
🚀 Manifold is joining Snyk! Read more in our announcement.

Blog

Ansible: Manifold Integration

David Harrigan / Product Updates Jul 9, 2019 Share

New in version 2.8, Ansible has added a built-in Manifold lookup plugin that allows you to get
credentials from Manifold. This is really powerful if you’re looking for a solution to securely
manage your secrets and resources provisioned from Manifold in one place. In this post, I’ll
create a very simple Python application to show how easy it is to inject secrets from Manifold
into your existing application via Ansible.

Embedded content: https://manifold.wistia.com/medias/xawimlt9d1

What is Ansible anyway?
Great question! Ansible is a server automation framework that allows you to provision an
entire infrastructure, manage configuration, and deploy applications to your systems. It aims

Search thAnnouncements
Product
Updates

Providers Platform Engineering More

https://manifold.co/farewell
https://manifold.co/blog
https://manifold.co/team-members/david-harrigan
https://manifold.co/team-members/david-harrigan
https://manifold.co/blog-categories/product-updates
https://manifold.co/blog/ansible-manifold-integration
https://twitter.com/intent/tweet?url=https://manifold.co/blog/ansible-manifold-integration&text=Ansible:%20Manifold%20Integration&via=manifoldco
https://docs.ansible.com/ansible/2.8/plugins/lookup/manifold.html
https://manifold.wistia.com/medias/xawimlt9d1
https://manifold.co/
https://manifold.co/blog-categories/announcements
https://manifold.co/blog-categories/product-updates
https://manifold.co/blog-categories/providers
https://manifold.co/blog-categories/platform
https://manifold.co/blog-categories/engineering

to be easy to use—the instructions (called playbooks) are written in YAML, and it relies on
modules written in Python that implement the directives used in playbooks.

Before we start
If you’d like to run through the example we show here, you’ll need:

�� A Manifold account

�� Ansible 2.8 or higher

�� Vagrant

�� VirtualBox

Let’s get Manifoldin’
Once you’ve logged in to Manifold.co, the first step is to create a new project and provision a
new LogDNA resource. This will populate new credentials for accessing LogDNA under the
selected project.

Here’s what to do, step-by-step. First, create a new project.

From your new project, click Add a new resource.

https://https//dashboard.manifold.co/register

Scroll down and select LogDNA.

Keep the default free plan selection.

Give your resource a unique name, and click Create LogDNA Resource.

That’s it! Now you have a cloud-based log aggregation and monitoring platform! If you’re
feeling spicy, click Open LogDNA Dashboard.

Be patient while your Manifold credentials are used for SSO access to LogDNA’s dashboard.
Spoiler: there won’t be anything on the LogDNA dashboard for you to look at just yet, but we’ll
get to that soon.

A look at the sample files
Clone the sample ansible-demo repo. The repo contains a very simple Python app along with
an Ansible playbook that provisions a VirtualBox VM to run the app. The app adds a LogDNA
logging handler for our app to use, and the health endpoint simply logs a “health check”
message every time you call GET on the /health endpoint.

The key required to push our logs to LogDNA will come in as an environment variable, and in
our case, we’ll let Ansible get this from Manifold, so that it’s automatically injected during
service start-up.

'logdna': {
 'level': 'DEBUG',
 'class': 'logging.handlers.LogDNAHandler',
 'key': os.environ.get('KEY'),
 'options': {
 'app': 'ansible-manifold-demo',
 },
},

https://github.com/manifoldco/ansible-demo

In order to daemonize the very simple Python app, the repo sets up a systemd script to run
the app as a systemd service. This means we need to inject our environment variable into the
systemd service. We can use EnvironmentFile to let Ansible generate a new environment file
for the systemd service to use.

- name: fetch credentials
 set_fact:
 manifold_secrets: "{{ lookup('manifold',
 'ansible-demo-logging', project='ansible-demo') }}"

- name: configure systemd env
 template:
 src: app.env.j2
 dest: /etc/systemd/system/app.env
 with_dict:
- "{{ manifold_secrets }}"

We use set_fact to save the result of lookup to the manifold_secrets variable. We then use it
to create an app.env file using the app.env.j2 template, which loops over the
“manifold_secrets” dictionary.

{% for key, value in manifold_secrets.items() %}
{{ key }}={{ value }}
{% endfor %}

Depending on how your app is set up, it might make more sense to generate a Python file
with the secrets embedded, directly expose the secrets as environment variables in your task,
or store the secrets file in another directory with stricter permissions.

The rest of the playbook is straightforward — it installs some dependencies, copies the
systemd config, and starts up the service. Here’s what our entire playbook looks like:

- name: update apt cache if needed
 apt: update_cache=yes cache_valid_time=3600

- name: install pip
 apt:
 name: "python3-pip"
 state: latest

- name: install pip deps
 pip:
 requirements: /usr/src/app/requirements.txt

- name: install app systemd
 template:
 src: app.service.j2
 dest: /etc/systemd/system/app.service

- name: fetch credentials
 set_fact:
 manifold_secrets: "{{ lookup('manifold', 'ansible-demo-logging',
 project='ansible-demo') }}"

- name: configure systemd env
 template:
 src: app.env.j2
 dest: /etc/systemd/system/app.env
 with_dict:
 "{{ manifold_secrets }}"

Grab the keys to the kingdom
Before we can run the playbook and start provisioning, we need to obtain an API token from
Manifold and expose it as an environment variable. We need this token to securely access
credentials from Manifold.

Navigate to Manifold’s API Tokens page and generate a token. Call it “ansible” and give it
read-credentials permissions.

https://dashboard.manifold.co/settings/tokens

Copy the generated token, and export it as MANIFOLD_API_TOKEN in your shell.

export MANIFOLD_API_TOKEN=<your API token>

Let’s run that playbook
Now we’re ready to run our playbook against a real machine! For simplicity, the repo includes
a Vagrantfile which sets up an Ubuntu box using the VirtualBox provider and runs the
playbook.

Run vagrant up . After a little bit, your VM should be running under the IP configured in the
Vagrantfile.

Go ahead and curl the health endpoint from your host.

 curl -v 192.168.33.27:8000/health
 * Trying 192.168.33.27...
 * TCP_NODELAY set
 * Connected to 192.168.33.27 (192.168.33.27) port 8000 (#0)
> GET /health HTTP/1.1
> Host: 192.168.33.27:8000
> User-Agent: curl/7.54.0
> Accept: */*
>

 * HTTP 1.0 assume close after body
< HTTP/1.0 204 No Content
< Date: Mon, 17 2019 21:24:51 GMT
< Server: WSGIServer/0.2 CPython/3.7.3
< Content-Length: 0
<
 * Closing connection 0

You should soon start seeing your logs in the LogDNA dashboard, which you can access from
your LogDNA resource page in the Manifold dashboard.

Wrapping it up
I hope you’re as excited as we are about the new Ansible Manifold integration. You can
provision managed cloud services as well as set up configuration and secrets independent of
the tools you’re using to manage your infrastructure — all you need is love and Manifold �D.

RECENT POSTS

Add Value
to Your
Service by
Joining a
Marketplace

b
Scott

Comparing

the Top 5
Pricing

Models for
Developer

Apps

https://manifold.co/blog/add-value-joining-marketplace
https://manifold.co/blog/comparing-top-5-pricing-models-developer-apps

by Fitzpatrick
by

Chris
Tozzi

@manifoldco Blog About Press Careers
We're

hiring!
Terms Privacy

© 2020
Manifold

https://manifold.co/blog/add-value-joining-marketplace
https://manifold.co/blog/comparing-top-5-pricing-models-developer-apps
https://twitter.com/manifoldco
https://manifold.co/blog
https://manifold.co/about
https://manifold.co/press
https://manifold.co/careers
https://manifold.co/terms
https://manifold.co/privacy

