1. Find a Cartesian equation for the curve below and identify it:

$$
r^{2} \sin 2 \theta=1
$$

In order to convert polar equations (with variables $r$ and $\theta$ ) to Cartesian form (with variables $x$ and $y$ ), we will need to use the following equations that relate polar and Cartesian coordinates:

$$
x=r \cos \theta \quad \text { and } \quad y=r \sin \theta
$$

Accordingly, in the given equation $r^{2} \sin 2 \theta=1$ we want to look for some form of $x=r \cos \theta$ or $y=r \sin \theta$ so that we can substitute these for $x$ and $y$. Because we are considering $2 \theta$ rather than just $\theta$ we will need to use some Trigonometric Identity. After consulting our Trig Identities looking for one that involves $\sin 2 \theta$ we use the following:

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

By substitution:

$$
\begin{aligned}
r^{2} \sin 2 \theta & =1 \\
r^{2}(2 \sin \theta \cos \theta) & =1 \\
(r)(r)(2)(\sin \theta \cos \theta) & =1 \\
(2)(r \sin \theta)(r \cos \theta) & =1 \\
2 x y & =1 \\
x y & =\frac{1}{2}
\end{aligned}
$$

We can then recognize $x y=\frac{1}{2}$ as a hyperbola, or rewrite it as $y=\frac{1}{2 x}$ and graph to identify the following hyperbola:

Figure 1: Hyperbola $x y=\frac{1}{2}$

2. Find the centroid for an area defined by the equations:

$$
y=x^{2}+3 \quad \text { and } \quad y=-(x-2)^{2}+7
$$

Let $f(x)=-(x-2)^{2}+7$ and $g(x)=x^{2}+3$.

Figure 2: Green is $f(x)$, Red is $g(x)$


The equations and the area they define is shown above (Figure 2). To find the centroid, we want to find the center of mass, or the coordinates $(\bar{x}, \bar{y})$ where $\bar{x}$ is the $x$ coordinate of the centroid and $\bar{y}$ is the $y$ coordinate of the centroid. To do so, let's first find the $x$ coordinates which are the domain of the area between the two curves.

Figure 3: Lower limit $a=0$ and upper limit $b=2$


Cont.

We can identify from the graphs above (Figure 3) that the lower limit $a$ of the area between the curves is 0 and the upper limit $b$ of the area between the curves is 2 (likewise, we can set $f(x)$ and $g(x)$ equal to each other to arrive at the same solutions $x=0,2$ ).
Accordingly, we can find the total area between the curves by integrating with $a$ and $b$ as our lower and upper limits, respectively. Consider the area divided into vertical rectangular strips with width $\Delta x$ or rather $d x$ when we integrate. Let $f(x)=-(x-2)^{2}+7$ and $g(x)=x^{2}+3$. Then the height of each strip is:

$$
\begin{aligned}
h & =f(x)-g(x) \\
& =-(x-2)^{2}+7-\left(x^{2}+3\right) \\
& =-x^{2}+4 x-4+7-x^{2}-3 \\
& =-2 x^{2}+4 x
\end{aligned}
$$

Therefore $d A=\left(-2 x^{2}+4 x\right) d x$ and we can integrate $d A$ over $(0,2)$ to find the total area $A$ of the area between the curves:

$$
\begin{aligned}
A & =\int_{0}^{2} d A \\
& =\int_{0}^{2}\left(-2 x^{2}+4 x\right) d x \\
& =\frac{-2 x^{3}}{3}+\left.2 x^{2}\right|_{0} ^{2} \\
& =\frac{8}{3}
\end{aligned}
$$

Figure 4: Rectangular Vertical Strips


Note from the graph above (Figure 4) that $x_{e}=x$. Thus the $\bar{x}$ coordinate
of the centroid or center of mass coordinates $(\bar{x}, \bar{y})$ is:

$$
\begin{aligned}
\bar{x}=\frac{\text { total moments }}{\text { total area }} & =\frac{1}{A} \int_{a}^{b} x_{e}(f(x)-g(x)) d x \\
& =\frac{1}{A} \int_{a}^{b} x(f(x)-g(x)) d x \\
& =\frac{1}{A} \int_{a}^{b} x d A
\end{aligned}
$$

As we have already determined the total area $A$ let us first consider the integral for total moments by itself:

$$
\begin{aligned}
\int_{a}^{b} x d A & =\int_{0}^{2} x\left(-2 x^{2}+4 x\right) d x \\
& =\int_{0}^{2}-2 x^{3}+4 x^{2} d x \\
& =\left.\left(\frac{-2 x^{4}}{4}+\frac{4 x^{3}}{3}\right)\right|_{0} ^{2} \\
& =\left(\frac{-(2)^{4}}{2}+\frac{4(2)^{3}}{3}\right) \\
& =\left(\frac{-16}{2}+\frac{32}{3}\right) \\
& =\frac{8}{3}
\end{aligned}
$$

Returning to the formula for $\bar{x}$ :

$$
\bar{x}=\frac{1}{A} \int_{a}^{b} x d A=\frac{1}{\frac{8}{3}}\left(\frac{8}{3}\right)=\left(\frac{3}{8}\right)\left(\frac{8}{3}\right)=1
$$

Thus we have determined that $\bar{x}=1$. Now to consider the $\bar{y}$ coordinate of the centroid $(\bar{x}, \bar{y})$, notice from an evaluation of the graph that

$$
y_{e}=\frac{f(x)+g(x)}{2}
$$

Accordingly:

$$
\bar{y}=\frac{1}{A} \int_{a}^{b} y_{e} d A=\frac{1}{A} \int_{a}^{b} \frac{f(x)+g(x)}{2} d A
$$

Again to first consider the integral for total moments by itself:

$$
\begin{aligned}
\int_{a}^{b} \frac{f(x)+g(x)}{2} d A & =\int_{0}^{2} \frac{-(x-2)^{2}+7+\left(x^{2}+3\right)}{2}\left(-2 x^{2}+4 x\right) d x \\
& =\int_{0}^{2}(2 x+3)\left(-2 x^{2}+4 x\right) d x \\
& =\int_{0}^{2}\left(-4 x^{3}+2 x^{2}+12 x\right) d x \\
& =-x^{4}+\frac{2}{3} x^{3}+\left.6 x^{2}\right|_{0} ^{2} \\
& =-(2)^{4}+\frac{2}{3}(2)^{3}+6(2)^{2} \\
& =\frac{40}{3}
\end{aligned}
$$

Returning to the formula for $\bar{y}$ :

$$
\bar{y}=\frac{1}{A} \int_{a}^{b} y_{e} d A=\left(\frac{1}{\frac{8}{3}}\right)\left(\frac{40}{3}\right)=\left(\frac{3}{8}\right)\left(\frac{40}{3}\right)=5
$$

Therefore, for the area defined by the curves $f(x)$ and $g(x)$ the centroid $(\bar{x}, \bar{y})=(1,5)$.
3. Please write the following expression using LaTeX formatting:

$$
5 \text { (square root } 3 x)+2 x^{\wedge} 2-(3 x / 2)
$$

In LaTeX formatting:

$$
5 \sqrt{3 x}+2 x^{2}-\frac{3 x}{2}
$$

which before compiling appears as:

```
$$5\sqrt{3x} + 2x^2 - \frac{3x}{2}$$
```

The End.

