
Container Security at the Speed of CI/CD

In this digital age, enterprises exercise technical cryptographs to process, deliver and deploy

multiple computational stacks within a secure system. IT organizations feel the need to

embrace digital channels like DevOps and Agile to accelerate software development.

However the significant time it takes to assemble, maintain and determine new strategies

onto a CI farm, often limits the benefits of using a CI server. The inability of CI/CD

deployment frameworks to process such constitutional loads causes a major setback to a

developer’s feedback mechanisms.

Image Source: https://docs.adobe.com/content/help/en/experience-manager-cloud-

manager/using/overview/ci-cd-pipeline.html

Challenges in CI/CD Pipeline Security

 Increased vulnerability in multiple versions of CI/CD pipelines

 Limited scalability of CI/CD build farm

 Low infrastructure utilization

 Time consuming setup and configuration

While CI/CD is meant for defining the construct, shipping and operation of software cycles,

Agile highlights changes, all the while accelerating delivery. In line with this, works DevOps

that emphasizes responsiveness within the pipeline. The purpose of using containers in

CI/CD to deploy applications to the cloud has become fundamental. However deploying a

https://www.guru99.com/devops-tutorial.html
https://docs.adobe.com/content/help/en/experience-manager-cloud-manager/using/overview/ci-cd-pipeline.html
https://docs.adobe.com/content/help/en/experience-manager-cloud-manager/using/overview/ci-cd-pipeline.html
https://www.cigniti.com/blog/value-devsecops-brings-application-security/

container also means risking the host’s stability in volatile digital scenarios. Continuous

container security has therefore become a necessity that must be integrated within the

pipeline, particularly in the initial development stages.

 Containers for Secure CI/CD Deployment

To understand container security, it is necessary to interpret the digital logistics of

containers especially since organizations are focusing more on software integration. Digital

transformation insinuates the practice of application modernization, DevOps and cloud

technology. Containers accelerate progress, and optimize a CI server’s logarithmic

architecture. Utilizing containers in continuous integration and continuous development

(CI/CD) ensures that digital infrastructure remains fast, cost effective and accurate.

Container security at the speed of CI/CO creates an opportunity to sequence popular CI

servers like Jenkins Build Farm for maximized productivity. This enables efficiency of the

model farm and helps accommodate a self contained and independent CI infrastructure.

Image Source: https://medium.com/@edzob/ci-and-cd-in-the-wild-b5ca8f71fa28

What is Docker Container?

By reducing vulnerable surface area, containers orchestrate application functions to create a

CI infrastructure that’s both valuable, and financially feasible for enterprises. Docker is a

platform used for building, shipping and running applications. It offers a lightweight

container that can dynamically change without disrupting the application cycle, and

accelerates the application development and deployment process. Docker containers are

portable, across the development, testing and production phase with the ability to run

https://medium.com/@edzob/ci-and-cd-in-the-wild-b5ca8f71fa28
https://thenewstack.io/5-docker-security-best-practices/

locally, within virtual and physical mediums, in data centres, and through different cloud

providers.

Image Source: https://www.docker.com/resources/what-container

Docker Engine is an application that simplifies runtime, and offers built-in features for

scheduling, networking, orchestrating and securing one or more containers. Docker Engines

can initially be installed on virtual or physical host running a Linux OS within a secure data

centre or cloud. Docker containers are then deployed to run through a collection of Docker

Engines, giving developers the facility to package both small and large amounts of codes

within an isolated package. The model then offers a single platform for multiple isolated

containers to work within the same host, decreasing error and impact fallouts.

https://www.docker.com/resources/what-container

Image Source: http://apachebooster.com/kb/what-is-a-docker-container-for-beginners/

Assembly of Docker Engines

The framework of Docker Engines is based on client-server architecture wherein the Docker

Client creates an interface with the Docker daemon. The Docker client runs locally on Mac

and Windows, giving a larger space for both client and daemon to function on the same

server. The interface between the client and daemon take place via RESTful API and is

secured within a TLS. Linux operating system provides isolation features to Docker Engines

and allows access to the end user via Docker Client. To decrease vulnerable surface area

Linux OS facilitates the development of default security system that is protected by multiple

isolated layers between applications, and between the host and an application.

Image Source: https://blog.docker.com/2018/08/containers-replacing-virtual-machines/

Enhancing Docker Container Security

Docker utilizes Linux namespaces to provide an isolated workspace that is then known as a

container. Upon deployment, Docker creates a set of namespaces for a specific container,

isolating it from other operating containers. Namespaces created by Docker include the

following –

 PID Namespace

 MNT Namespace

 UTS Namespace

 NET Namespace

 IPC Namespace

http://apachebooster.com/kb/what-is-a-docker-container-for-beginners/
https://success.docker.com/article/dev-pipeline
https://blog.docker.com/2018/08/containers-replacing-virtual-machines/
https://www.infoworld.com/article/3234671/7-container-security-tools-to-lock-down-docker-and-kubernetes.html

Image Source: https://docs.docker.com/engine/docker-overview/

Docker also utilizes Linux control groups that are kernel level functionality which provides

Docker control over hardware resources - sharing available hardware resources, and setting

up constraints for containers. Seccomp (also known as secure computing mode) allows the

administrator to restrict actions within a container. This helps prevent further access with

the host system by blocking unauthorized syscalls.

The advanced edition of Linux Tech restricts both capabilities and access in terms of OS

security which helps to secure integrated layers, and reduce vulnerable spaces that can

easily be targeted for attack. Linux focuses on granular specification in user access that

provides access to root users, while non-root users have a limited capability set. However

they can elevate this access to root level by using sudo or setuid binaries. Since Docker

Engines limit this particular accessibility, the risk is reduced especially since the container

application level vulnerabilities are at a lesser risk of being exploited.

Apart from implementing process restrictions, another major benefit of using Docker

containers is supervising the access points of containerized applications with physical

devices on a host. Device resource control groups (cgroups) mechanism ensure containers

don’t function on default device access, instead require explicit access for device access.

Docker containers use copy-on-write file systems that help to isolate running processes in

multiple containers that are independent within the same system. Such restrictions protect

a container’s host kernel and device, may it be physical hardware or virtual servers.

https://docs.docker.com/engine/docker-overview/
https://thenewstack.io/5-docker-security-best-practices/
https://www.cigniti.com/blog/need-use-dockers-ci-cd/
https://www.cigniti.com/blog/need-use-dockers-ci-cd/
https://containerjournal.com/2018/09/17/automation-and-orchestration-in-a-container-world/

Image Source: https://blog.docker.com/2016/05/docker-security-scanning/

Commits are an additional security layer to the base image that offers tracking and alerts for

changes being made to monitor documentation and maintenance processes. Linux Kernel

Security also features patch sets like GRSEC and PAX, to add many kernel level safety checks

during deployment of Docker containers. Core Linux kernel system files are mounted as

‘read only’ that further limits accessibility from even the most classified container processes.

Assess control mechanism like SELinux, TOMOYO and AppArmor come with security model

templates that help define custom policies to enhance container security.

Problem with Insecure Docker Containers

 Continuous data storage can complicate design of application cycle

 Containers in CI/CD pipeline undergo multiple functions – build, test and

deployment, container registry and code repository like GitHub/Jenkins

 Containers serve micro services discreetly therefore are not applicable for every

software

 Graphical applications suffer several restrictions

 Container ecosystem is fractured with large areas of vulnerable surfaces

What is CI/CD Pipeline?

Before reviewing continuous container security, we must know the basic function behind

CI/CD models. Also referred to as a set of operating principles, the conditional wiring of

continuous integration, development and deployment consists of employing code changes

continually on a CI/CD build farm, all the while securing the processes. To further enhance

automated regression, performance, production and deployment, Docker containers are

used. They offer strengthened security, simplified work flows and increased resource

efficiency in a CI/CD pipeline.

https://blog.docker.com/2016/05/docker-security-scanning/
https://sysdig.com/blog/docker-security-landscape/
https://thenewstack.io/poorly-configured-ci-cd-systems-can-be-a-backdoor-into-your-infrastructure/

Image Source: https://mesosphere.com/resources/how-to-build-cicd-pipeline-webinar/

 Continuous integration establishes consistency in the integration process – build,

package and test applications. Development teams will function and collaborate

efficiently by committing codes frequently in a systemized manner to improve

software quality.

 Continuous delivery automates application delivery to the select infrastructure

environments. While teams focus on production and testing, CD automates the

process of initiating primary service calls to databases, and web servers while the

applications are being deployed.

 Agile development focuses on removing process defects, and enabling development

and operations faculties to collaborate further on advancing delivery. By removing

fundamental process barriers, you can produce functional software rapidly and

respond to resistance efficiently.

https://mesosphere.com/resources/how-to-build-cicd-pipeline-webinar/
3MAC1%20-%20Why%20choose%20Gurusnotes%20Electrical%20engineering%20material%20for%20IES%20and%20GATE.docx

Image Source: https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-

be1bed149b0

DevOps vs. DevSecOps

DevOps is an agile infrastructure that fortifies collaboration between the development and

operations staff. It is a cross-disciplinary community that promotes engineers from the

development and operations branch to work together in the entire service lifecycle. DevOps

is a tool-chain approach that focuses on both principle and practice. It ensures

infrastructure automation, site reliability engineering, continuous testing, and deployment

of software applications within a secure system.

DevSecOps views security as an integral part of the DevOps practice with the objective of

limiting vulnerabilities and data breach. It is a shared responsibility in CI/CD testing that

automates security in the application development cycle. Since cyber threats are a growing

concern for organizations, with DevSecOps the test code undergoes immediate security

checks and automated validation. To accelerate compliance monitoring tools, DevSecOps in

CI/CD audits random security attacks, downtime, and malware breach etc before

deployment is initiated.

Image Source: https://www.synopsys.com/blogs/software-security/agile-cicd-devops-

glossary/

Implementing Container Security at the speed of CI/CD

For continuous deployment, DevOps utilize open source automation tools like Jenkins to

build and test their applications. The platform makes it easier for developers to integrate

changes and obtain a fresh build. To perform continuous integration, the Jenkins platform

assists developers to configure Docker images within the CI/CD pipeline.

https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0
https://medium.com/@neonrocket/devops-is-a-culture-not-a-role-be1bed149b0
https://www.twistlock.com/
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-glossary/
https://www.synopsys.com/blogs/software-security/agile-cicd-devops-glossary/

To avoid container security breach, DevSecOps employs continuous container security in the

CI/CD pipeline. The launching grounds for container security is during the Build phase

wherein developers, operation staff and testing analysts must work together to eliminate

vulnerabilities in the application, all the while securing the container’s rudimentary surface.

The most critical phase is the Run-time phase where real-time monitoring and testing

standards become applicable.

Image Source: https://clearlinux.org/blogs/how-intel-clear-containers-protects-against-root-

kernel-exploits-dirty-cow

Container Security Threats

While containers are a leading contribution to the CI/CD pipeline, it is increasingly important

to secure the vulnerabilities within Docker Engines. To ensure proper management of

network applications, consistent container security under DevSecOps is both crucial, and a

necessity. Here’s a brief look at ransom ware threats and Linux vulnerabilities a Docker

container/containers can be most vulnerable to –

 The Stack Clash vulnerability in which an attacker can gain root privileges within the

container however to break out from the container, is not easily possible. But if the

attack occurs in the user space of the host system, running containers and Docker

daemon are compromised.

 Ransom ware attacks on containerized applications like ElasticSearch and MongoDB has

become rampant. The attacker wipes the user data leaving behind a single index. Till

date more than 9750 servers have suffered damage and approximately 450TB data has

been deleted from servers.

 The Dirty Cow Container exploits the Linux kernel by encrypting a bugged setuid

programs that grants root privilege to the attacker so temporary access can be gained.

https://clearlinux.org/blogs/how-intel-clear-containers-protects-against-root-kernel-exploits-dirty-cow
https://clearlinux.org/blogs/how-intel-clear-containers-protects-against-root-kernel-exploits-dirty-cow
https://techbeacon.com/enterprise-it/8-ways-bolster-kubernetes-security

 OpenSSL heap corruption by malformed key headers, extension codes etc, and port

scanning attacks on public cloud containers.

Building Continuous Container Security

BUILD SHIP

Code Analysis (analyze for
application vulnerabilities)

Image Signing e.g. Content
Trust (author/publisher
verification)

Container Hardening (restrict
functions, remove unneeded
libraries)

User access controls e.g.
Registries (restrict access
and monitor deployment
tools and registries)

Image Scanning (scanning
Docker images at build,
regulate registries)

Preparation Production

Host & Kernel security (use SECCOMP,
AppArmour, or SELinux for host security
settings)

Network inspection and visualization
(inspect data present from container to
container, build Dock images through
visualization for application stack behavior

Access Controls (enable restricted access to
Docker daemon and system)

Automate threat detection (check for DDoS,
DNS attacks using automated security

Build Ship Run

Preparation Production RUN

https://searchsecurity.techtarget.com/answer/What-is-a-port-scan-attack
https://searchsecurity.techtarget.com/answer/What-is-a-port-scan-attack

system)

Auditing (security audit needs to be
performed using Docker CIS benchmark)

Host and Container Privilege Escalation
Detection (to predict break outs and attacks
via machine learning algorithms, first detect
privilege escalation on hosts and containers)

Secrets Management Container Quarantine & Process Monitoring

Encryption Layer based Application Isolation (Docker
Engine in Linux Tech)

Secure Docker Daemon Run-time vulnerability check

Orchestrating Security and Networking Seize Unauthorized Data Packets and Audit
Event Logging

Image Source: https://www.eweek.com/security/aqua-extends-container-security-platform-

with-compliance-features

AUTOMATION IN CONTAINER SECURITY

 Automated Vulnerability Assessment

Securing scanning of Docker images is prompt and critical, hence automating this process as

a container security tool in CI/CD pipeline makes for controlled evaluation. According to a

https://www.eweek.com/security/aqua-extends-container-security-platform-with-compliance-features
https://www.eweek.com/security/aqua-extends-container-security-platform-with-compliance-features

clearly defined policy, the Docker images will either be interpreted as safe, or won’t.

Automated security testing must be usable and error free so it can be integrated into the

development workflow. It must enable constant checks, strengthen security posture and

must stay a continuous process. Feedback loop is automated, and therefore reduces the

need for manual scheduling.

 Automated Blocking of Suspicious Data Packets

Container deployments present larger attacking surfaces, if you’re comparing them with

traditional deployment systems. The many entities that require constant tracking, third-

party codes and speed at which containers can disappear or appear – all present a high risk

of invasion. Automated container security helps block suspicious data packets using

machine learning algorithms that predict and prevent malicious behaviour.

 Automated Local Registry Image Scanning

A Jenkins plug-in can be implemented with a security tool that helps scan Docker images in

the build process and assigns specific tags, wherever vulnerabilities are detected. Once an

image is pushed into local OpenShift registries, your security tool will automate scanning to

check if the images include any vulnerability. The scans can be customized to check for

specific directories, and tags etc. Role based access controls help authenticate access into a

project that may only have ‘read only’ visibility.

 Run Time Security Policy Rules

Policy rules that can isolate containers in network traffic and applications can be automated.

REST API is a popular container security tool that allows developers to secure Docker Engine

by implementing programming rules into the OpenShift deployment cycle. OpenShift

identifiers are also used to evaluate project names, labels etc for run time security

authorization.

https://dzone.com/articles/automating-container-security-with-red-hat-openshi

Image Source: https://sdtimes.com/containers/twistlock-goes-beyond-container-security/

 Automated Container Management & Deployment

Container implementation has become fundamental practice in DevOps, therefore it has

become crucial create open industry standards for image and runtime specifications. For

leveraging configuration management, automation tools like Puppet allows professionals to

inspect and deliver software across different systems.

Twistlock to Automate Container Security at the speed of CI/CD

Twistlock protects isolated, containerized applications starting from building phase till the

deployment. Not only does it discover vulnerabilities, but also monitors container activities

and isolates runtime threats. Twistlock is built on RedHat, Java platforms and Oracle,

featuring vulnerability management, data compliance, run-time security and greater

visibility for conditional threats.

Image Source: https://www.twistlock.com/2016/09/27/twistlock_sumologic/

Features

 Vulnerability Management: inspecting full stacks of components in the Docker image,

eradicates vulnerabilities before deployment of software application

https://sdtimes.com/containers/twistlock-goes-beyond-container-security/
https://sdtimes.com/containers/twistlock-goes-beyond-container-security/
https://blogs.oracle.com/cloud-infrastructure/improving-the-security-of-your-containers-in-ocir-using-twistlock
https://www.twistlock.com/2016/09/27/twistlock_sumologic/

 Runtime Defence: combines static analysis, active threat feeds, machine learning

algorithms and Twistlock Labs research to secure container environment

 Access Control: utilizes granular policies for managing and monitoring user access

into Docker containers, Kubernetes APS and Swarm

 Compliance Standards: promotes regulations with the industry best practices, and

development policies, offering more than 90+ in-built settings that cover CIS Docker

benchmark

Image Source: https://blogs.oracle.com/cloud-infrastructure/improving-the-security-of-

your-containers-in-ocir-using-twistlock

Verdict

Software development has now evolved to a point where applications can be transformed

into an assembly of micro services that are loosely bound into a productive framework. To

package micro services, Docker containers are implemented for isolating commercial grade

and uniform applications, for increased portability. By using containers in CI/CD pipeline, we

can increase the overall resilience of a system against malicious attacks. If container

intelligence is combined with Twistlock or Azure, in sync with artificial intelligence under

DevSecOps, continuous security will be a possibility that ensures enterprises can maintain

conformity by checking security settings consistently.

https://blogs.oracle.com/cloud-infrastructure/improving-the-security-of-your-containers-in-ocir-using-twistlock
https://blogs.oracle.com/cloud-infrastructure/improving-the-security-of-your-containers-in-ocir-using-twistlock
https://thenewstack.io/integrate-security-and-compliance-into-your-ci-cd-pipeline/

