
Accelerate Mobile
Engineering

With Standardized Tooling

[2]

Introduction

Whether you’ve come into an organization to manage an existing mobile team or to create
a new one, you’re taking responsibility for several critical objectives in parallel. This includes
maximizing resources; maintaining a high velocity of product releases; and improving the
overall performance and satisfaction of your mobile team and individual developers.

That is a lot of responsibility at any organization, especially in the mobile space. The
challenges of mobile are different from other development teams. We understand those
challenges.

Separate teams have to build a unified user experience on different code bases with quick
turnover between already short release cycles. To succeed, mobile teams must quickly,
continuously, and efficiently produce quality software.

To do this, we should keep in mind the principles of velocity engineering: an organization-
wide framework for making cultural and technological choices to improve developer
productivity, efficiency, and happiness.

We can teach you how to use velocity engineering to reduce complexities and simplify the
environments and tooling your mobile teams rely on. We’re experts at this. Every day, we
help hundreds of teams like yours overcome these challenges as their organizations grow
and mature.

In this eBook, we’ll show you how to:
• Realize massive cost savings
• Reduce complexity
•	 Increase	efficiency	

By implementing these best practices, you’ll increase team satisfaction while maximizing
efficiency. Happier engineers deliver better products, faster.

[3]

Mobile is new and requires specialized tools and a different way of working. Organizations
new and old are learning for the first time the growing pains of managing mobile-only
teams.

These are some of the most common challenges we hear from our partners:

• Mobile teams have separate tooling, so collaboration is more difficult.
• Mobile teams with separate tooling don’t necessarily have access to the same data.
• Product managers find it difficult to track feature development across mobile teams.
• Product managers try to implement web features directly into mobile.

• Product managers try to use web tools for mobile projects.

What is it about mobile in particular that make these challenges so common?

Your company’s product managers likely have a long familiarity with web development,
which is far more commoditized — and therefore makes it easier to outsource work and
monitor features. In contrast, your mobile teams are using more modern and varied stacks,
whether native to iOS and Android or using a cross-platform framework through React
Native or Flutter.

And the process for releasing mobile products is more complex than for web. It’s like a
black box, with multiple ecosystems, operating systems, and rules. This makes tracking
features, releases, and related issues much more difficult.

Thus, it’s not possible to simply port web features to mobile apps. A common frustration is
the expectation that features should be rapidly and easily ported to mobile. For example, a
company with a successful web notification system may want to quickly deploy on mobile.
Here, they must recognize that the mobile ecosystem mandates they build new — and
separate — notification systems for iOS and Android.

Additionally, not all web performance metrics, such as page rendering time, have an
immediate analog on mobile.

Mobile Is Different and Challenging

[4]

Next, we’ll show you how to standardize tooling and
software development kits (SDKs) to realize the
following benefits:

Massive Cost Savings
• Reduce time to release by focusing on product

development.
• Save money on license costs by eliminating

duplicated software.

Reduced Complexity
• Maintain the same tooling for each mobile team

to reduce communication errors.
• Eliminate unknowns and tooling incompatibilities.

Increased	Efficiency	
• Solve bugs quickly and centrally.
• Consolidate processes and solution workflows

across all teams.
• Onboard developers easily to new teams or apps.

Why Embrace? Mobile is unique.

All organizations adding mobile

are facing the same challenges,

and no teams have experienced

these challenges before. If you

can’t look internally to teams

who have been there and solved

it before, who can you look

to for solutions? Every single

day we talk to organizations

with mobile teams who face

the same challenges you do.

These companies are at many

stages: just introducing mobile,

mobile-only, one mobile team,

or many. We are in close daily

communication with our

partners. We know their pain

points intimately and we’re in the

trenches with them, helping them

grow and mature over time. We

know the communication gaps

between iOS and Android teams

and between mobile developers

and product managers. We

know how to overcome these

challenges. This is why we exist

and why we’ve created this

blueprint for you.

It’s critical to use your mobile developers’ time efficiently.

Mobile developers cost 2-3x more on average than other

developers. By freeing them from managing unneeded tools

and making it easy to onboard to new teams or apps when

needed, you will realize massive productivity gains in what

you actually hired them to do!

The bottom line: You’ll have happier teams
delivering better products, faster.

Save Costs, Reduce Complexity
and	Increase	Efficiency

[5]

As more of your organization’s critical internal and
customer-facing applications shift to mobile, it’s vital
to understand the processes and tools your team
uses so you can measure inefficiencies and remove
duplicate tools. In this audit, we’ll show you how to
identify processes that may be creating bottlenecks
and replace them with best practices geared toward
increasing velocity on product releases.

The Velocity Audit
Step 1: Internal and External App Audit

Step 2: SDK Audit

Step 3: Identify Outliers

Remember, the goal here is to reduce costs,
complexities, and inefficiencies. It’s not to cast blame or
point fingers at individuals, teams, or traditions. Bringing
your team along with you and highlighting the benefits
is important. When we work with partners to conduct these audits, we make sure teams
recognize that increasing release velocity is both a cultural and technological process.
When your team begins to understand the rationale behind this approach and see the
measurable results of acceleration, everyone wins.

Step 1: Internal and External App Audit
This step is particularly illuminating if you are just coming into an organization to manage
a mobile team. We have worked with partners who realize after several months that there
are “dinosaur” or legacy apps still utilizing resources — human, time, tooling, and otherwise
— that weren’t immediately visible. It’s critical to have a clear map of all internal and
customer-facing apps your team is responsible for.

In this step:
• Identify all (and we do mean all!) of your internal and external apps. Determine which

resources those apps utilize (infrastructure, network, SDKs, etc.).
• Document where the app components “live” (code base, infrastructure, etc.).
• Identify which team members work on which apps, and where there is overlap between

them.

What Do We Mean When

We Say “SDK”?

We use this term a lot so we

want to make sure we’re all on

the same page with a common

definition. We think about SDKs

as “services in a box,” or as the

interfaces to vendors’ products.

These enable you to connect

your application to those

services or products quickly and

easily, reducing the time and

resources required by your team.

At app load time, the service or

product begins running quickly

and automatically in the app.

The Velocity Audit

[6]

Step 2: SDK Audit
Now that you know which apps you’re responsible for,
you need to understand how those apps are being
managed and monitored, by whom, and with what
tools. There are likely many tools in place — real-
time analytics, logging, crash reporting, alerting,
infrastructure monitoring, product analytics, attribution,
real-time bidding or ad servers — depending on the
type of app and user base. If each of your apps has
duplicated SDKs or if multiple team members handle
the monitoring and management of the SDKs, you are
accruing significant tech debt and inefficiencies. It’s
also important in this step to identify if multiple teams
are paying for the same tool. Duplicated software
licenses can really increase expenses.

The goal of this step is also to minimize complexity. Each
SDK adds complexity in the app. The more SDKs we can
prune or consolidate, the better.

In this step:
• Document each tool being used for each app.
• Document what each tool is being used for.
• Check for SDKs that aren’t being used. Some SDKs are installed in apps and are never

called in the code. We’ve seen this happen many times.
• Make sure teams tell you about the free tools they are using. (It’s easy to forget about

tools you don’t pay for!)
• Make sure teams tell you about SDKs or tools they’ve built themselves. (It’s easy to forget

about home-grown tools that have slowly become part of the landscape over time, and
may not even have a name.)

• Document who manages and monitors each SDK for each app.

The Bottom Line: Get as complete a picture as possible. For every app, understand
what tools are used, what they’re used for, and who manages them. The more
information you have, the easier this process will be.

Why is it important to make

absolutely sure you also

document the free or home-

grown tools your teams are

using? The saying “there’s

no free lunch” is applicable

here! There’s a cost to “free” or

home-grown SDKs. Your teams

are racking up engineering

costs, time costs, and the

potential costs of a lack of

standardization across apps if

you aren’t aware of these SDKs

and can’t assess whether to

implement this tool (or another

one) across all apps. It’s critical

you know about ALL tools.

The Bottom Line: It’s absolutely critical you know exactly which SDKs are being used
for each app, and for what. Without this insight, you can’t reduce costs, complexities,
or inefficiencies.

[7]

Step 3: Identify Outliers
In the previous step, you identified which SDKs are being used for each app and for what
purpose. In this step, you need to determine if there are teams using a completely different
SDK than most of their peers, or if they are using an SDK for a different function than
everyone else. The goal of this step is to identify — and minimize — outliers so you can
standardize as many tools as possible, to increase efficiency and velocity.

In this step:
• Identify which SDKs are being used for which functions, grouped by teams/apps.
• Identify if any teams are using a totally different SDK for a specific function.

The Bottom Line: Be aware of what tools are being used for what, for each app, and
if there are any outliers. This will help you standardize.

Understand how your teams are using SDKs for specific functionalities.

For example, some of your teams may be using LOG4J or Lumberjack.

Some may be using a custom-written tool, while others may be

logging by hand. And others may not be using any logging tools at

all. Analyzing the SDK landscape app-by-app will help you identify if

there’s one app or one SDK that is an outlier. (We’ll explore what to do

with outliers in the section on best practices.)

[8]

Just as it is important to bring your team along collaboratively during the audit, we
encourage you to include your team in implementing these best practices. When everyone
is empowered to participate in the decision making and execution of a strategic plan, they
feel ownership of the outcome.

Best Practice 1: Standardization
Best Practice 2: DevTools
Best Practice 3: Self-Service
Best Practice 4: Baselining

Congratulations on completing the velocity audit!
Once you’ve gathered the key information in the three
steps above, you have what you need to reduce costs,
complexities, and inefficiencies so you can optimize
your release velocity. The decisions you make from
this point forward will be impacted by several factors,
including the size and structure of your organization,
your budget, technology resources, and your team
culture.

Best Practice 1: Standardization
In Steps 1 and 2, you identified the SDKs your teams
use across your internal and external apps and
documented what they used each tool for. Now, your
teams can decide which SDKs to unify and standardize
on. This also makes it easier for your remote or
distributed teams to access and use SDKs across
different network configurations and environments.

With everyone logging into the same tools and
accessing standardized data sets, you can achieve an economy of scale. For paid tools,
you may enjoy license and cost benefits. Team members will have fewer SDKs to learn and
can quickly onboard to other apps within your organization without having to learn a new
tool.

As you begin to standardize SDKs across your apps, you will likely be asked to make
exceptions for certain functions. As a general rule, we encourage you to standardize

Now What?
Best Practices for Velocity

Is There a “Golden Number”

of SDKs?

We get this question a lot:

should my mobile team target

an ideal number of SDKs to

support our apps? The answer

varies, depending on your

organization’s domain and the

functionality of your app(s). The

goal for simplifying and unifying

your tooling environment is

to reduce the total number

of SDKs your team manages.

This also reduces the size of

downloads, increases start time

performance, and reduces the

number of bugs you need to

troubleshoot. We aim for ~10 SDKs

for an “average” app. If your app

supports real-time advertising

and bidding, for example, it will

of course require more SDKs and

tooling.

[9]

as much as possible. Outliers should be considered
and approved when there’s a specific purpose. These
“legitimate outliers” should be kept to a minimum, for
ease of maintenance and to maximize efficiency.

In some cases, it makes sense for a specific app or team
to use a different tool, depending on how the app is
used, or how critical it is to the bottom line. eCommerce
organizations may have internal or external education or
training teams that use more video content than teams
working on the actual eCommerce apps. These radically
different app requirements would lend themselves to
a different toolset. Real-goods companies like Amazon
have critical customer-facing apps that require the
most-current tooling and support. Their internal apps
(e.g. logistics) may be supported by a different set
of SDKs that cost the companies less to maintain, as
uptime doesn’t require quite as many “9”s, and response
time can be slightly slower.

Best Practice 2: DevTools
The goal of this blueprint is to increase the overall
efficiency and velocity of your mobile team. To do that,
you want your developers to spend as much time as
possible working on features and innovation. Time spent
managing tools, monitoring dashboards, or analyzing
crash reports is time your developers will never get back.

Measuring Velocity

As you tighten your best practices

and relieve the pressures on

your developers by increasing

efficiencies and abstracting

SDK management away from

development, you can begin to

measure engineering velocity.

For example, ask your teams

to estimate time for routine

tasks like cutting a release or

documentation, and then have

them measure actual time. Track

estimation against actual time in

a bug tracker or Jira, so that each

task has an engineering hours

“estimate” and “actual.” After a

few months, your team can start

to predict actual velocity. This

process can be used to create

plans for the next quarter. Velocity

increase can be achieved by

continually helping your team

reduce distractions, finding and

reducing inefficiencies, and

tightening estimations.

Depending on the size of your organization, there are several ways to abstract the
monitoring and management of SDKs away from actual application development. Earlier
stage or smaller companies without the budget for a dedicated DevTools team can
designate one or two engineers to make the decisions on which SDKs to standardize on.
This forms the beginnings of a DevTools team as you grow and establishes best practices
for abstracting tooling away from development. Larger organizations with budget can
establish a dedicated DevTools team. These DevTools practitioners assume responsibility
for monitoring and management of SDKs. Freeing up your developers to focus on their core
jobs helps increase velocity more generally.

When you move towards this model, you reduce the hidden costs that each application
team was repeatedly paying by supporting the same set — or, before standardization,
a different set — of SDKs. For example, the release of iOS 14 caused issues for many
applications. Without a DevTools approach, each individual applications group had to

[10]

figure out the replicated problems at the team
level. For a large organization with multiple
internal and external apps, that would accrue
to a huge accumulated cost as each team
unknowingly worked to identify an identical
problem. With a DevTools team, the iOS problem
would be identified — and resolved — centrally
for all applications, saving time and resources
across the organization.

Best Practice 3: Self-Service Access
Standardizing on SDKs and unifying your
toolset enables you to give access to other
stakeholders. This saves time and resources
on issues that your mobile developers would
otherwise be handling. For example, you can
give QA or customer service (CS) access to SDK
dashboards, so they can triage certain issues
before involving your developers. With the right
data, CS can determine that some app access
issues are actually caused by network outages
and won’t need to escalate them to your
mobile team at all. This will reduce overall issue
volume, and will more precisely identify issues,
ensuring the appropriate teams are responding
to them.

Best Practice 4: Baselining
As you start the journey towards velocity,
there is no better time to begin baselining.
Whatever you can measure is helpful to prove
your progress. You’ll quickly see that as you
adopt the best practices in this blueprint, you
will rapidly gain velocity as an organization.
Capturing metrics like mean time to repair
(MTTR), time to deploy (TTD), number of releases,
and average number of deployments will help
you understand where you are efficient and
where you can continue to improve.

Managing the Human Side of a Velocity

Audit

We’ve talked about the team-level

benefits of consolidating tools and

improving the overall efficiency of your

mobile organization. What about the

benefits to your individual developers?

A well-functioning mobile organization

is made up of happy developers who

can focus on what they do best, and

who aren’t bogged down by managing

multiple tools. If you encounter developers

who seem resistant to this optimization

process, you have a great opportunity to

explore what’s behind the resistance. Does

that individual enjoy managing tooling

more than development? They may be

a great addition to a DevTools team.

Or, their preference might make them

a strong fit to help you with your quest

for standardization. Adjusting to new

tools they choose will help them realize

the benefits of being free from tooling

complexities. Help them understand and

appreciate the increased time they’ll have

to drive innovation and company revenue

by doing what they do best.

Self-Service Examples

• CS Teams: Triage issues from a

health dashboard before contacting

engineering.

• QA Teams: Check server deployment

status when feature testing.

• Product Teams: Check success/

failure of features from user

experience standpoint.

[11]

This blueprint has hopefully helped you take actionable steps toward realizing cost savings,
reducing complexity, and increasing efficiency so your mobile team can focus on releasing
better products faster. It can feel overwhelming at first if you’ve just come into a new
organization with many legacy tools or disparate teams. The best way to stay focused
is to start with the easiest areas: unifying your SDKs and enabling your QA and CS teams
to leverage SDK dashboards and data. The immediate results will be a reduction in the
number of issues across the organization and a noticeable increase in velocity and team
satisfaction.

As velocity continues to increase, you can start to focus on other innovations, like more
advanced baselining and release automation.

For more information or for help with your organization’s SDK audit, please contact us at
truenorth@embrace.io or visit our website to learn more about how to improve your
mobile processes.

Conclusion:
Start Simple and
Accelerate

mailto:truenorth%40embrace.io?subject=
https://embrace.io/

