
The Four Pillars
of Building a

Great Mobile App

2

Introduction

As you build mobile apps, you should be future-proofing. This means being
proactive about planning for and addressing the pains associated with growth. The
development process should be as seamless as possible as you grow your feature
set, user base, geographic footprint, and team size. If you focus on best practices
for building, measuring, and monitoring your app from Day 1, you’ll eliminate friction
and innovate rapidly.

In this eBook, we’ll show you why the following four pillars are important to building a
great mobile app:

1. Design a Modular Architecture

2. Create a Structure for Features and Releases

3. Measure Stability, Performance, and Impact

4. Monitor Early

As you read, it will become apparent how closely related each of these pillars
are and that shortcomings in one will affect the success of the others. For
example, streamlining feature building, testing, and releasing requires a modular
architecture. And, knowing what to monitor depends on how your users experience
your app in production, which requires measuring its performance and stability.
We’ve laid out the eBook in four distinct pillars, but we know you understand that
designing and delivering mobile apps is part of an interconnected ecosystem.

Design a Modular
Architecture

PILLAR 1

4

In general, designing a modular architecture is the best way to write software. This
is particularly true in mobile, with its fast-paced, constant release cycles.

But what, exactly, do we mean by modular? Modularity means you can add
or remove something without breaking the coherence of the whole system. In
software terms, a modular architecture allows for features or individual pieces
of functionality to be added or removed easily. The best example of the power of
modular code is microservices, where you can incorporate services and software
into your applications and systems with minimal effort. These integrations are
frequently just a few lines of code.

Instead of approaching your mobile app as one monolithic piece of software,
you’ll be able to iterate on it faster if you design and build it in discrete, separate
components. You’ll quickly know which pieces of code would be affected when you
want to implement a change. And, with the speed of feature production so critical
to app success, you need to give your teams the power to innovate as rapidly as
possible.

Best Practices for Designing a Modular Architecture

Apps without modular architectures suffer from reduced feature velocity,
resulting in slower growth and scale. Your team is not building a static piece
of code. They’re building a foundation for your app – and business – that you’ll
adjust frequently moving forward. The following are common changes that
growing applications experience, and our recommendations for how best to
anticipate them. Making smart decisions now will save developer time later,
when important changes need to be made. By keeping these principles in
mind, you’ll build the foundations of success right from the beginning. You’ll
grow, maintain, and scale your mobile app with minimal tech debt.

Write Code That Can Easily Be Rewritten

You know your code will be replaced over time, whether in small increments or
through entire component refactors. The ability to safely and rapidly release new
code is reduced if multiple feature teams have to touch the same code when

1

5

working on separate features. It’s difficult to get the right people in the room, and
it’s almost impossible to ensure everyone knows all the effects of the code. If your
code base is not modular, it’s also likely you’ll have to do extensive code rewrites
for simple updates. To maintain engineering velocity, you need to be able to
move fast and with minimal friction. To achieve this, we encourage you to design
your app components so they can be easily iterated on and can be ripped and
replaced rapidly. How? Decouple components, especially from a user interface (UI)
standpoint. And, decouple logic where possible so that you can take advantage of
and string together microservices quickly.

Create a UI That Can Account for Future Design
and Feature Changes

It’s inevitable that your app will undergo frequent design refreshes, so you should
make decisions now that will simplify this process later. For example, put colors, font
sizes, and font families into a theme file so you can make adjustments and changes
quickly and easily. When Apple released Dark Mode in 2019, many app developers
scrambled to redesign their apps. In contrast, developers who had committed to
good modular design architecture from the beginning, like employing theming
libraries, adapted quickly.

Build for Internationalization Early

You may initially launch in a single country or region, but it’s important to plan for
future expansion and internationalization. An excellent best practice is to build for
internationalization (i18n) from the beginning, rather than trying to recode for it
later at a significant tech cost. Take into account latency, intermittent connectivity,
time zones, date formats, languages, and currencies. For example, you can store
and transmit dates in International Organization for Standardization (ISO) formats,
wrap dates and numbers in function calls to display the right format for a particular
locale, or wrap user-facing static strings.

2

3

Create a Structure
for Features and

Releases

PILLAR 2

7

As your mobile app grows, so will the number of features and releases. Processes
that were sufficient when the app was smaller and fewer developers worked on it
will no longer work when several teams are building new features separately and
concurrently. As the number of contributors to the code increases, it becomes more
important to implement a structure for building, testing, and releasing new features.
Otherwise, incompatibilities will be introduced by separate teams. The result? Your
release velocity will grind to a halt.

Best Practices for Features and Releases

Without a strong structure for features and releases, deprecating a feature
can affect the functionality of a newly released one. Or, releasing code for
one feature might break functionality in another feature. It can also be difficult
to determine whether performance issues in a new release are the result of
one feature or another. With the innovation speed that growing apps require,
your developers need to put careful systems into place to minimize problems
stemming from feature management at scale. Here are a few of our top
recommendations.

Make Version and Deprecation Decisions
Ahead of Time

Before you deploy, think about how you’ll support old versions, and when and how
you’ll deprecate them. Many users don’t update regularly, so you’ll need to plan

1

Make sure you don’t have a single point of failure. We had a partner whose
entire deployment process became dependent on a single laptop after
a developer left the company. More companies than you realize have a
similar “magic laptop” or server. Don’t let yourself become vulnerable
like this! There should never be only one person who knows how to build,
deploy, or configure your app. Automate and share knowledge from the
very beginning.

The Magic Laptop

8

ahead for how to enforce upgrades when the time comes. For example, you can
add a script that checks the app version. If it’s a version you no longer support, the
script can display a clean UI notifying the user they’re on an outdated version and
must upgrade to continue.

Consider Feature Gating

Feature gating is the practice of building new features in the production branch
and selectively controlling whether they are turned on or off. This approach
is beneficial for several reasons. You can more easily test features during
development or beta, and you have more control over how those features are
released. Feature gating also simplifies the process of merging finished features
into production, especially features that require several iterations.

Choose Appropriate Tools

As your app grows, your users will have different experiences that stem from unique
combinations of several factors, including device, OS, region, network conditions,
and version. As an example, you may have rapid adoption in India when your
previous users were largely in America. This can surface a number of performance
shortcomings that weren’t previously apparent, including poor network conditions
causing app crashes, or the OS killing the app on older devices due to the CPU
being pegged.

To troubleshoot issues beyond code exceptions, you need information beyond
crash reports. You need tools that provide the context to solve unexpected issues

2

3

We encourage you to build your apps cross-platform with modern
tools like React Native, Expo, and Flutter. For many types of apps, the
performance costs are negligible, and with fewer developers, you can build
a great app and achieve higher velocity.

Work Smarter, Not Harder

9

as they arise. It’s also important to keep your signal-to-noise ratio clean. This
ensures you’re not drowning your engineering, support, and DevOps teams in
notifications and reporting. And, we encourage you to enable your users to submit
feedback. You can save time by asking users what they were trying to accomplish
rather than trying to recreate it from logs.

Platforms and tools purpose-built for the needs of mobile can save time and
alleviate the pain of solving particularly challenging bugs.

Use Testing Resources Wisely

Take time to consider your testing ratio to maximize your limited resources. Unit
tests are easy to write, tightly coupled to the code, and fairly robust. They’re easy
wins. Next, a healthy number of integration tests should be largely focused on fixing
regressions. And finally, reserve scarce resources for end-to-end testing. These eat
up the most developer and compute resources and become outdated frequently.

Automate Wherever Possible – Especially
Deployment

We encourage you to automate whatever and wherever you can to make your
developers’ lives easier and to accelerate development and deployment. If you
come across common mistakes that are easily made and easily automated,
create a rule! Automation can help your team avoid those mistakes and reduce the
cognitive load wherever possible. For example, don’t make your developers think
about where to insert semicolons. Instead, automate formatting and typechecking.

4

5

Measure Stability,
Performance, and

Impact

PILLAR 3

11

In mobile, there are too many variables at play to predict everything that might
happen. Instrumenting and measuring wherever possible is the key to surfacing
issues and trends as soon as they appear. To successfully instrument and measure
your app, you need to start with a baseline. This enables you to immediately
recognize improvements, regressions, and trends — across releases, operating
systems, user segments, and regions — and take rapid action in response.

Broadly speaking, there are three key measurements:

1. Stability

2. Performance

3. Impact

12

Stability

Stability encompasses anything that causes app failures, whether it stems from the
user, the app, or the OS itself. And, stability reaches far beyond simple app crashes.
Anything that affects a user’s ability to experience the app without disruption is a
stability issue, and users are extremely sensitive to these disruptions. The majority
of users will abandon an app after only three app failures. Getting stability right is
critical to your commercial success.

Best Practices for Measuring App Stability

Stability issues can feel the same as a crash to a user, even if they do not directly
cause a foreground session failure. For example, memory leaks can lead to out
of memory exceptions (OOMs) which can cause an eventual app failure in the
background. Users may reopen the app as a cold start, as if it had crashed. These
leaks are often unreported in a crash reporter, leaving you with no stack trace to
investigate what went wrong.

Slow network calls can block the main thread, resulting in a frozen screen or ANR
(app not responsive). This experience can cause users to rage tap or force quit
the app out of frustration. And, broken web views can become blank screens. To
a user in the middle of a purchase flow, these provide the same experience as a
crash. The end result is the same for you: poor user experience and the associated
impact to revenue or engagement.

To avoid these situations, here are some key stability indicators you should always
measure.

Percentage of Cold Start Sessions

Cold starts are a great metric to track because they can indicate the presence
of other underlying issues. For example, the OS will kill your app if it’s using too
much memory or CPU or if it’s hanging the main thread. If an app freezes, users
will frequently force quit it, triggering a subsequent cold start. If you see cold start
increases release over release, you need to dig in further.

1

13

Percentage of Sessions with Low Memory
Warning

The OS will notify you if you have a memory warning. These warnings can indicate
possible memory leaks that are affecting performance and possibly lead to the OS
killing your app. If you see increases in memory warnings across releases, you may
have an issue in your app.

Percentage of Sessions in Low Power Mode

It’s important this number stays stable release over release. If you see a sudden
increase, you may have introduced a feature that is draining the battery and
producing a poor user experience.

3

2

14

Performance

Performance is a measure of how fast the app runs and is a key differentiator in the
competition for users. Your performance KPIs are specific to the type of app you’re
building. For example, photo upload time is important for social media apps, while
add to cart, checkout, and purchase times are critical for e-commerce apps. We
encourage you to identify, baseline, and monitor the critical KPIs for your app.

Best Practices for Measuring App Performance

Here are some KPIs to measure and keep top of mind. Whatever performance
metrics you’re measuring, it’s critical to record your baseline and track it over
time. That’s the only way you’ll understand how changes are affecting the user
experience.

Startup Time

For all apps, startup time is critical and directly impacts sales conversions and
engagement. If you don’t measure and optimize startup time, it’s likely users will
abandon your app before experiencing the key value proposition. Do you know how
long your startup time is? Do you know your competitors’ startup time?

1

Why is it so important to optimize startup time? For Amazon, reducing app
startup time by 100ms resulted in a 1% increase in sales. The cost of latency
can be staggering for large players, and in a fiercely competitive app
marketplace, you can’t afford to give up any market share.

Optimize Startup Time

15

Login Successes/Failures

Do you measure login time and the number of logins? If you see a sudden spike,
your app may be logging people out.

Timing for First Party Networking Calls

Slow network calls cause user experience slowdowns that lead to app uninstalls or
abandons and failures during checkout and purchase flows. For apps where users
upload heavy assets like photos and videos, bad network connections can lead to
frozen screens or the OS killing the app in the background. Slow network calls can
be caused by several things, including poor network connection, misconfigured
payloads, or an overloaded backend. You can reduce unnecessary friction in
key user flows by working closely with your backend team. They can implement
solutions like caching to speed up networking times.

Success/Failure Rates for Key User Flows

Success and failure rates differ depending on the app, but it’s critical to ensure
that the experiences that directly impact engagement or revenue do not suffer
slowdowns.

Test Under Actual User Conditions

Consider where your users are and what devices and operating systems they are
using. Replicate these environments in your testing to understand the true user
experience when it comes to performance.

4

5

3

2

16

Impact

Your resources are limited, and it can be difficult to decide where to prioritize them.
If you have several unsolved crashes affecting the same percentage of users, you
need to make a decision on which crash to address first. The best way to evaluate
issues is by measuring how they impact both user experience and business value.

As a social media app, Facebook cares deeply about user engagement. A bug
affecting how long it takes users to create posts may be more urgent than one
that affects how long it takes to upload a new profile picture, because users create
and comment on posts far more often than they change their profile pictures. In
contrast, e-commerce apps are focused on maximizing revenue. Bugs affecting the
checkout or purchase process have far more impact than ones that create a slow
user experience. But what if the slow user experience leads customers to abandon
the app completely? It depends on how much both issues ultimately impact
revenue.

Make sure that you always put what you’re measuring into context and evaluate
the impact. For example, you may choose to measure 4xx or 5xx errors for a certain
network path. If most of your users with these errors don’t end the app session
or delete the app, fixing the errors may not be urgent. Understanding the user
experience and revenue impact of what your team is working on is the most critical
priority. The bottom line: don’t spend a lot of time and resources on things that don’t
make a measurable difference.

Best Practices for Measuring App Impact

Social media apps measure impact by engagement, and a setback in the
user experience might result in a decrease in median session duration and
total time in-app each day. Failure to measure metrics like these will slow
your ability to identify possible causes, such as a bug that is logging users out.
E-commerce companies measure impact by revenue. Failing to measure
metrics like average cart value at checkout or average purchase value can
make it hard to quickly identify issues that affect your bottom line.

Here are some key impact metrics to measure, regardless of the type of app
you’re building.

17

Measure Performance Across Regions

If you’re expanding to a new region, you can compare performance in the new
region to your existing regions and ensure users in both locations have the same
experience. Differing network conditions might surface underperforming user flows.

Measure by Personas

Identify your high-value users to understand their experience and how those
experiences result in that particular impact. Similarly, you can monitor and measure
your new user experience. Identify where you’re retaining and/or losing new users.
Do they have to download too many files in the sign-up process? That may be
contributing to attrition.

Measure High-Level Indicators

Track indicators that will quickly alert you to underlying issues. Select metrics that
should remain relatively stable, so that you can easily spot disruptions. Examples
include average cart value or median session duration.

1

2

3

It’s important to regularly monitor the things you’re measuring, so you
get a regular baseline as well as regular updates on what’s changing. This
will help you understand how to interpret these measurements and what
decisions to make based on that data.

Measure and Monitor

Monitor Early
PILLAR 4

19

We work with mobile teams every day, from mobile-first and mobile-only to
companies just building and deploying mobile for the first time. One of the biggest
differentiators of a mature mobile team is how much effort they put into actively
monitoring their apps in production. It’s important to note that we’re referring
to mobile (or device-side) monitoring, not to server-side monitoring. In order to
improve your app’s user experience, it’s vital that you understand how the app
performs from your end-user perspective. Relying on server-side monitoring alone
will not give you the context needed to debug many of mobile’s toughest issues.

Best Practices for App Monitoring

The earlier you monitor, and the more you monitor specifically for mobile, the
more successful you’ll be. You’ll be able to troubleshoot and get ahead of
issues before users are affected. Here are some of our suggestions for how to
do this the most effectively.

Monitor Your Own API

Mobile teams often assume that the monitoring being done by the backend team
is sufficient. This assumption can result in a lack of coverage on device-side issues.
For example, a server may send a 200 response for a network call that the backend
registers as a success. However, the phone may be in an environment that causes
a timeout. If the mobile developers didn’t code for this possibility, the user could be
experiencing a frozen screen or a crash. The server-side monitoring doesn’t reveal
how long the actual network call takes from the perspective of the phone, or what
your end-user is actually experiencing. The device may have 20 concurrent network
calls, which means it will be a long time before the device can process the call.

As the network call example shows, the way the user experiences an app can be
different from what the server says. Teams should optimize for the user experience.
Monitor all the way to the device so you can take detailed information to the
backend team when you find issues.

1

20

Use Tools Designed Specifically for Mobile

It’s tempting to adopt tools already in use by your backend team or to use product
tools like Mixpanel to help determine the path a user took when they hit an issue. But
mobile has so many environmental nuances and possibilities that aren’t accounted
for with tools that were created for web. Using tooling not created specifically for
mobile leaves you with gaps and trying to predict what might go wrong before it
happens. With mobile-specific tooling, you can access specific information - like full
user session context, logging, network calls, user actions, device information like CPU
and memory, and views and activities of your users - that will help you troubleshoot
issues more effectively than using server-side tools..

Focus Equally on Feature Development and
Monitoring

We understand that your focus is initially on features so you can build a strong user
base. We encourage you to make sure you don’t leave monitoring stability and
performance as an afterthought. That’s a sure way to lose users when things start
to go wrong, and you try to fix issues with a brittle code base. Your best path to
long-term success is to start with an equal focus on feature health and overall app
health.

Create a Streamlined Monitor-and-Response
Process Early on

Set up your monitoring process so issues and alerts sent to the team are triaged
based on severity and impact on your users. The earlier this is in place, the sooner
your team will develop best practices for problem solving. As your app scales, or
when big issues pop up, your team will be ready to handle it.

2

3

4

21

Monitor a Broad Range of Metrics

Focus on more than crashes. Look at the app as a whole and make sure that you
have adequate coverage for stability, performance, and user impact. All of these
factors affect the user experience and the long-term success of your app.

Track Success and Failures for Key Flows

One of the most difficult issues you’ll face is how to resolve a problem when you
don’t have all the information. One of our e-commerce partners began seeing
1% of purchases fail without a corresponding set of errors. This made it extremely
difficult to troubleshoot an urgent problem that was affecting revenue and brand
reputation. Ultimately, the company realized that the API call for the purchase was
not being made. By tracking successes and failures on key flows like this, the team
was able to see the API call that wasn’t happening in the subset of purchases that
weren’t completing successfully. These problems are hard to resolve because the
solution lies in an absence of information. Tracking both successes and failures will
help you surface the answer.

5

6

22

About Embrace
Embrace is a comprehensive observability,
monitoring, and developer analytics
platform built for mobile. Identify, prioritize,
and solve issues faster with full access to
unsampled user sessions. The world’s best
mobile-first companies use Embrace to
ship better apps.

Try Embrace for free:
Learn more at embrace.io

Request a demo:
embrace.io/request-demo

Adopting these four pillars will help you create a robust mobile app that is
responsive to even the most unexpected scenarios. The ability to identify, measure,
and pivot toward trends, easily roll out features, and automate as much as possible
in a highly competitive app marketplace is critical. Regardless of the size of your
team, following these best practices will help you build and scale a successful
mobile app.

Check out our webinar on the 4 Pillars at https://hug.army/4-pillars.

Conclusion

https://embrace.io/
https://embrace.io/request-demo?utm_source=content

