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1 Abstract

In public key cryptography, elliptic curves are increasingly utilized because of

their ability to provide maximal security with minimal key size. Elliptic curve

cryptography is built upon the mathematical foundations of group theory. De-

spite intense levels of theoretical mathematical foundations, elliptic curves still

contain imperfection. On the basis of a literature review, this report reviews

the mathematical underpinnings of elliptic curves, the applications of elliptic

curves in cryptography, and what makes some curves stronger or more useful

than others.
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2 Development of Public Key Cryptography

With the expansion of Public Key Cryptography, Elliptic Curve Cryptography

may be one of the most secure systems presently available. In many cases

it is replacing RSA as the encryption method of choice for key exchange and

digital signatures. Rather than RSA’s dependence upon mere multiplication

and factorization of large prime numbers, ECC utilizes the algebraic structure

of elliptic curves over finite fields, requiring expensive computation of the elliptic

curve discrete logarithm function. Not only is ECC much more difficult to work

with, but it achieves the same level of security as an RSA algorithm, with a

much smaller key. According to CloadFlare, ”...breaking a 228-bit RSA key

requires less energy to than it takes to boil a teaspoon of water. Comparatively,

breaking a 228-bit elliptic curve key requires enough energy to boil all the water

on earth” [1]. Thus, if ECC was more widespread and industry supported, it

could be an extremely viable replacement to the more taxing public key systems,

e.g. RSA. Another representation of relative key sizes which provide the same

amount of security can be seen in Figure 1:

Figure 1: Comparing Key Sizes

Asymmetric (public key) cryptography relies on a pair of keys which are

mathematically interdependent. The system of public key cryptography is an

advance from previous symmetric key cryptography systems because it does not

rely on the prior exchange of a single encryption/decryption pair, during which
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there is greater potential for key interference and compromised security. [2] The

process of public key cryptography is illustrated in Figure 2.

Figure 2: Public Key Cryptography

In public key cryptography, Alice and Bob are assigned their pairs of keys

from some certificate authority. Alice has a public key which is known to the

world and can be used to encrypt a message being sent to her. Her private key is

mathematically dependent upon her public key in an extremely computationally

expensive way, so that it is infeasible to know Alice’s private key without being

Alice herself. When Bob sends Alice a message encrypted with Alice’s public

key, only Alice can decrypt it using her private key. Likewise, Alice can encrypt

a message with Bob’s public key, send it to Bob, and Bob can decrypt it using

his private key.

Figure 3: Distinct but Related Keys

It is important to note that the key used for encryption is different than

that used for decryption, though the encryption and decryption keys are still

mathematically related. This is the primary distinction from symmetric key

cryptography, which uses the same key for encryption and decryption. Multiple

different systems of asymmetric cryptography have been developed since its
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beginning in the 1970s.

2.1 Diffie-Hellman

The first version of public key cryptography introduced in 1975 was the Diffie-

Hellman system intended for use as a military secret system [2]. The Diffie-

Hellman system problem is founded on the computationally difficult discrete

logarithm problem: for a group G, g ∈ G, and h in the subgroup generated by

g, find the integer m such that:

h = gm

To make a system for message exchange from this discrete logarithm prob-

lem, the group G, and element g of order n is made known to the public. Bob

has secret key b < n and Alice has secret key a < n. Then Bob’s message B = gb

and Alice’s message A = ga. Bob sends B to A who can then compute Ba = gba

and Alice sends A to Bob who can then compute Ab = gab [3]. Accordingly,

Alice and Bob now share the same information without knowing each others’

private keys a, b:

Ba = gba = gab = Ab

2.2 RSA

In 1977, the joint efforts of Ronald L. Rivest, Adi Shamir, and Leonard M. Adle-

man produced the public key crypto-system known as RSA for confidentiality

and digital signatures based on the computationally difficulty of factoring large

numbers.

To establish the public key, two numbers must be found, e and n. The

modulus n is generated by the multiplication of two, large, relatively prime

numbers p and q. Find a number e which is relatively prime to Φ(n) = (p −
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1)(q − 1)such that 1 < e < Φ(n). The private key d is the inverse of e,or the d

such that ed = 1 mod(Φ(n)). The security of RSA is founded on the difficulty

of finding the two prime factors p and q of n [4].

If Alice is sending a message to Bob using RSA, Bob and Alice both have

knowledge of the public key (n, e). The message Alice is sending will be numer-

ically represented with numbers less than n. With P , a section of the numeric

plain text message, Alice calculates the cipher text C as:

C = P emodn

When Bob receives this message, he uses his private key d, calculates Cd, and

retrieves the plain text P .

2.3 Depth of Trapdoors

The above described asymmetric cryptography systems exemplify the workings

of public key crypto-systems to aid in the understanding of Elliptic Curve’s

Cryptography’s relevance to other systems of its type. Elliptic Curve Cryptog-

raphy is a variation of the discrete logarithm problem that uses a geometric

group rather than a modular group. This allows the keys involved in the Ellip-

tic Curve Crypto-system to be stored with less memory, thus making the keys

easier to manage and compute[4].

Essential to all such public key crypto-systems is their classification as ”Trap-

door Functions.” That is, they are easy to use in one direction, but much more

difficult in the other. For example, with the Diffie-Hellman system, it is easy

to raise a shared message by a private number, but much more difficult to then

take this exponential result and from it, determine which private number it was

raised to, the knowledge of which would need to be had if one was to deci-

pher a message. For RSA, it is easy to start with two prime numbers and then
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multiply them to establish a field, but much more difficult to determine which

two prime numbers were multiplied given the one large product n. However, as

previously illustrated with the boiling water analogy, these two systems, though

mathematically intensive, still have their limitations. They both require much

more memory than do elliptic curve systems. Additionally, algorithms such as

the Quadratic Sieve and the General Number Field Sieve have been developed

in response to the problem of factoring large prime numbers [1].

Elliptic curves serve as a trap door with an even deeper falling distance. The

crypto-system of an elliptic curve relies upon its symmetry. The ’addition’ of

two points along the curve results in a slope of intersecting or tangential points

to give a third point which is then reflected over the x-axis and remains on

the curve. This reflected point can then be combined with another point to

obtain another point on the curve which is again reflected over the x-axis. This

process can be repeated however many (privately known) times to arrive at a

final point which is the cipher text [1]. Just as it is easy to multiply large primes

in RSA but difficult to determine which two large primes were multiplied, it is

easy to keep connecting and reflecting points along the Elliptic Curve but hard

to determine how many times the points where reflected, which is necessary

knowledge to recover the original plain text information.
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3 Applications

In general, Public Key Cryptography is used in key exchange for integrity, sig-

nature schemes for authenticity, and encryption for confidentiality. Such crypto-

systems include RSA, Diffie-Hellman, ECDH, DSA, and ECDSA.

Elliptic curves have been increasingly applied in a number of settings since

their introduction in 1985 [5]. Elliptic Curves are advantageous because of

the reduced key size required to provide the same level of security as relevant

counterparts, such as RSA. Applications of Elliptic Curves include government

communications, bitcoins, signatures of iMessages, encryption of DNS informa-

tion, and browser authentication. Typically the ECC variation of an RSA or

Diffie Hellman key exchange mechanisms or elliptic curve - based certificates

operate much quicker and with less memory. A 256-bit Elliptic Curve Digital

Signature Algorithm key is more than 20 times faster than a 2,048-bit RSA key

[1].

U.S. standards in place to govern Elliptic Curve Cryptography include TLS

for secure browsers, S/MIME, CMS for secure email, IPSec, X509 certificates,

FIPS, Digital Signature Standard for NIST [5].

Elliptic Curve Cryptography involves a combination of elliptic curve methods

with other cryptographic methods. For example, Elliptic Curve Diffie Hellman

(ECDH) is often used for key exchange and Elliptic Curve Digital Signature

Algorithm for digital signatures.
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4 Elliptic Curves

Elliptic curves can be represented by the following equation:

y2 = x3 + ax+ b

The points described by this Weierstrass form of the elliptic curve equation

together with a point at infinity, denoted 0 comprise an elliptic curve. When

graphed, elliptic curves are symmetric about the x-axis. The different variations

of the curves seen in Figure 4 are the result of varied a and b values.

Figure 4: Elliptic Curves in Weierstrass Form

For the curve to always be defined, 4a3 + 27b2 6= 0. This restriction excludes

the case that there will be a point or an intersection in the left looping portion

of the graphical curve.

Including the point at infinity yields the following definition of elliptic curves:
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Figure 5: Singular Curves

{(x, y) ∈ R2 | y2 = x3 + ax+ b, 4a3 + 27b2 6= 0} ∪ {0}

Elliptic curves are useful because the group that can be defined over them.

For a further definition of the group structure of Elliptic Curves see Mathemat-

ical Foundations. In terms of the elliptic curve, the group operation of addition

is defined as follows for three, aligned nonzero points in any order:

P +Q+R = 0

The identity element e = 0, the point at infinity. The inverse of a point P is

the one symmetric about the x axis. This is an associative and commutative

operation, making this an abelian group. Because of such:

P +Q+R = 0 ⇒ P +Q = −R

This relationship can be easily seen in the graph of an elliptic curve. The

addition of points depicted in Figure 6 is the foundation for elliptic curve oper-

ations and elliptic curve cryptography.

Given two non-zero, points P = (xp, yp) and Q = (xq, yq) the sum of P +Q
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Figure 6: Elliptic Curve Point Addition

is a geometric operation of connecting two points P and Q by a line l. This

involves finding the slope of l that intersects both P and Q, and the third point

R that is the intersection of l with the elliptic curve E at another point distinct

from P and Q. Algebraically, this sum can be computed by first finding the

slope of the the line l that intersects the first two point P and Q on E. Once

the slope m is found it is used to formulate l. Then the third intersection of l

with E will be the point R, whose reflection across the x axis, −R will be used

as the P of the next iteration. First, to find the slope m:

(a) If xP = xQ, and yP 6= yQ or yP = yQ = 0 then P +Q = 0, where 0 is the

identity element and point at infinity, so P = −Q. Geometrically, this is

the case that P and Q are either directly symmetric each other about the

x axis or else both on the x axis. Either way, the line l is a vertical line

and there is no third point of intersection R.

(b) Else if xP 6= xQ, then there is a positive real distance between P and Q,
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so the slope m of l between P and Q is:

m =
yQ − yp
xQ − xP

(c) Else if xP = xQ and yP = yQ 6= 0, then P and Q are the same point on

the curve E, so the the tangency point of l at P and Q is:

m =
3x2P + a

2yP

Then using this slope, the point R = (xR, yR) is determined as follows:

xR = m2 − xP − xQ

yR = yP +m(xR − xQ) = yQ = m(xR − xQ)

Then because P +Q = −R,

(xP , yP ) + (xQ, yQ) = (xR,−yR)

Once the sum P +Q is found, then P +Q is again added to another point on

E to find a new sum. Considering in particular the third case where P = Q and

it is the point of tangency that determines the line l, this process of repeatedly

adding point on E to themselves to find new points on E can be summarized

by

mP = P + P + · · ·+ P

where m is the number of times P is added to itself [3]. In this process, it is

easy to move in the forward direction and continue adding P to itself m times

to arrive at some final point R ∈ E, but it is very difficult to be given R and
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from it derive the original m to recover the first P . This backwards process of

elliptic curves is even more difficult than factoring the product of large prime

numbers, and as such, can provide more security with less bits.

This variation of elliptic curves has been discussed in Weierstrass form.

Other forms of elliptic curves, can be shown to be equivalent to the Weier-

strauss form.
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5 Variations of Elliptic Curves

Alternative representations of elliptic curves include Hessian curves, Edwards

curves, Twisted curves, Jacobian curves, and Montgomery curves. Each has

benefits to particular situations, i.e. each can apply the group operation of its

particular format, thus saving time and memory. In particular, Curve 25518 is

considered here, as it has been increasingly applied of late.

Of the next three forms, each has its own advantages related to compu-

tational ease and use of the group law formula. Three particular advantages

can be considered: prime order, completeness, and the ADD function. These

advantages can be summarized as follows [6]:

Figure 7: Comparing Features of of Curve Forms

Prime order is useful because it is backwards compatible and supports more

popular standardized curves. Completeness - use of a group law formula that is

compatible with all possible inputs - is useful because it makes implementation

more compact and allows constant time operations. The ADD function is useful

because it provides the foundation for ECDSA signature verification.

5.1 Weierstrass

Weierstrass models can be used to define curves over large prime fields. Weier-

strass curves are considered for their advantages in allowing prime ordered Fields

and supporting the ADD function. As seen before, the Weiserstrass form of el-

liptic curves requires the choice of a and b such that 4a3 + 27b2 6= 0 in the

following equation.
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Wa,b : y2 = x3 + ax+ b

Contrastingly, Edwards and Montgomery Curves cannot be used for prime

order curves.

5.2 Edwards Curves

Twisted Edwards curves are considered for their advantages in providing simple

completeness and supporting the ADD function. In Edwards Curves, the pa-

rameters needing to be chosen are a and d such that a, d are distinct non-zero

elements the Field over which the curve is defined.

Ea,d : ax2 + y2 = 1 + dx2y2

Twisted Edwards curves have the following geometric form:

Figure 8: Twisted Edward’s Curve Form

By this curve form, the same kind of operations can be performed, where all

are supported by a geometric group.
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5.3 Montgomery Curves

Montgomery curve are considered for their advantages in providing simple com-

pleteness. For Montgomery Curves, parameters needing to be chosen are A

and B which are elements of the Field over which the curve is defined. Also,

B(A2 − 4) 6= 0)

MA,B : By2 = x3 +Ax+ x

Across varying security levels of 128-bits, 192-bits, and 256-bits, performance

of the twisted Edwards and Montgomery models are very similar, and the fastest

among them is 1.20 times faster than the Weierstrass model. [6]

Overall, Weierstrass curves over prime fields offer backwards compatibility

but operate slower, whereas twisted Edwards curves over composite fields offer

a time advantage.
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6 Mathematical Foundations of Elliptic Curves

6.1 Group Structure

The definition of a group over an elliptic curve is the foundation of elliptic curves

cryptography because the identity element and the inverse of all elements of

groups are unique. This uniqueness is what provides the security of elliptic

curves. Groups must have an associated binary operation that satisfies the

properties of closure, associativity, existence of an identity element, an inverse

for every element in the group. Such an operation is called addition and denoted

as such ”+”. If the addition is also commutative, then the group is Abelian [7].

The properties of binary group operations are summarized as follows for a group

G:

1. Closure: ∀ a, b ∈ G, a+ b ∈ G

2. Associativity: (a + b) + c = a + (b + c)

3. Identity: ∃ e : ∀ a ∈ G, a+ e = e+ a = a

4. Inverse: ∀ a ∈ G ∃ a−1 : a+ a−1 = e

5. (Abelian Groups) Commutativity: ∀ a, b ∈ G, a+ b = b+ a

The definition of an elliptic curve over a group has the identity 0 which is

the point at infinity. Because of an elliptic curve’s symmetric geometry, for

all points P on the elliptic curve E there exists an inverse −P which is the

reflection of P over the x-axis. The group operation is that of ’adding’ points

on the curve to themselves to obtain a line which intersects the curve in another

location and is reflected over the x-axis to obtain another point for addition.

By applying the group operation n times, the process of elliptic curve cryp-

tography can be represented as Q = kP . If P and Q are known, the problem of
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finding k is the computationally difficult discrete logarithm problem for elliptic

curves [7].

6.2 Subgroups of Finite Fields

Elliptic curves are most often restricted to finite fields, a set of finitely numbered

elements of prime order, denoted Fp. Both addition and multiplication are

closed over fields with unique identity elements and unique inverse elements.

Rather than being a continuous curve of real elements, elliptic curves over finite

fields comprise a set of disjoint points.

Because addition of multiples of P results in a multiple of P , the multiples of

P form a cyclic subgroup of the group of the elliptic curve. As such, a point P is

a generator of its subgroup, because addition of P to its multiples k-number of

times will produce all the elements of the cyclic subgroup of order k. The order

of a subgroup or of its generator P is the smallest possible k such that kP = 0.

It is important to note that by Lagrange’s theorem, the order k of a subgroup

divides the order q of the elliptic curve group with q elements. The co-factor of

the subgroup is the integer h = q/k. Accordingly, k(hP ) = k(( qk )P ) = qP = 0

[7].

Because elliptic curves are defined over finite fields, it is important to note

that points of an elliptic curve do not comprise a smooth curve but rather a set

of discrete points.

Figure 9: Discrete Points of Elliptic Curves over Finite Fields
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As seen in Figure 9, the discrete points of an elliptic curve maintain the

symmetry of the curve. Accordingly while images of smooth curves with in-

finitely many points do aid in the understanding of the geometrically-founded

group operations of elliptic curves, in reality the curves are defined over fields

of finitely many points.

6.3 Elliptic Curves defined over Fields

Most elliptic curves are defined over prime fields, particularly when used for

Internet security. Particular prime shapes allow faster modular arithmetic. Such

a shape is the Edwards curve developed in 2007, or its generalized form, the

twisted Edwards curve. Highlighted properties of this curve include its efficient

arithmetic and compatibility with the Montgomery model. One drawback of

the twisted Edwards curves is its inability to be of prime order of rational

points in the base field, making it incompatible with the commonly used prime-

order Weierstrass curves. Such consideration of prime order are key elements

considered when determining curve security.

When defined over prime fields Fp with p > 3, the order of the field con-

tributes to the modular arithmetic used in the group law where points are eval-

uated p. Different kinds of primes contribute to different levels of efficiency and

security because of certain primes ability to be reduced via modular reduction.

Pseudo-Mersenne primes are primes of the form p − sα − γ, where α is a

security parameter and multiple of 64, γ is an integer less than 232 [8]. In

choosing fields over which an elliptic curve will be defined, it is advisable to

choose one in which the group law can be computed efficiently. This limits the

number of different fields, particularly to those with finite order q and a prime

characteristic. If k = Fq is the field over which the elliptic curve E is defined,

then Hasse’s theorem estimates the cardinality of the elliptic curve group Ek to
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be near the order k:

|q + 1− |EFq
|| ≤ 2

√
q

The discrete logarithm problem involved solving for n in the equation β =

αnp. In regards to an elliptic curve, this n represents the number of times the

group law is applied to some given starting point P , which would be the α used

in the description of the discrete logarithm problem. For cyclic group G =< α >

with cardinality p, the difficulty of the solving the discrete logarithm problem

varies according to the representation of the group. For any generator α of

an integer field Zn, solving the discrete logarithm problem with the Euclidean

Algorithm is relatively easy [9].

Accordingly, it is the order of the group Ek that contributes to the difficulty

of solving the elliptic curve discrete logarithm problem, and thus the security

of the elliptic curve. For groups of large finite order, square root attacks which

could provide a backdoor to groups of lesser order no longer suffice.

6.3.1 Variations of Galois Fields

Galois fields, or finite fields are particularly well suited for cryptography. In

particular, the GF fields that are most used include Prime fields GF (p) with al-

gebra modulo prime p and Binary Extension fields GF (2m) with algebra modulo

an irreducible polynomial F (t).

For any Galois Field, there are levels of computational difficulty for different

types of operations. Easiest operations include addition, multiplication, and in-

version. Slightly more difficult operations include Point Add and Point Double.

More difficult is point multiplication. Finally most difficult operations involve

elliptic curve protocol such as ECD

Prime fields of order p have p− 1 integer elements and support basic opera-

tions such as addition, subtraction, multiplication, division, and inversion. They
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support algorithms including reduction technique such as Reduced Radix and

Montgomery, multiplication techniques such as Comba multipliers and some-

times Karatsuba, and inversions such as Euclid’s Algorithm. Because of their

functionality with these operations and algorithms involving optimized integer

arithmetic, Prime Galois Fields are favorably used for implementing software.

The larger the prime field is, the more difficult it becomes for standard comput-

ers to handle, and points have to be represented by multiple words. To abate

this problem, Prime Extension fields of the form GF (pq) can instead be used.

Prime extension fields remove the need for elements of a field to be divided

among multiple words and carries propagated. Prime Extension Fields make

possible fast inversion algorithms, but reduction can be more complicated than

it is when performed over other fields.

Binary Extension fields have 2m polynomial elements over GF (2) and sup-

port the basic operations of addition, subtraction, multiplication, division, and

inversion. Binary Extension fields are often used because they support binary

finite field math. This involves addition modulo 2 which can be easily repre-

sented in hardware via XOR gates without the need for a carry propagation.

They support almost inverse, double and add, Montgomery scalar multiplica-

tion, and Frobenius expansion.

Because of their applicability to different algorithms, prime and binary fields

will be used for different platforms. In particular, prime fields are more applica-

ble for classical computer use because of the relative ease of performing algebra

in prime fields. [10]

Ten different curve have been recommended by NIST, including 5 prime

fields Fp where p is 192, 224, 256, 384, and 521 bits, and 5 binary fields Fm2

where m is 163, 233, 283, 409, and 571.
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7 Attacks

Despite the heightened security offered by the relatively small key sizes of elliptic

curves, there are still a number of weaknesses involved in the use of Elliptic

Curves. These include domain attacks, backdoors, quantum computing attacks,

and side-channel attacks.

7.1 Domain Attacks

In particular, binary fields Fm2 where m is not prime should be avoided as they

are susceptible to the Weil descent attack. Prime fields Fp where the order is

itself p should be avoided because points can be mapped to the additive group

of Fp.

7.2 Backdoors

Backdoors involved the deliberate inclusion of known solutions to a trapdoor

function, so that information encrypted with the backdoored-function can be

recovered by the party who has knowledge of the backdoor. Because of the unex-

pected release of memos which used Dual Elliptic Curve Deterministic Random

Bit Generator (DualECDRBG), it has been speculated that the NSA influenced

the inclusion of such a backdoor in the DualECDRBG [6].

A pseudorandom generator involves the choice of a known trapdoor with

which one knows future and possibly past generator outputs. It has been

shown that ”backdoored PRGs are equivalent to public-key encryption schemes

with pseudorandom ciphertexts”. An example of psuedorandom sabotage is the

”backdoored NIST Dual EC PRG,” where a saboteur selects two elliptic curve

points P and Q and given d can generate a prediction of future elements given

the group structure of elliptic curves and the fact that d = d logQ P [11].
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7.3 Quantum Computing

Quantum computing involves the use of qubits rather than binary digit bits,

making it possible to solve some mathematically intese problems more quickly

than regular binary-based computers Because of the smaller key size of elliptic

curves needed to provide the same level of security provided by the larger keys of

RSA, attacks involving the use of Shor’s Algorithm are better suited to elliptic

curves than RSA.

7.4 Side-Channel

Side-channel attacks involve intentional misuse of physically implemented fac-

tors of cryptosystems. Technical information relayed by such factors as differ-

ential power analysis and timing analysis can be used as a method of attack.

Such an attack can be contrasted with a brute force attack, where lesser tech-

nical strategy is involved. A fault attack, which is a variation of a side-channel

attack, involves the introduction of conditions for which the code is unprepared

to respond, in order to gain information about the internal state of the system.

Use of smart cards are particularly prone to fault attacks.
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8 Conclusion

Ultimately, the choice of many different factors contributes to the applicability

of elliptic curves to different situations. These include the form of the curve

equation, the type of field over which the curve is defined, the parameters in-

volved in the equation, the key size of the crypto-system, and the system’s

having been guarded against different potential attacks. By making informed

decisions regarding these different factors, elliptic curve cryptography can be

maximized. In doing so, elliptic curves can continue to play an integral role in

the growing realm of public key cryptography.
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