Let bn = 1. By No. 58, bn → 1. Then
using No. 68:

f(an) =
1

an
=
bn
an
→ 1

x
= f(x)

Thus while an → x, f(an) → f(x), so by No. 78 f(x) is continuous over its
domain.
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9 More on Continuity and Convergence

95. Limits are less extreme than Bounds

Let L be a constant. Suppose (an)∞n=1 satisfies the property that an ≤ L, for
all n ∈ N. If an → α, prove that α ≤ L. State and prove an analogous theorem
for an ≥ L.

FSOC, suppose α > L. Consider the interval (L,L+α). Because an ≤ L ∀ n ∈
N, for all n ∈ N the interval (L,L+ α), does not contain an.

Accordingly the neighborhood of α that is the interval (L,L + α) contains no
terms of an, and so does not contain all except finitely many of an. Thus by
No. 70, an can not converge to α. This is a contradiction because we assumed
an → α.

∴ an ≤ L and an → α ⇒ α ≤ L

Similarly, if (an)∞n=1 satisfies the property that an ≥ L, for all n ∈ N and
an → α, then α ≥ L.

FSOC, suppose α < L. Consider the interval (L−α,L). Because an ≥ L ∀ n ∈
N, for all n ∈ N the interval (L− α,L), does not contain an.

Accordingly the neighborhood of α that is the interval (L − α,L) contains no
terms of an, and so does not contain all except finitely many of an. Thus by
No. 70, an can not converge to α. This is a contradiction because we assumed
an → α.

∴ an ≥ L and an → α ⇒ α ≥ L
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97. ∃ x ∈ R : cos(x) = x

Show there is some x ∈ R so that cos(x) = x.

Consider the function f(x) such that f(x) = cos(x)−x. We know that cos(x) is a
continuous function and −x is a continuous function by No. 82, No. 80, and No.
88 (Reference Exam problem No. 3). By No. 87, the addition of two continuous
functions is also continuous, so f(x) is continuous. By No. 96, if we can find
an a and b such that f(a) < 0 and f(b) > 0, then continuity of f(x) implies
that f(x) = 0 for some x ∈ R. Choose a = π so that f(a) = (−1 − π) < 0
and b = 0 so that f(b) = (1 + 0) > 0. Accordingly there exists a and a
b such that f(a) < 0 and f(b) > 0, so there must exists some x such that
f(x) = 0 ⇒ cos(x)− x = 0 ⇒ cos(x) = x.

�

99. Temperature

Let T (x) represent the temperature on the surface of the Earth, which we as-
sume is a sphere. Thus T : R3 → R, where the point is a point on the surface
of the Earth and the output is a temperature. Show there exists a point c on
the surface such that T (c) = T (−c).

Let f(x) = T (c) − T (−c) so that f(−x) = T (−c) − T (c). If f(x) 6= 0, then
either f(x) > 0 or f(x) < 0:

f(x) > 0 ⇒ T (x)− T (−x) > 0 ⇒ T (−x)− T (x) < 0 ⇒ f(−x) < 0

f(x) < 0 ⇒ T (x)− T (−x) < 0 ⇒ T (−x)− T (x) > 0 ⇒ f(x) > 0

Accordingly, f(−x) < 0 < f(x)). If temperature T is in fact continuous, then
the addition of two temperature functions is also continuous by No. 87, and so
f is continuous. If f is continuous, then by No. 96, there must exist c such
that f(c) = 0 which would give T (c) = T (−c). However, temperature is not
continuous. Consider a cave.
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