BlackBerry Java

Development Environment
Version 4.0

BlackBerry Application Developer Guide

Volume 1: Fundamentals

BlackBerry Java Development Environment Version 4.0 BlackBerry Application Developer Guide Volume 1: Fundamentals
Last modified: 26 November 2004

Part number: SWD_X_JDE(EN)-001.000

At the time of publication, this documentation complies with BlackBerry Java Development Environment Version 4.0.

2004 Research In Motion Limited. All rights reserved. The BlackBerry and RIM families of related marks, images and symbols are the exclusive
properties of Research In Motion Limited. RIM, Research In Motion, BlackBerry and ' Always On, Always Connected' are registered with the U.S.
Patent and Trademark Office and may be pending or registered in other countries.

Microsoft, Windows and Outlook are registered trademarks of Microsoft Corporation in the United States and/or other countries. Java and Jini are
trademarks of Sun Microsystems, Inc. in the U.S. and other countries. IBM, Lotus, and Domino are trademarks of International Business Machines
Corporation in the United States. The Bluetooth® word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Research
In Motion is under license. All other brands, product names, company names, trademarks, and service marks are the properties of their respective
owners.

The handheld and/or associated software are protected by copyright, international treaties and various patents, including one or more of the
following U.S. patents: 6,278,442, 6,271,605; 6,219,694, 6,075,470; 6,073,318; D,445,428; D,433,460; D,416,256. Other patents are registered or
pending in various countries around the world. Please visit www.rim.net/ patents.shtml for a current listing of applicable patents.

This document is provided “as is" and Research In Motion Limited (RIM) assumes no responsibility for any typographical, technical, or other
inaccuracies in this document. RIM reserves the right to periodically change information that is contained in this document; however, RIM makes no
commitment to provide any such changes, updates, enhancements, or other additions to this document to you in a timely manner or at all. RIM
MAKES NO REPRESENTATIONS, WARRANTIES, CONDITIONS, OR COVENANTS, EITHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION,
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OF FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, MERCHANTABILITY,
DURABILITY, TITLE, OR RELATED TO THE PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE REFERENCED HEREIN, OR PERFORMANCE
OF ANY SERVICES REFERENCED HEREIN). IN CONNECTION WITH YOUR USE OF THIS DOCUMENTATION, NEITHER RIM NOR ITS AFFILIATED
COMPANIES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, OR CONSULTANTS SHALL BE LIABLE TO YOU FOR ANY DAMAGES
WHATSOEVER BE THEY DIRECT, ECONOMIC, COMMERCIAL, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY, OR INDIRECT DAMAGES,
EVEN IF RIM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS OF BUSINESS REVENUE OR
EARNINGS, LOST DATA, DAMAGES CAUSED BY DELAYS, LOST PROFITS, OR A FAILURE TO REALIZE EXPECTED SAVINGS.

This document might contain references to third-party sources of information and/or third-party web sites (“Third-Party Information”). RIM does not
control, and is not responsible for, any Third-Party Information, including, without limitation, the content, accuracy, copyright compliance, legality,
decency, links, or any other aspect of Third-Party Information. The inclusion of Third-Party Information in this document does not imply endorsement
by RIM of the third party in any way. Any dealings with third parties, including, without limitation, compliance with applicable licenses, and terms
and conditions are solely between you and the third party. RIM shall not be responsible or liable for any part of such dealings.

Research In Motion Limited Research In Motion UK Limited
295 Phillip Street Centrum House, 36 Station Road
Waterloo, ON N2L 3W8 Egham, Surrey TW20 9LF
Canada United Kingdom

Published in Canada

Contents

BlackBerry APIs 5
USING BIACKBEITY APIS ...oovvorriseeeeeeeeeeeeessesssssssssssssss s s sssesssss s 5
Using Java on BlackBerry NandNElds ... eeeceseeesesssssssssssss s ssssssssssenes 8
APPLICALION CONTIOL...oooeeoteeeeeteeee e 12

Writing BlackBerry Java applications 14
APPICALION MANAGEMENL.......oeeoereeerceeeeeieeeeeeeieess e sesssss st 14
Writing @ SAmMPIE @PPIICALION ...t ssss s 14
REUSING COMMON COUE...cooortmmmmirreeeeee e eerereeesessssssessssssss s 16
USING T IDE.....ooooeeeeeeeeeeeeesssssi e ssssssssssssssss s R 18
Programming QUIAEIINES ... ssssssssess s 20

Creating user interfaces 29
USEE INEEITACE APIS ...t essss e 29
DiSPlaying Ul COMPONENLSoourmmeeeeeeeeeeeeeeevereessssssesssssssss s sessssssssssessssssssssmsnsssssssssssssssssssssssssssssssens 29
ManNAging Ul COMPONENTSovvvvveveveeeeemeessmssmmsmmssss s ssssssssssssssssssssssssssssss s sssssssssssssssssssssssssnnnns 38
Creating custom Ul COMPONENTS.........ccueweeemmmmmmmsssssssssssseesseeeeeeeeee S vssnenninnn 41
Working with images. s e 59
Drawing USiNG graphiCs OBJECESuuivvvvveeeeeserceeceesseeees st sssssss s ssssss s 62
Listening for changes t0 Ul ODJECLS ... ceeisess s ceessss s ssssssss s sssssssss s ssssssssssssnen 67

Supporting media content 69
PIVIE COMEBNT .ottt it bt e 69
PlayiNg MEAIA CONTENT w.ovvvvvrrreeeeeeeee e eeeeceeeesessssssssssss st 71
Listening for Media €NgiNE BVENTS ... ssssssss s ssssss s ssssssss 73
Creating CUSEOM CONNECLIONS w.......vvvvveeeeenreeeeeesssseeseessssssssssse s sssssssssss s ssssssss st sssssss s 79

Connecting to networks 82
HTTP @Nd SOCKEE COMMEBLLIONSoouurreeeeeieeeee et ssss e ssssss s 82
USING HTTP CONNECLIONS...ccvvvrrrmmmrrrsrsrreeerererrereeseeeeseessenenns R 82
USING HTTPS CONNECLIONS c.ovvvvvrrrraisceeeee e sereseessesssesssssssssssss s e sssnes 87
USING SOCKET COMNEBCLIONS.......oooooooeeeeeeeesieeeess s sssssss s 87
USING POIE COMNEBCTIONS .ovvvvvrrrrmrmmmseeeeeeessesessssssssssssssessssssssssssssssssssessss s sessssssssssesssssssmssmsssssssssssssssssssssssssssssssssens 89
Using Bluetooth serial POrt CONNECTIONS.........cvvveeeuuereceeeiissseeeeeseesissssesseeesssss s ssssssssssssssssssssssssssssssssssnen 90

Using datagram connections 96
DALAGTAM COMMECTIONS wevvvvvvvrrrnsaissseeeeeeee e sessssssssessssssssssssss s R 96
USING UDP COMNEBCLIONS covvvvvtirrrimsesseseeeeee e sessssessssssssssssssssssssssssssss s e sssssssssssssssssssssssssssssssssssssessssssssssssees 96
USING MODITEX NEIWOTKS.........ooooooeeeosveeiiseeese e sssssss s sssssss s ssssssss s ssssss s 98
Sending and reCeIVING SIMS MESSAGESuvvvveeurmrereeeesesssseseseeesssssssesssssssssss s sssssssssss s sesssss s sssssssssssssnnas 105

Localizing applications 109
RESOUITE FIIES...oevvvtieeereeeeeei e eeeeiss e eesss st 109

Adding localization SUPPOTt t0 @PPlICALIONS.ccueuermmmmisrrrsseeeeeeeeeee e sessssessssssssssss e 110

Retrieving Strings from @ reSOUITE fil@ ...t sssssss s ssssss s
Managing resource files for application suites

Using IT policies 118
[T POIICIES oo eeeeeeeeeesssssss e bR 118
Retrieving IT policy ITEMS.............cccveemerrrrveveeeseeneessssssssonns s 118
Listening for policy changes..........ccooomrvvvveene, 0 118
Controlling application dOWNIOAAS........cvvvcveeeeurrrceeeeiiieeee s cessess s sssssss s sssssss s ssssssssss 119
OB EXAMPIE ..o eeeeeeeessesssssssssssss R 119

Creating client/ server push applications 121
PUSN @D PIICATIONS c.ovvvveveveviirns st eeseesssssssssssss st 121
Client/server push requests.................een OSSO OO UO OO OO OO TSP TP OO 121
Writing a client-side pUSh @PPlICALION ... 125
Writing a server-side push @ppliCatioNn ... seesesss s sssssss s ssssss e 128
Troubleshooting PUSH @PPHICALIONS...........cuwveeeeeeemiimssssseseeseeesse e esesssssssssseessssss s ssssssssssssssssesssseos 132

Packaging and deployment 133
Deploying applications using the BlackBerry Desktop SOftWare..............wweeimmmnsssssssnssseneseerererereieens 133
Deploying appliCations WITEIESSIYciririvveeeieeseeeescsscsiessese s ssssssssss s sssssses s sssssssss s 133

Testing and debugging 136
TeSt APPIICALIONS ... OSSOSO 136
USING the debUgging tOOIS ... eereererreeerrrieeiseeeeessssis s sssssssssssssssssss s sssssssnnes 141

Appendix A: format of .alx files 145
AIX IS oo 145
Elements in .alx files .. 148

Appendix B: Mobile Data Service reference 150
HTTP FEOUESES «..ooovvveerieresitese ittt ssssss st st ss st 150
HTTP TBSPONSES......oomreeeicerieiireer e eeeis e eass s e et 150
HTTPS SUPPOTT ..o s 151
TTANSCOUEBTS ..o ettt et 152
Creating tranSCOUENSoovrrrvvvveeeesseressesssssesnssensssnnns OO 157
Compile and INSEAll trANSCOUETS........rvvvrrevere st ssss s sssss s 160

Glossary 162

Index 165

BlackBerry APIs

e Using BlackBerry APIs
* Using Java on BlackBerry handhelds
¢ Application control

Using BlackBerry APIs

The BlackBerry® Java Development Environment (JDE) provides a complete set of APIs and tools for you
to develop Java™ applications that run on BlackBerry Wireless Handhelds™. Applications developed
using version 4.0 of the JDE run on handhelds running BlackBerry Handheld Software version 3.8 or 4.0.

BlackBerry handhelds include a J2ME runtime environment that is based on the CLDC 1.1 and MIDP 2.0
specifications. BlackBerry API extensions provide additional capabilities and tighter integration with
BlackBerry handhelds.

You can use both CLDC/MIDP APIs and BlackBerry APIs in your application. To enable applications to
run on any JTWI-enabled device, write standard MIDP applications using only the CLDC and MIDP APIs.

MIDP Java Application Custom BlackBerry Java Application
MIDP

BlackBerry APIs
CLDC

Java Virtual Machine

BlackBerry handheld software components
To view the AP/ reference, on the taskbar, click Start > Programs > Research In Motion > BlackBerry Java
Development Environment 4.0 > API Reference.

BlackBerry APIs

The BlackBerry APIs provide access to BlackBerry features for user interfaces, localization, networking,
and other capabilities.

Note: Access to additional APIs for features, such as advanced cryptography, synchronization, and messaging, is restricted.
To use these APIs, you must receive express written permission from an authorized signatory of Research In Motion. See
the BlackBerry Application Developer Guide Volume 2: Advanced Topics for more information.

BlackBerry Application Developer Guide

BlackBerry APl package
net.rim.blackberry.api.browser

Description

This package enables applications to invoke the BlackBerry Browser. See the
BlackBery Application Developer Guide Volume 2: Advanced Topics for more
information.

net.

net.

net.

net.

net.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

api.invoke

api.mail

api.mail.event

api.menuitem

api.options

This package enables applications to invoke BlackBerry applications, such as
tasks, messages, MemoPad and phone. See the BlackBerry Application
Developer Guide Volume 2: Advanced Topics for more information.

This package defines the functionality necessary to convert the components of
internal RIM email system objects into portable objects that are compatible
with the mail API. It also provides functionality for sending, receiving and
accessing email messages. See the BlackBerry Application Developer Guide
Volume 2: Advanced Topics for more information.

This package defines messaging events and listener interfaces to manage mail
events. See the BlackBerry Application Developer Guide Volume 2: Advanced
Topics for more information.

This package enables you to add custom menu items to BlackBerry
applications, such as the address book, calendar, and messages. See the
BlackBerry Application Developer Guide Volume 2: Advanced Topics for more
information.

This package enables you to add items to the handheld options. See the

BlackBery Application Developer Guide Volume 2: Advanced Topics for more
information.

net.

net.

rim.blackberry.

rim.blackberry.

api.pdap

api.phone

This package enables applications to interact with BlackBerry personal
information management (PIM) applications, including address book, tasks,
and calendar. Most of the same functionality is provided by the MIDP package
javax.microedition.pim. See the BlackBerry Application Developer Guide
Volume 2: Advanced Topics for more information.

This package provides access to advanced features of the phone application.

See the BlackBerry Application Developer Guide Volume 2: Advanced Topics
for more information.

net.rim.blackberry.api.phone.phonelogs This package provides access to the phone call history. See the BlackBerry
Application Developer Guide Volume 2: Advanced Topics for more information.

net.rim.device.api.bluetooth This package enables BlackBerry applications to communicate with Bluetooth®
wireless technology enabled devices on a Bluetooth serial port connection. See
" Using Bluetooth serial port connections" on page 90 for more information.

net.rim.device.api.browser.field This package enables applications to display a browser field within their user
interface. See the BlackBerry Application Developer Guide Volume 2: Advanced
Topics for more information.

net.rim.device.api.browser.plugin This package enables you to add support for additional MIME types to the
BlackBerry Browser. See the BlackBerry Application Developer Guide Volume 2:
Advanced Topics for more information.

net.rim.device.api.collection This package defines interfaces and utility classes for managing data

net.rim.device.api.collection.util collections. See " Collections" on page 9 for more information.

net.rim.device.api.compress This package provides utilities for compressing data, in both GZip and Zlib
formats. Decompression is not currently implemented; handhelds can write out
valid GZip and Zlib files, but the content is not compressed. See " Compression"
on page 9 for more information.

net.rim.device.api.il8n This package provides classes to support the localization of applications on
BlackBerry handhelds. See " Localizing applications" on page 109 for more
information.

net.rim.device.api.io This package provides a library of custom BlackBerry classes for managing data
input and output.

net.rim.device.api.mime This package provides classes for working with streams of MIME-encoded data.

net.rim.device.api.notification This package provides methods to trigger event notifications and respond to

system-wide and application-specific events. See the BlackBerry Application
Developer Guide Volume 2: Advanced Topics for more information.

BlackBerry APl package
net.rim.device.api.servicebook

1: BlackBerry APIs

Description

This package enables applications to add, delete, and access service book
entries. See the BlackBerry Application Developer Guide Volume 2: Advanced
Topics for more information.

net.rim.device.api.system

net.rim.device.api.ui

net.rim.device.api.ui.component

This package provides access to system-level functionality, including event
listeners for the handheld keyboard and trackwheel, image creation and
support, and application control.

This package provides enhanced functionality to control the BlackBerry user
interface, including screen and field layout managers, field type support, and
focus, scroll, and change listeners. See " User interface APIs" on page 29 for
more information.

This package provides a library of interface components for creating Ul
applications. See the See " Displaying Ul components" on page 29 for more
information.

net.rim.device.api.ui.container

net.rim.device.api.ui.text

This package provides a library of interface manager components for creating
Ul applications. See " Managing Ul components" on page 38 for more
information.

This package provides classes to filter text strings containing various kinds of
data, such as phone numbers or URLs.

net.rim.device.api.util

CLDC APIs

CLDC API package
java.io
java.lang

java.lang.ref

java.util

This package provides utility methods and interfaces that are useful within the
context of the handheld system, including classes for arrays, hash tables, and
string matching.

Description

This package provides for system input and output through data streams.

This package provides classes that are fundamental to the design of the Java
programming language.

This package provides reference-object classes, which support a limited degree of
interaction with the garbage collector.

This package contains the collection classes, date and time facilities, and
miscellaneous utility classes.

javax.microedition.io

MIDP APIs

MIDP API package
javax.microedition.Tcdui

javax.microedition.Tcdui.game

This package contains classes for generic connections.

Description

This package contains the MIDP Ul API, which provides a set of features for
implementation of user interfaces for MIDP applications.

This package contains classes that enable the development of rich gaming
content for wireless devices.

javax.microedition.midlet

javax.microedition.pki

This package defines Mobile Information Device Profile applications and the
interactions between the application and the environment in which the
application runs.

This package defines certificates that are used to authenticate information for
secure connections.

javax.microedition.rms

This package provides a mechanism for MIDlets to store and retrieve persistent
data.

BlackBerry Application Developer Guide

PDAP APIs

MIDP API package Description
javax.microedition.pim This package provides a standard mechanism for accessing PIM information.

Using Java on BlackBerry handhelds

Source code is compiled and packaged into .cod files. The .cod files are loaded onto BlackBerry
handhelds and run by their virtual machines (VM).

o Note: The .cod name is limited to 128 bytes.

The BlackBerry JDE uses a sp/it VM architecture, as described in the CLDC specification. To reduce the
amount of memory and processing power that is required on handhelds, part of the class loading
process, called preverification, occurs before the Java code is loaded onto the handheld. The IDE
preverifies source files automatically, before packaging them into .cod files. The VM performs the
remainder of verification during class loading onto handhelds.

Restrictions

The BlackBerry Wireless Handheld VM has the following restrictions, as specified by CLDC 1.1:

* no object finalization

* no java.lang.Error class hierarchy

e no user class loading

¢ no reflection, therefore no support for Remote Method Invocation (RMI) or Jini™ network technology
* no native methods

* no Runtime.exec() for running external processes

Multithreading

The BlackBerry Java environment provides a true multithreading environment for running applications.
This enables multiple applications to run simultaneously, events to broadcast to multiple applications,
and long operations or listener threads to run in the background.

Persistent storage

Data stored in flash memory persists between handheld resets. Store data on the handheld in one of two
ways:

e using MIDP record stores

« using the BlackBerry persistence model

See "Storing persistent data” on page 79 of the BlackBerry Application Developer Guide Volume 2:
Advanced Topics for more information on storing persistent data using the BlackBerry APIs.

1: BlackBerry APIs

Network communication

The BlackBerry JDE implements network communication according to the MIDP 2.0 specification. It
provides a variety of connectivity options, including the ability to securely connect behind corporate
firewalls using proxied HTTP connections.

The BlackBerry JDE provides the following connection types:
e stream connections (StreamConnection interface), including:

e HTTP connections (HttpConnection interface)

e HTTPS connections (HttpsConnection interface)

¢ socket connections (SocketConnection interface)

¢ secure socket connections (SecureConnection interface)

¢ serial connections to a communication port on the handheld (CommConnection interface)
» datagram connections (DatagramConnection interface), including:

e UDP datagram connections (UDPDatagramConnection interface)

The javax.microedition.io.PushRegistry class maintains a list of inbound connections to the
handheld.

See " Connecting to networks" on page 82 for more information. See Connector in the AP/ Reference
for detailed information on opening each of the connection types.

Streams

The BlackBerry JDE provides the standard interfaces and classes for streams that are included in the
CLDC java.io package.

MIME encoding

The BlackBerry JDE provides MIMEInputStream and MIMEQutputStream classes for reading and writing
a MIME-encoded data stream.

Class Description

MIMEInputStream This class implements a stream that reads a MIME message, and then formats and parses the
message into its parts according to the MIME standard.

MIMEQutputStream This class implements an output stream that can format output into parts according to the MIME
standard. This class does not perform the actual data encoding, so you must encode data before
writing it to this stream.

Compression

The BlackBerry JDE provides classes, in the net.rim.device.api.compress package, for reading data
streams compressed using either the ZLib or GZip formats. These classes behave much like the
corresponding classes in the java.util.zip package in J2SE.

Decompression is not currently implemented; handhelds can write out valid GZip and Zlib files, but the
content of such files is not compressed.

Collections

The BlackBerry JDE provides a set of interfaces and utility classes for managing collections on the
handheld.

BlackBerry Application Developer Guide

10

The net.rim.device.api.collection package includes interfaces that define various types of
collections, such as lists, sets, and maps, for specific types of data. These interfaces define capabilities
similar to the List, Set, and Map interfaces in the J2SE Collections Framework.

Implement these interfaces in your own classes, or use the utility classes that are provided in the
net.rim.device.api.collection.util package.

Vectors

The standard java.util.Vector class implements a resizeable array of objects. The BlackBerry JDE also
provides convenience classes, such as net.rim.device.api.util.IntVector and
net.rim.device.api.util.ByteVector for working with arrays of primitive types.

For large arrays of data (more than 10 or 15 KB), the BlackBerry JDE provides the BigVector,
BiglLongVector, and BigIntVector classes in net.rim.device.api.collection.util. These
classes are like normal vectors, except that they are optimized for inserting items at any location. In
contrast, if you make random changes using standard large vectors, large amounts of data move
between flash memory and RAM.

Lists

The BlackBerry JDE provides classes in the net.rim.device.api.collection.util package to
manage lists of elements:.

Class Description
SortedReadablelist and Use these classes to maintain sorted or unsorted lists of elements. The SortedReadabTelist
UnsortedReadabTeList class requires you to use a comparator object to sort the items in the list; each item that you

add to the list must be recognized as valid by this comparator.

IntSortedReadablelist and Use these classes to automatically sort lists of integers or elements that are associated with long
LongSortedReadablelist integer keys.

BortedReadableList and Use these classes to store large collections of data (more than 10 or 15 KB). These classes do

BigUnsortedReadableList not store data in an array, so you can make random changes to large data collections more
efficiently.

ReadableListCombiner Use this class to combine two or more ReadabTeList objects and present them as a single
ReadabTelist.

ReadableListUtil Use this class, which provides utility methods such as getAt () and getIndex(),to

retrieve data from readable lists.

Hash tables

In addition to the standard java.util.Hashtable class that the CLDC provides, the BlackBerry JDE
includes a specialized net.rim.device.api.collection.util. LongHashtableCollection class,
which provides a hash table collection that uses long integers as keys. With a
LongHashtableCollection object, write operations occur as a map (using a key-element pair) and
read operations occur as a map or as a set (retrieving the elements in the collection as an array).

Event listeners

Event listener interfaces are divided by event type. Each application registers to receive specific types of
events. The application event queue then dispatches events to the appropriate listeners.

Applications can implement the appropriate listener interfaces or override the listener methods on the
various Screen objects. Most applications implement the KeyListener and TrackwheelListener
interfaces and register the listeners to receive keyboard and trackwheel events. The keyboard and
trackwheel are the primary means by which users interact with applications.

1: BlackBerry APIs

The following event listeners are located in the net.rim.device.ap1i.system package:

Listener Interface Type of event

AlertListener Implement this interface to listen for alert events.

BluetoothSerialPortlListener Implement this interface to listen for Bluetooth serial port events, such as the
opening of a Bluetooth serial port connection either as a server or client.

GlobalEventListener Implement this interface to listen for global events that are broadcast to all
applications.

HolsterListener Implement this interface to listen for holster events, such as the handheld being
placed into or removed from the holster.

IOPortListener Implement this interface to listen for 1/0 port events.

KeyListener Implement this interface to listen for keyboard events, such as the user pressing or
releasing a key.

RealTimeClockListener Implement this interface to listen for real-time clock events, such as the clock being
updated.

SerialPortlListener Implement this interface to listen for serial port events, such as a change in the

status of data being sent to the serial port connection, for handhelds that are
connected to the computer serial port.

SystemListener Implement this interface to listen for system events, such as changes to battery
status and power.

Trackwheellistener Implement this interface to listen for trackwheel events, such as the user clicking
the trackwheel.

USBPortListener Implement this interface to listen for USB port events, such as the status of data
being sent to the USB port connection, for handhelds that are connected to the
computer USB port.

System capabilities

The classes in the net.rim.device.api.system package provide access to the Java VM and system-
wide resources on the handheld.

Retrieve radio information
The RadioInfo class provides access to information on the status of the handheld radio.

Retrieve handheld information

The DeviceInfo class provides access to the following information on handhelds:
* battery power and status

e device ID

e idletime

e platform version

Alert users

The Alert class enables your application to notify users when an event, such as the arrival of a new
message, occurs.

Monitor memory usage
Use the static methods provided by the Memory class to retrieve statistics on VM memory usage.

BlackBerry Application Developer Guide

Some of the utility methods in the Memory class return a MemoryStats object. Use the utility methods
the MemoryStats class provides to retrieve detailed information on the memory and storage that is
available on the handheld.

Log events

The EventLogger class enables applications to store event logs in the persistent store. The handheld
maintains an event queue so that, when the log is full, the oldest events are deleted as new events are
added. Users can view the system event log on the handheld by holding the Alt key and typing Iglg.

Utilities
The BlackBerry JDE provides a set of utilities in the net.rim.device.api.util package. Many of these

classes provide similar capabilities to utilities in J2SE.

¢ The Comparator interface, similar to the one provided in J2SE, defines methods that impose order
on a collection of objects.

e The Arrays class provides methods for working with arrays, such as sorting and searching, and
viewing arrays as lists.

¢ The BitSet class maintains a collection of bits.

The net.rim.device.api.util package includes several convenient classes for managing specific
types of data collections, including vectors, hash tables, maps, and stacks.

Application control

12

Application control enables system administrators to perform the following actions:
» exclude applications from existing on handhelds

¢ limit internal connections (connections behind a corporate firewall)

¢ limit external connections

¢ |imit local connections (serial, infrared, and USB connections)

¢ limit access to the key store

e limit access to particular APIs

See the BlackBerry Enterprise Server Handheld Management Guide for more information on application
control.

APIs with limited access

Applications that use the following restricted APIs can load on handhelds, but throw a
ControlledAccessException at runtime if they access an APl not permitted under application control.

API Default value without IT policy Default value with IT policy
Bluetooth API allowed allowed
(net.rim.device.api.bluetooth)

Mail API allowed allowed
(net.rim.blackberry.api.mail)

PIM API (net.rim.blackberry.api.pdap) allowed allowed

API

Phone API and invocation API (used to
invoke the phone application)
(net.rim.blackberry.api.phone and
net.rim.blackberry.api.invoke)

Notification API
(net.rim.device.api.notification)
HTTP Filter API
(net.rim.device.api.io.http)

Default value without IT policy

initiating allowed
(no prompt by default)

allowed

allowed

1: BlackBerry APIs

Default value with IT policy

initiating allowed
(user prompted by default)

not permitted

not permitted

Writing BlackBerry Java
applications

e Application management

e Writing a sample application
e Reusing common code

e Using the IDE

e Programming guidelines

Application management

When the handheld starts, the VM loads an application manager, which manages all Java applications
on the handheld. The application manager functions as the central dispatcher of operating system
events for other Java applications.

Applications that provide a user interface extend the net.rim.device.api.ui.UiApplication class.
This class provides methods for applications to register event listeners, manage threads, and manage Ul
components.

BlackBerry applications start at main(). When an application starts, its main() thread calls
enterEventDispatcher () to start handling events. This thread runs all drawing and event-handling
code, and waits for events on the application queue.

When the application manager receives an event, it copies the event to the appropriate queues, which
enables the application manager to direct messages to certain programs. For example, only the
foreground application receives user input messages.

Writing a sample application

Extend the UiApplication base class

Each application that provides a user interface must extend the UiApplication base class. The
UiAppTlication class defines methods for applications to establish an event thread, and display and
maintain Screen objects.

Define main()

In main(), create a new object for the application. Call enterEventDispatcher() for the application
to enter the event thread and start processing messages.

public static void main(String[] args) {
HelloWorld theApp = new HelloWor1d();
theApp.enterEventDispatcher();

2: Writing BlackBerry Java applications

Define a constructor

Define the default constructor for your application. The default constructor invokes
UiApplication.pushScreen() to display the screen that appears when the application starts. In this
example, the screen is a new instance of HelloWorldScreen, which you define in the following section:

public HelloWorld() {
pushScreen(new HelloWorldScreen());

}

Define the main screen

To define the main screen of the application Ul, extend the MainScreen class. The MainScreen class is
a subclass of Screen, which implements the TrackwheelListener and KeyboardListener interfaces.
These interfaces receive and respond to user interaction. If you extend the Screen class, or one of its
subclasses, you do not have to implement the TrackwheelListener and KeyboardListener
interfaces.

Your class should override at least two of the MainScreen methods, the default constructor and
onClose().

In this example, the constructor invokes the MainScreen constructor. By default, MainScreen provides
the following features:

e A default menu with a Close menu item.

» Default close action when the user clicks Close or presses Escape. To provide custom behavior, such
as displaying a dialog box alert, when the user clicks the Close menu item or presses the Escape
button, override onClose().

e Aninstance of RichTextField, a read-only rich text field that can receive focus. See " Provide
screen navigation" on page 30 for more information on adding Ul components to a screen.

* A context menu with a Select menu item. See " Creating custom context menus" on page 49 for
more information.

Code example

The following example creates a screen that contains a rich text field. When the rich text field receives
focus, the menu includes a Close item and a Select context menu item.

Example: HelloWorld.java

/ ek
* HelloWorld.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/
package com.rim.samples.docs.helloworld;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;

BlackBerry Application Developer Guide

import net.rim.device.api.system.*;

public class HelloWorld extends UiApplication {
public static void main(String[] args) {
HelloWorld theApp = new HelloWorl1d();
theApp.enterEventDispatcher();
}
public HelloWorld() {
pushScreen(new HelloWorldScreen());
b
}

final class HelloWorldScreen extends MainScreen {

public HelloWorldScreen() {
super(Q);
LabelField title = new LabelField("HelloWorld Sample"™, LabelField.ELLIPSIS

| LabelField.USE_ALL_WIDTH);

setTitle(title);
add(new RichTextField("Hello World!"));

B

public boolean onClose() {
Dialog.alert("Goodbye!");
System.exit(0);
return true;

Reusing common code

Abstract base classes enable you to implement and reuse common functionality across multiple classes.
Each application can extend a single base class.

In the IDE, add the base class to a library project. Create separate projects for each application and
define a dependency on the library project.

Code example

The sample applications in this guide extend the BaseApp class, which implements the following
functionality:

e extends the UiApplication class

e implements the KeyListener and TrackwheellListener interfaces
* defines variables, such as common menu items

« defines a method to create an application menu

e defines a method for menu selection

¢ defines an abstract method to exit the application

16

Example: BaseApp.java

V&

* BaseApp.java

*/

2: Writing BlackBerry Java applications

* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

package com.rim.samples.docs.baseapp;

import
import
import
import
import

public

net.rim.device.
net.rim.device.
net.rim.device.
net.rim.device.
net.rim.device.

abstract class

api.il8n.*;
api.system.*;
api.ui.container.¥*;
api.ui.*;
api.ui.component.*;

BaseApp extends UiApplication implements BaseAppResource,

KeyListener, TrackwheellListener {

private Menultem _closeItem;

private static ResourceBundle _resources =
ResourceBundle.getBundle(BUNDLE_ID, BUNDLE_NAME);
/* Constructor for the abstract base class. */

public BaseApp() {
new MenuItem(_resources, MENUITEM_CLOSE, 200000, 10) {

}

_closeltem =

public void run() {
onExit(Q);
System.exit(0);

1

/* Override this method to add custom menu items. */
protected void makeMenu(Menu menu, int instance) {

}

Field focus =

UiApplication.getUiApplication().

getActiveScreen() .getLeafFieldWithFocus();
if(focus !'= null) {
ContextMenu contextMenu = focus.getContextMenu();
if(!'contextMenu.isEmpty()) {
menu.add(contextMenu) ;
menu.addSeparator();

}
}

menu.add(_closeltem);

/* Invoked when the trackwheel is clicked. */

public boolean trackwheelClick(int status, int time) {
Menu menu = new Menu();

makeMenu(menu, 0);

}

menu.show();
return true;

/* Invoked when the trackwheel is released. */
public boolean trackwheelUnclick(int status, int time) {

}

return false;

/* Invoked when the trackwheel is rolled. */
public boolean trackwheelRol1(int amount, int status, int time) {

17

BlackBerry Application Developer Guide

return false;
B
public boolean keyChar(char key, int status, int time) {
/* Intercept the ESC key and exit the application. */
boolean retval = false;
switch (key) {
case Characters.ESCAPE:
onExit(Q;
System.exit(0);
retval = true;
break;
}
return retval;
B
/* Implementation of KeyListener.keyDown(). */
public boolean keyDown(int keycode, int time) {
return false;
}
/* Implementation of KeyListener.keyRepeat(). */
public boolean keyRepeat(int keycode, int time) {
return false;
b
/* Implementation of KeyListener.keyStatus(). */
public boolean keyStatus(int keycode, int time) {
return false;
B
/* Implementation of KeyListener.keyUp(). */
public boolean keyUp(int keycode, int time) {
return false;
}

protected abstract void onExit();

Using the IDE

Writing applications
To write applications, use the IDE that is included with the BlackBerry JDE.

Create the workspace in a main folder, and then create subfolders for each project. Save all source files
in the appropriate project folder and save other files, such as images and resource files, in separate
subfolders. As with all Java programs, create a folder structure for your source code that matches the
package hierarchy that you use for your classes.

Create a workspace

1. In the IDE, on the File menu, click New Workspace.
2. In the Workspace name field, type a name without a file name extension.
3. Inthe Create in this directory field, type a folder.

18

2: Writing BlackBerry Java applications

4. Click OK.

Create a project

1. In the IDE, on the Project menu, click Create New Project.
2. In the Project name field, type a project name without a file name extension.

3. Inthe Create project in this directory field, type the folder in which to create the project file.
4. Click OK.

5. In the workspace Files pane, double-click the project name to set the project properties.

See the /DE Online Help for information on project properties.

Creating source files

In the IDE, on the File menu, click New.

In the Source file name field, type a file name with the .java file name extension.
In the Create source file in this directory field, type a folder name.

Click OK.

In the editor pane, right-click the file, and then click Insert into project.

o vk W =

Select a project, and then click OK.

Building projects
When you build a project, the IDE compiles your source files into Java bytecode, performs preverification,
and then packages the classes into a .cod file.

Note: In J2ME, bytecode verification is divided into two stages. The compiled code is preverified before it is loaded onto
the handheld, so the handheld only has to perform basic verification as classes are loaded. The IDE performs preverification
automatically when it builds projects.

When you build a project, the IDE also builds any libraries on which the project depends, if necessary.

Action Procedure Additional information

Build all projects » On the Build menu, click Build All. To exclude a project, set the project properties.

Build all active » On the Build menu, click Build. In the workspace, active project names appear in bold. To
projects change which projects are active, on the Project menu, click Set

Active Projects.
Build a single project 1. Select a project. -
2. On the Build menu, click Build

Selected.
Create a workspace » On the Build menu, click Generate -
makefile Makefile and Resources.

By default, the compiled .cod file uses the project name. To change this name double-click the project
file, click the Build tab, and type the output file name.

Obfuscate applications

The IDE compiler provides a level of obfuscation in .cod files by default. For example, the IDE compiler
automatically obfuscates internal, private members and removes debugging information.

1. Compile a .jar file for your application.

2. Use standard tools to obfuscate the jar file.

BlackBerry Application Developer Guide

3. Inthe IDE, create a new project.
4. Add the obfuscated .jar file to the project.
5. Build the project.

Generate javadocs

Use the IDE javadocs editor macro to facilitate adding javadocs comments to code.

Once enabled, if you type /** on any line preceding a function declaration, the IDE generates the
following comment:

/~,\-~,\-

* <description>.

* @param menu <description>.

* @param instance <description>.

* @return <description>.

*/

If you type /** on any other line, the IDE generates the following comment:

/7': ¥
* <description>.

*/

The IDE also preloads "<description>" as your search string, searches for the first instance, and
selects that instance. This enables you to type a description, and then press F3 to move to subsequent
parameters.

Because the javadocs macro relies on parsing the browsing information, add javadocs only after you
perform a successful build. If your file contains a syntax error above where you are trying to insert
javadocs, the macro does not pick up the function declaration.

Add a new editor macro

1. On the Edit menu, click Preferences.

2. Click the Editor tab and then click the Macros button.

3. From the When I type drop-down list, select /**. Type @javadoc in the Replace it with text box.
4

Type /** on the same line or the line immediately preceding each function declaration. For
example, in the following code fragment you would place your cursor at the beginning of the word
" protected" and type /**.

/** protected int makeMenu(Menu menu, int instance) { ... }

Programming guidelines

20

Writing efficient code

Use local variables

Use local variables whenever possible. Access to local variables is more efficient than access to class
members.

2: Writing BlackBerry Java applications

Use shorthand for evaluating Boolean conditions
Instead of unnecessarily evaluating a Boolean condition as shown in the first example, use shorthand as
shown in the second. The resulting compiled code is shorter.

// Avoid this

if(boolean_expression == true) {
return true;

} else {
return false;

}

// Do this
return(boolean_expression);

Make classes final

When you create code libraries, mark classes as final if you know that they will never be extended. The
presence of the final keyword enables the compiler to generate more efficient code.

0 Note: By default, the BlackBerry JDE compiler marks any classes that are not extended in an application .cod file as final .

Use int instead of long

In Java, a Tong is a 64-bit integer. Because BlackBerry handhelds use a 32-bit processor, operations run
two to four times faster if you use an int instead of a Tong.

Avoid garbage collection

Avoid calling System.gc() to perform garbage collection. This operation takes too much time,
especially on handhelds with limited available memory. Let the VM collect garbage.

Using static variables for Strings

When defining static fields (also called c/ass fields) of type String, you can increase program speed by
using static variables (not fina1) instead of constants (final). The opposite is true for primitive data
types, such as int.

For example, you might create a String object as follows:
private static final String x = "example";

For this static constant (denoted by the final keyword), a temporary String instance is created each
time that you use the constant. The compiler eliminates "x" and replaces it with the string " example" in
the bytecode, so that the VM performs a hash table lookup each that time you reference "x".

In contrast, for a static variable (no final keyword), the string is created once. The VM performs the
hash table lookup only when it initializes " X", so access is faster.

0 Note: You can use public constants (that is, final fields), but mark variables as private.

Avoid Object.getClass()

Avoid using Object.getClass() because it is not efficient and produces garbage (the Class object)
that is never collected.

Avoid using the example.class literal. This literal generates Class.forName("Example™).

21

BlackBerry Application Developer Guide

22

Avoid the String(String) constructor

Avoid using the java.lang.String(String) constructor because it creates an unnecessary String
object that is a copy of the string that is provided as a parameter. Because String objects cannot be
modified after they are created, copies are not typically necessary.

0 Note: The compiler generates a warning when you use the string constructor.

String str = new String("abc"); // avoid
String str = new String("found " + n + " ditems"); // avoid

In Java programs, each quoted string is implemented as an instance of the java.lang.String class. In
other words, you create a String by writing code as in the following example:

String str = "abc"; // prefer

String str = "found " + n + " items"; // prefer

Write efficient loops

Factor loop-invariant code out of a loop.

// avoid
for(int i = 0; i < vector.size(Q); i++) {

}

This code results a call to vector.size() each time through the loop, which is inefficient. If your
container is likely to have more than one element, it is faster to assign the size to a local variable. The
following example factors out loop-invariant code:

// prefer
int size = vector.size();
for(int i = 0; 1 < size; ++i) {

}

Alternatively, if the order in which you iterate through items is not important, you can iterate backward
to avoid the extra local on the stack and to make the comparison faster.

for(int i = vector.size() - 1; i >=0; --1) {
}

Optimize subexpressions
If you use the same expression twice, do not rely on the compiler to optimize it for you. Use a local
variable, as in the following example:

one(i+l); two(i+l); // avoid
int tmp = i+1; one(tmp); two(tmp); // prefer

Optimize division operations
Division operations can be slow on the handhelds because the processor does not have a hardware
divide instruction.

When your code divides a positive number by two, use shift right by one (>> 1) instead. Use the “shift
right" (>>) only when you know that you are dealing with a positive value.

2: Writing BlackBerry Java applications

midpoint = width / 2; //avoid
int = width >> 1; //prefer

Avoid java.util.Enumeration

Avoid using java.util.Enumeration objects unless you want to hide data (in other words, to return
an enumeration of data instead of the data itself).

// avoid

for (Enumeration e = v.elements(); e.hasMoreElements();) {
o0 = e.nextElement();

}

Asking a vector or hash table for an Enumeration object is slow and creates unnecessary garbage.
Instead, iterate the elements yourself, as in the following example:

// prefer
for(int i = v.sizeQ - 1; i >=0; --i) {
o = v.elementAt(i);

}

If the vector might be modified by another thread, synchronize the iteration as in the following example:

synchronized(v) {
for(int i = v.size() - 1; 1 >=0; --1) {
0 = v.elementAt(i);

}

0 Note: J2SE uses an Iterator object for similar operations, but iterator are not available in J2ME.

Perform casts using instanceof
Use instanceof to evaluate whether a cast succeeds instead of catching a ClassCastException.

// avoid
try {
(String)x.whatever();
} catch(ClassCastException e) {

}

// prefer

if(x instanceof String) {
(String)x.whatever();

} else {

}

Using instanceof is faster than using a try/catch block. Use the try/catch block only when a cast
failure is an exceptional circumstance.

The BlackBerry JDE compiler and VM are optimized to perform only one class check in the first block of
code. Perform the cast immediately following the branch that is determined by an instanceof check.

23

BlackBerry Application Developer Guide

For example, the compiler can optimize the first example, but not the second:

// prefer

if (a instanceof <type>) {
<type> instance = (<type>)a;
x.method(instance);
instance.method(x, y, z);

}

// avoid

if(a instanceof <type>) {
x.method((<type>)a);

}

Evaluate conditions using instanceof

To produce smaller and faster code, if you evaluate a condition using instanceof, do not evaluate
explicitly whether the variable is null. The condition e instanceof <type> evaluatesto falseif"e" is

null.

// avoid

if(e !'= null & e instanceof ExampleClass) { ... }

if(e == null || ! (e instanceof ExampleClass)) { ... }
// prefer

if(e instanceof ExampleClass) { ... }

if(! (e instanceof ExampleClass)) { ... }

Reducing code size

Follow these guidelines when you write applications to reduce the size of the compiled code.

Set appropriate access

When you create code libraries, using the appropriate access modifiers for fields and methods
significantly reduces the size of your compiled code. In particular, perform the following actions:

« Declare fields as private whenever possible. In addition to being good coding practice, this
enables the compiler to optimize the .cod file.

¢ When possible, use the default (package) access instead of public access (that is, omit the public
and protected keywords).

Avoid creating interfaces

When you create API libraries, avoid creating interfaces unless you foresee multiple implementations of
the API. Interfaces produce larger, slower code.

Use static inner classes

When you use an inner class to hide one class inside another, but the inner class does not reference the
outer class object, declare the inner class as stati c. This action suppresses the creation of a reference to
the outer class.

For example, the following code requires a reference to the outer class object:

// avoid
class outer {

24

2: Writing BlackBerry Java applications

int 1i;
class inner {
inner() {}

int example() { return i; }

}
In contrast, the following code only defines the scope of the inner class name:

// prefer
class outer {
static class inner {

}
}

The previous example is a shorter version of the following code:

class outer {

}

class outer$inner {

}

Only use a non-static inner class when you need access to data in the outer class from within methods of
the inner class. If you use an inner class for name scoping, make it static.

Avoid unnecessary initialization

Avoid unnecessarily initializing fields in classes, where fields have default values. If you do not initialize
a field in a class, it is initialized automatically using the following default values:

* an object reference is initialized to nu11

e int, byte, or long is initialized to O

e Boolean is initialized to false

For example, there is no difference between the following code fragments:

// avoid

class BadExample {
private int fieldsCount = 0; //avoid
private Field _fieldWithFocus = null; //avoid
private boolean _validlLayout = false; //avoid

}

// prefer

class BetterExample {
private int fieldsCount; //prefer
private Field _fieldWithFocus; //prefer
private boolean _validLayout; //prefer

}
ﬂ Note: You must explicitly initialize local variables in a method.

Import individual classes

Applications that use only a small number of classes from a package should import the individual classes
rather than the entire library.

25

BlackBerry Application Developer Guide

26

// avoid

import net.rim.blackberry.api.browser.*;

// prefer

import net.rim.blackberry.api.browser.Browser;

Using time on BlackBerry handhelds

In time-sensitive applications, do not depend on time zones for anything other than displaying the local
time to the user.

Handheld clock

The BlackBerry Wireless Handheld operating system calculates absolute time as milliseconds since
midnight, January 1, 1970 Universal Time Coordinate (UTC). Time is typically measured in either CPU
ticks or milliseconds.

System time zone changes

If you are caching a time-sensitive object for performance reasons, remember that the system time zone
can change on the handheld.

When the time zone changes, the system sends out a global event message to the applications. To
receive this event, implement the GlobalEventListener interface, including eventOccurred(), and
register the listener by invoking App1ication.addGlobalEventListener().

public void eventOccurred(long guid, int data0O, int datal, Object objectO,
Object objectl) {
if(guid == DateTimeUtilities.GUID_TIMEZONE_CHANGED) {
_cal.setTimeZone(TimeZone.getDefault());

}

Recommended practices

Use multithreading

Make effective use of the multithreading capabilities of the BlackBerry operating system. In particular,
always create a new thread for network connections or other lengthy operations (more than one-tenth of
a second). Use background threads for listeners or other processes that run in the background when the
application starts.

Minimize memory use
To minimize runtime memory, use the following guidelines:
e Use primitive types (such as int or Boolean) instead of objects (such as String or Integer).

* Do not depend entirely on the garbage collector. Avoid creating many objects quickly. Set object
references to null when you have finished using them. Reuse objects as much as possible.

* Move heavy processing to the server. For example, perform data filtering or sorting before sending
data to the handheld.

2: Writing BlackBerry Java applications

Avoid returning null

If you are writing a public method that returns an object, it should return nu11 only under the following
conditions:

e anullis expected during normal program operation
* the javadoc @return parameter states that null is a possible return value

If a nul1 return value is not normally expected, then the method should throw an appropriate exception,
which forces the caller to deal explicitly with the problem. The caller is not expected to check for a null
return value, unless the documentation says otherwise.

Avoid passing null into methods

Do not pass null parameters into an APl method unless the AP/ reference states explicitly that the
method supports them.

Use caution when passing null into a constructor

To avoid ambiguity when passing null into a constructor, cast null to the appropriate object.
new someObject ((someObject)null);

If a class has two or more constructors, passing in a null parameter may not uniquely identify which
constructor to use. As a result, the compiler reports an error. Not all supported constructors appear in the
API Reference because some constructors are for internal use only.

By casting nu11 to the appropriate object, you indicate precisely which constructor the compiler should
use. This practice also provides forward compatibility if later releases of the APl add new constructors.

Use longs for unique identifiers

Use a Tong identifier instead of a String identifier for unique constants, such as GUIDs, hash table
keys, and state or context identifiers.

For identifiers to remain unique across third-party applications, use keys that are generated based on a
hash of a String. In the input string, include enough information to provide uniqueness. For example,
use a fully qualified package name such as com.rim.samples.docs.helloworld.

To convert a String to a Tong, complete the following actions:
1. In the IDE text editor, type a string.

2. Select the string.

3. Right-click, and then click Convert “string" to Long.

Exit applications correctly

Before you invoke System.exit(int status), your application should perform any necessary cleanup,
such as removing objects from the runtime store that are no longer required by any applications.

Print the stack trace

The VM is optimized to eliminate the stack trace if it finds code that catches the exception using catch
(Exception e). It does not eliminate the stack trace if Throwable is caught.

For example, the following code does not print a stack trace:

catch (IOException e) {
e.printStackTrace()
}

27

28

BlackBerry Application Developer Guide

To print a stack trace, write code such as the following:

catch (Throwable t) {
t.printStackTrace();
}

Catch a Throwab1e instance only for debugging if you want to view the stack trace.

Creating user interfaces

e User interface APIs

e Displaying Ul components

e Managing Ul components

e Creating custom Ul components

e Working with images

e Drawing using graphics objects
 Listening for changes to Ul objects

User interface APIs

When you write applications for BlackBerry handhelds, use one of the following two API sets for user
interfaces:

e MIDP Ul APIs (javax.microedition.lcdui package)
e BlackBerry Ul APIs (net.rim.device.api.ui packages)

If you are writing an application to run on any MIDP-compliant device, use the MIDP Ul APIs. If you are
writing an application specifically for BlackBerry handhelds, use the BlackBerry Ul APIs. BlackBerry APIs
provide access to specific features of the handheld and enable more sophisticated Ul layout and
interaction.

Note: Do not use MIDP Ul APIs and BlackBerry Ul APIs in the same application or exceptions will be thrown. The Ul
framework cannot support both types of Ul objects in one application.

Displaying Ul components

Displaying screens
The main structure for a user interface is the Screen. An application displays one Screen at a time.

0 Note: Do not use Screen objects for text input. The Screen class does not implement disambiguation, which is required
for complex input methods such as international keyboards and the 7100 series of handhelds. For seamless integration of
the different input methods, extend Field or one of its subclasses. See " Creating custom fields" on page 42 for more
information.

The display stack

Screen objects are maintained in a display stack, an ordered set of Screen objects. The screen at the
top of the stack is the active screen that appears to the user. When an application displays a screen, it
pushes the screen to the top of the stack. When an application closes a screen, it pops the screen off the
stack and displays the next screen on the stack, redrawing it as necessary.

Tip: Each screen can appear only once in the display stack. The VM throws a runtime exception if the same screen is pushed

O onto the stack more than once. Applications must pop screens off of the display stack when the user finishes interacting
with them so that handheld memory is not used unnecessarily. Do not use more than a few modal screens at one time,
because each screen uses a separate thread.

BlackBerry Application Developer Guide

30

Types of screens

In most cases, the most efficient way to create a screen is to create a new class that extends Screen or
one of its subclasses, Ful1Screen or MainScreen.

Class Description

Screen Use the Screen class to define a manager to lay out Ul components on the screen.

FullScreen Bydefault,a Ful1Screen contains a single vertical field manager. Use a Ful1Screen to provide an empty screen
that you can add Ul components to in a standard vertical layout. If you need another type of layout, such as
horizontal or diagonal, use a Screen class and add a Manager to it.

MainScreen The MainScreen class provides features that are common to standard BlackBerry applications. Use a
MainScreen object for the first screen of your application to maintain consistency with other BlackBerry
applications. The MainScreen class provides the following Ul components:

* default position of a screen title, with a SeparatorField after the title

® a main scrollable section contained in a VerticalFieldManager

® default menu with a Close menu item

¢ default close action when the user clicks the Close menu item or presses the Escape key

Listeners
The BlackBerry APIs provide an event listener framework that is similar to J2SE. In particular, two listener

interfaces enable applications to receive and respond to user interaction: TrackwheelListener and
KeyboardListener. The Screen class and its subclasses implement these interfaces.

Provide screen navigation

BlackBerry applications provide a menu for users to perform actions. Avoid using buttons or other Ul
elements that take up space on the screen. Users click the trackwheel to access the menu.

When you create a Ful1Screen or Screen, specify the DEFAULT_MENU and DEFAULT_CLOSE parameters
in the constructor to provide default navigation.

FullScreen fullScreen = new FullScreen(DEFAULT_MENU | DEFAULT_CLOSE);

Parameter Description

DEFAULT_MENU This parameter adds a default menu, which includes different menu items, depending on the user context.
For example, if users select an EditField, Cut, Copy, and Paste menu items appear. All selectable fields
provide Select and Cancel Selection items.

DEFAULT_CLOSE This parameter adds a Close item to the menu, with default behavior. When users click the Close menu item
or press the Escape button, a confirmation dialog box appears if anything on the screen has changed. If this
screen is the only one on the stack, the application closes.

Default navigation is provided by default when you create a MainScreen.

Add menu items
To add additional menu items, create MenuItem objects.

private Menultem viewItem = new Menultem("View Message", 100, 10) {
public void run(Q) {
Dialog.inform("This is today’s message");

}
1

The MenuItem constructor accepts the following three parameters:

¢ name of the menu item

3: Creating user interfaces

« order of menu items; a higher value indicates that the item appears closer to the bottom of the
menu

 priority of the menu item for receiving the default focus

Implement run() to define the action that occurs when the user clicks the menu item. If you are not
using localization resources, override toString() to specify the name of the menu item.

To add context menus to fields in an application, call getLeafFieldWithFocus() and invoke
getContextMenu() on the return value to determine which fields receive custom menu items in
makeMenu (). See " Creating custom context menus" on page 49 for more information.

When you add your own menu items, define a Close menu item explicitly:

private Menultem closeltem = new MenuItem("Close", 200000, 10) {
public void run() {
onClose();
}
1

To add the menu items to the screen, override Screen.makeMenu().

protected void makeMenu(Menu menu, int instance) {
menu.add(viewItem);
menu.add(closeltem);

}
If you extend Screen or one of its subclasses, the default implementation of TrackwheelListener
invokes makeMenu () when the user clicks the trackwheel.

If you do not extend Screen, implement TrackwheelListener. In particular, implement
trackwheelClick() to create a new Menu, add menu items, and display the menu on screen.

public boolean trackwheelClick(int status, int time) {
Menu appMenu = new Menu();
makeMenu (appMenu); // add menu 1items
appMenu.show(); // display the menu on screen
return true;

o Tip: To create custom menu items for additional functionality, extend the MenuItem class. See " Creating custom context
menus" on page 49 for more information.

Displaying dialog boxes

The PopupScreen class provides features for building dialog boxes and status screens using its
subclasses, Dialog and Status. Popup screens are not pushed onto the display stack. To display a
popup screen, invoke Dialog.ask() or Status.show().

To control the layout of a dialog box, use a DialogFieldManager object. See " Specify the layout for a
PopupScreen" on page 39 for more information.

Displaying dialog boxes
To display a dialog box, invoke Dialog.ask() with one of the following parameters:

Parameter Description
D_OK displays a string and prompts the user to click OK

31

BlackBerry Application Developer Guide

32

Parameter Description

D_SAVE displays a string and prompts the user to click Save, Discard, or Cancel; pressing Escape
returns cancel

D_DELETE displays a string and prompts the user to click Delete or Cancel; pressing Escape returns
cance

D_YES_NO displays a string and prompts the user to click Yes or No

int response = Dialog.ask(Dialog.D_SAVE);

if (Dialog.SAVE == response || Dialog.CANCEL == response)
return false;

if (Dialog.DISCARD == response)
_item.deleteItem(_itemIndex);

To specify a default response for a dialog box, use a version of Dialog.ask() that accepts
defaultChoice as a parameter.

int response = Dialog.ask(Dialog.D_YES_NO, "Are you sure?", Dialog.NO);

Displaying status messages

Invoke Status.show() to display a status message. By default, the status screen remains on the screen
for two seconds.

Status.show("Status screen message");

See the AP/ Reference for information on versions of Status.show() that enable you to specify
additional parameters, such as a different icon or the amount of time that the status dialog remains
visible. You can create status dialog boxes that are modal (require the user to dismiss them) or timed
(dismiss automatically after a specified time).

Displaying fields

All' Ul components are represented by fields—rectangular regions that are contained in a manager. The
size of the field is determined by its layout requirements. Managers provide scrolling for the fields that
they contain.

The BlackBerry JDE provides a library of prebuilt interface controls and components in the
net.rim.device.api.ui.component package. In most cases, you can use these objects to construct
Ul applications.

To create a specialized field component (such as a text field that contains multiple elements), create your
own custom types by extending the Field class or one of its subclasses. See " Creating custom fields"
on page 42 for more information.

o Note: See the AP/ Reference for more information on valid/supported styles for specific field classes. An exception is
thrown if you instantiate a Field using an unsupported style.

Bitmap fields

A BitmapField contains bitmaps. Use a BitmapField when you draw with the Graphics object. To
modify the contents of a field, invoke drawing methods on a BitmapField. See " Drawing using
graphics objects" on page 62 for more information.

Bitmap myBitmap = Bitmap.getPredefinedBitmap(Bitmap.INFORMATION);
BitmapField myBitmapField = new
BitmapField(myBitmap.getPredefinedBitmap(myBitmap));

3: Creating user interfaces

mainScreen.add(myBitmapField);

There are four predefined bitmaps:
* Bitmap.INFORMATION
* Bitmap.QUESTION
* Bitmap.EXCLAMATION
* Bitmap.HOURGLASS

To use an original .gif or .png image as a bitmap, invoke getBitmapResource().

private static final Bitmap myBitmap =
Bitmap.getBitmapResource("customBitmap.gif");

BitmapField bitmapField = new BitmapField(myBitmap);
mainScreen.add(bitmapField);

Button fields

A ButtonField contains buttons that users select to perform actions. Use ButtonField to create
interfaces that have an extended interactivity beyond that of the menu.

ButtonField mySubmitButton = new ButtonField("Submit");
ButtonField myResetButton = new ButtonField("Reset");
mainScreen.add(mySubmitButton);
mainScreen.add(myResetButton);

To add functionality to the button, extend ButtonField and override trackwheel1Click() so that it
performs an action instead of invoking the menu. To receive notification when the user clicks the button,
use a FieldChangeListener object. See " Listening for changes to Ul objects" on page 67 for more
information.

Choice fields

Choice fields are similar to drop-down lists. There are two types of choice fields: those that contain
integers and those that contain objects that can be converted to strings.

You can also display a set of options as check boxes or radio buttons. See " Option fields" on page 34 for
more information.

To select a value from the ChoiceField, users perform one of the following actions:
* click the field and press the Space key

* hold the Alt key and roll the trackwheel

¢ open the menu and click Change Option

NumericChoiceField
A NumericChoiceField is a ChoiceField that contains a range of numeric values.
NumericChoiceField instances are typically used for a small range of numbers (up to 20).

NumericChoiceField myNumericChoice = new NumericChoiceField("Select a number: ",
1, 20, 10);
mainScreen.add(myNumericChoice);

o Tip: For a large range of numbers, use a GaugeField. See " Gauge fields" on page 36 for more information.

33

BlackBerry Application Developer Guide

34

ObjectChoiceField
An ObjectChoiceField is a ChoiceField that contains objects. All objects in the field should
implement Object.toString() to provide string representations of themselves.

Provide an object array as a parameter when you create an ObjectChoiceField.

String choiceltems[] = {"Option one", "Option two", "Option three"};
mainScreen.add(new ObjectChoiceField("Select an option:", choiceltems));

A Change Option menu item is provided by default for an ObjectChoiceField. Users click Change
Option and select an option.

Option fields

Option fields enable users to select entries from lists. Use CheckboxField for option lists that enable
users to select multiple entries. Use a RadioButtonField for lists that enable users to select only one
entry.

CheckboxField
Each CheckboxField object is an individual object that is not associated with the other check boxes.

CheckboxField myCheckbox = new CheckboxField("First checkbox", true);
CheckboxField myCheckbox2 = new CheckboxField("Second checkbox", false);

mainScreen.add(myCheckbox) ;
mainScreen.add(myCheckbox2) ;

RadioButtonField

Multiple RadioButtonField objects are combined into a RadioButtonGroup so that the user can
select only one option at a time.

RadioButtonGroup rbGroup = new RadioButtonGroup();
RadioButtonField rbField = new RadioButtonField("First field");
RadioButtonField rbField2 = new RadioButtonField("Second field");

rbGroup.add(rbField);
rbGroup.add(rbField2);

mainScreen.add(rbField);
mainScreen.add(rbField2);

Date fields

A DateField displays the current date and time in your application.
Type Description
DATE displays the year, month, and day
DATE_TIME displays the year, month, day, hour, minutes, and seconds
TIME displays the hour, minutes and seconds

When you create a DateField, call System.currentTimeMi11is() to retrieve the current time.

DateField dateField = new DateField("Date: ", System.currentTimeMillis(),
DateField.DATE_TIME);

mainScreen.add(dateField);

3: Creating user interfaces

Date fields are editable by default. To create a DateField that cannot be edited by users, specify the
Field.READONLY parameter in the DateField constructor.

A Change Option menu item is provided by default for an editable DateField.

Edit fields

An EditField enables users to type text in fields. AutoTextEditField, EditField, and
PasswordEditField extend BasicEditField.

Note: The net.rim.device.api.ui.component.TextField class, which extends the Field class, is abstract. Instantiate
one of its subclasses, such as RichTextField or EditField, to create a Ul field that displays text or enables a user to

type text.

You can apply the following filters to edit fields:

Filter
DEFAULT_MAXCHARS

FILTER_DEFAULT

Description

This filter limits the number of characters in the field. The default maximum number of characters for
edit fields is 15.

This is the default text input filter. Use this filter when the constructor requires a filter but you do not
want to apply any special filtering.

FILTER_EMAIL

This filter permits only valid email address characters (for example, users can only type one @ sign).It
automatically formats text into email address format (for example, when the user presses the space
key for the first time, an @ symbol appears, followed by .'s each additional time the user presses the
space key).

FILTER_HEXADECIMAL

This filter permits only numbers and the letters A through F.

FILTER_INTEGER
FILTER_LOWERCASE
FILTER_NUMERIC
FILTER_PHONE

This filter permits only numbers and the minus sign (-).
This filter converts letters to lowercase.
This filter permits only numbers.

This filter permits only valid phone number characters, numeric characters, hyphen, plus and minus
signs, right and left parentheses, and " x" .

FILTER_PIN_ADDRESS
FILTER_UPPERCASE
FILTER_URL

This filter accepts only characters valid in a PIN address for input.
This filter converts letters to uppercase.

This filter permits only valid URL characters. It also automatically formats fields (for example, it inserts
a period when the user presses the space key).

JUMP_FOCUS_AT_END

NO_NEWLINE

RichTextField

This filter changes field behavior, so that when the field is in focus, and the user attempts to scroll
down, the focus moves to the end of the field (instead of moving to the next field).

This filter ignores line feeds and carriage returns in text, such as text that a user copies and pastes from
another source.

RichTextField creates a read-only field that can be formatted with different fonts and styles. Rich text
fields, although not editable, can receive focus.

mainScreen.add(new RichTextField("RichTextField"));

BasicEditField

BasicEditField is the base class for EditField and PasswordEditField.

BasicEditField is an editable text field that contains no default formatting, but accepts filters.

BasicEditField bf = new BasicEditField("BasicEditField:

noomm 10,

EditField.FILTER_UPPERCASE);
mainScreen.add(bf);

35

BlackBerry Application Developer Guide

36

EditField

EditField is an editable text field that extends BasicEditField. EditField enables users to access
special characters. For example, users hold the A key and roll the trackwheel to select from a variety of
accented A characters, and the 4 ligature. EditField accepts styles, but some styles negate the
functionality of EditField (such as EditField.FILTER_PHONE).

mainScreen.add(new EditField("EditField: "™, "", 10, EditField.FILTER_DEFAULT));

PasswordEditField
PasswordEditField extends BasicEditField. It masks user input with asterisk characters (*).
AutoText (and other automatic formatting) is not applied and cut or copy operations are not supported.

The following example uses a constructor that enables you to provide a default initial value for the
PasswordEditField

mainScreen.add(new PasswordEditField("PasswordEditField: ", ""));

AutoTextEditField
AutoTextEditField applies formatting that is specified by the AutoText engine. Any text that is typed
in this field is formatted according to the specifications of the AutoText database on the handheld.

Some filters render some AutoText entries ineffective. For example, FILTER_LOWERCASE renders an
AutoText entry that contains capitalization ineffective.

mainScreen.add(new AutoTextEditField("AutoTextEditField: ", ""));

Gauge fields

Gauges enable you to create visual representations of numeric values. GaugeField displays a progress
bar, or enables users to select numbers. You can prefix the gauge with a label, and display the current
value within the gauge. For example, combine a GaugeField and a NumericChoiceField to create a
graphical representation of a numeric selection made by the user.

To create an interactive GaugeField, instantiate the field with Field.FOCUSABLE and
Field.EDITABLE styles.

GaugeField staticGauge = new GaugeField("1: ", 1, 100, 20, GaugeField.NO_TEXT);

GaugeField percentGauge = new GaugeField("Percent: ", 1, 100, 29,
GaugeField.PERCENT)

GaugeField interactiveGauge = new GaugeField("Gauge: ", 1, 100, 60, Field.FOCUSABLE
| Field.EDITABLE);

mainScreen.add(staticGauge);
mainScreen.add(percentGauge);
mainScreen.add(interactiveGauge);

Label and separator fields

A LabelField enables you to add text labels to screens. A Label1Field is read-only. By default, it
cannot receive focus. Most applications use a Labe1Field to display a static title on their first screen.

A SeparatorField is a static horizontal line that spans the width of the screen. Use a SeparatorField
to group related content on screens and menus.

The MainScreen displays a separator after the title by default.

LabelField title = new LabelField("UI Component Sample", LabelField.ELLIPSIS));
mainScreen.setTitle(title);

3: Creating user interfaces

List fields

Lists enable you to create directories of items through which users can scroll and select individual or
multiple entries. There are three types of list objects: ListField, ObjectListField, and TreeField
objects. The BlackBerry address book is an example of a List object.

You cannot directly populate the field entries with content. To draw the field, implement a
ListFieldCallback fora ListField and a TreeFieldCallback for a TreeField

ListField

ListField contains rows of selectable items. To display content in a ListField, set a
ListFieldCalTback for the list. See " Implement the ListFieldCallback interface" on page 56 for more
information.

String fieldOne = new String("Mark Guo™);
String fieldTwo = new String("Amy Krul");

ListField myList = new ListField();
ListCallback myCallback = new ListCallback();
myList.setCallback(myCallback);
myCallback.add(myList, fieldOne);
myCallback.add(myList, fieldTwo);

mainScreen.add(myList);
o Tip: To enable the user to select a range of items in the list, specify a ListField as MULTI_SELECT.

ListFieldCallback.add() adds the list element to the vector and calls List.insert() to determine
the appropriate position.

ObjectListField

An ObjectListFieldis a list field that contains objects as entries. All objects that are contained in the
list must implement Object.toString() to provide string representations of themselves. An
ObjectListField is rendered in the interface in the same way as a standard ListField.

TreeField

TreeField contains parent and child nodes and presents a folder or tree relationship between items
(such as documents or message folders). By default, all the entries are visible. To specify whether a folder
is collapsible, invoke setExpanded() on the TreeField object.

Icons appear beside each node that has child nodes to specify whether the node is expanded or
collapsed.

String fieldOne = new String("Main folder");

TreeCallback myCallback = new TreeCallback();

TreeField myTree = new TreeField(myCallback, Field.FOCUSABLE);
int nodel = myTree.addChildNode(0, fieldOne);

int node2 myTree.addChiTldNode(0, fieldTwo);

int node3 myTree.addChiTldNode(node2, fieldThree);

int node4 = myTree.addChildNode(node3, fieldFour);

int nodel0 = myTree.addChildNode(nodel, fieldTen);
myTree.setExpanded(node4, false);

mainScreen.add(myTree);

37

BlackBerry Application Developer Guide

Implement a TreeFieldCallback to add fields to the tree. See " Implement the ListFieldCallback
interface” on page 56 for more information on callbacks.

private class TreeCallback implements TreeFieldCallback {
public void drawTreeltem(TreeField _tree, Graphics g, int node, int y, int
width, int indent) {
String text = (String)_tree.getCookie(node);
g.drawText(text, indent, y);

Managing Ul components

38

Managing layout

Use BlackBerry API layout managers to arrange components on a screen.

The following four classes extend the Manager class to provide predefined layout managers:
* VerticalFieldManager

* HorizontalFieldManager

* FlowFieldManager

* DialogFieldManager

Both MainScreen and Ful1Screen use a VerticalFieldManager by default; define a layout manager
for instances of these classes only to provide a different layout.

O Tip: To create a custom layout manager, extend Manager. See " Creating custom layout managers" on page 52 for more
information.

To define the layout manager for a particular instance of Screen, complete the following actions:
¢ instantiate the appropriate Manager subclass

e add Ul components to the layout manager

¢ add the layout manager to the screen

VerticalFieldManager vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL);

vfManager.add(bitmapField);
vfManager.add(bitmapField2);

mainScreen.add(vfManager)

The Manager class defines several constants that provide system styles, which define behavior such as
scrolling and alignment. Use these styles as parameters when you create the layout manager. See the
AP/ reference for more information.

Organize fields vertically

VerticalFieldManager organizes fields vertically. All fields start on a new line. To enable vertical
scrolling, provide the Manager.VERTICAL_SCROLL parameter.

VerticalFieldManager vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL);
vfManager.add(bitmapField);
vfManager.add(bitmapField2);

3: Creating user interfaces

mainScreen.add(vfManager);

By default, BitmapField objects are all left-aligned in the VerticalFieldManager.

Organize fields horizontally

HorizontalFieldManager organizes fields horizontally. To enable horizontal scrolling, provide the
Manager.HORIZONTAL_SCROLL style. If you do not include the HORIZONTAL_SCROLL parameter, the
fields arrange themselves horizontally and can exceed the width of the screen, but users cannot scroll to
content that is beyond the right side of the screen.

Handhelds do not display horizontal scrolling indicators or scroll bars.

HorizontalFieldManager hfm = new
HorizontalFieldManager(Manager.HORIZONTAL_SCROLL);

Organize fields horizontally and vertically

FlowFieldManager organizes fields horizontally, and then vertically. Fields are arranged horizontally
until there is insufficient space to place another field, and then the manager arranges them horizontally
on the next line. The Home screen is an example of a FlowFieldManager.

FlowFieldManager flManager = new FlowFieldManager(Manager.FIELD_HCENTER);

Specify the layout for a PopupScreen

DialogFieldManager specifies the layout for PopupScreen objects. It manages layout for an icon, a
message, and a list of custom fields. The icon and message appear beside each other at the top of the
layout, and the custom fields appear below the message. This layout is standard for dialog PopupScreen
objects. Use DialogFieldManager as a base class for creating your own dialog boxes.

BitmapField bitmapField = new BitmapField(Bitmap.getBitmapResource("x.gif"));

RichTextField message = new RichTextField("Dialog manager message",
Field.NON_FOCUSABLE);

LabelField dialogChoice = new LabelField("Choice one", Field.FOCUSABLE);

DialogFieldManager dialogManager = new DialogFieldManager();
dialogManager.setMessage(message) ;
dialogManager.setIcon(bitmapField);
dialogManager.addCustomField(dialogChoice);

Managing Ul interactions

Only one thread at a time (usually the event-dispatching thread) can gain access to the Ul. Background
threads can access the Ul from outside the main event-handling or Ul drawing code in one of the
following ways:

e acquire and hold the event lock

e use invokelLater() or invokeAndwait() to run on the event dispatch thread

Acquire and hold the event lock

The event dispatcher sets an event lock on the event thread while it processes a message. Background
threads (that is, non-event dispatch threads) can access the Ul by acquiring this lock for a short time,
without interfering with event dispatcher processing.

39

BlackBerry Application Developer Guide

40

To retrieve the event lock, invoke Application.getEventLock(). Synchronize with this object to
provide serialized access to the Ul. Hold this lock for only short periods of time because the lock pauses
the event dispatcher. An application should never call notify() orwait() on the EventLock object.

class MyTimerTask extends TimerTask {
public void run() {
synchronized(AppTlication.getEventLock()) {
_Tlabel.setText("new text " + System.currentTimeMillis());

}

Run on the event dispatch thread

If holding the event lock is not appropriate, create a class that implements the Runnab1e interface.
Invoke its run() on the event dispatch thread by invoking one of the following three methods:

¢ Invoke invokeAndWait(Runnable runnable) to have run() called on the event dispatch thread
immediately. The call blocks until run() completes.

¢ Invoke invokelLater(Runnable runnable) to have run() called on the event dispatch thread
after all pending events are processed.

¢ Invoke invokelLater(Runnable runnable, Tong time, boolean repeat) to have run() called
on the event dispatch thread after a specified amount of time, where time specifies the number of
milliseconds to wait before adding Runnab1e to the event queue. If repeat is true, the Runnable
is added to the event queue every time milliseconds.

Managing foreground events

The system calls AppTication.activate() when it brings an application to the foreground.

Most applications do not need to override activate(). Applications should perform any initialization,
including any required UiAppT1ication.pushScreen() calls, in the application constructor. Because
activate() can be called multiple times for the same application, applications should not perform a
one-time initialization in this method.

An application can override activate() to perform additional processing when it is brought to the
foreground. If you override activate(), invoke super.activate() from within the method definition
so that the application repaints correctly.

Managing drawing areas

Using XYRect objects

The Graphics object represents the entire drawing surface that is available to the application. To limit
this area, divide it into XYRect objects. An XYRect creates rectangular clipping regions on top of the
graphics context.

An XYRect object consists of two XYPoint objects. The first XYPoint object represents the top left
coordinate of the XYRect and the second XYPoint represents the bottom right coordinate. Each
XYPoint represents a point on the screen, which is composed of an X coordinate and a Y coordinate.

XYPoint topLeft = new XYPoint(10, 10);
XYPoint bottomRight = new XYPoint(50, 50);
XYRect rectangle = new XYRect(topLeft, bottomRight);

3: Creating user interfaces

The rectangle object limits the drawing area of the context for this XYRect object to the area between
(10, 10) and (50, 50).

To initiate drawing calls to the XYRect object, invoke pushContext() or pushRegion().

When you make drawing calls with pushContext (), specify that the region origin should not adjust the
drawing offset.

graphics.pushContext(rectangle, 0, 0);
graphics.fillRect(10, 10, 30, 30);
graphics.drawRect (15, 15, 30, 30);
graphics.popContext();

When you invoke drawing methods by first calling pushRegion (), you specify that the drawing offset is
to be adjusted by the region origin. The top left XYPo1int object represents the region origin. All drawing
is offset by this amount.

In the following example, pushRegion() places the XYRect object 10 pixels to the right of, and ten
pixels down, from (10, 10). The region origin adjusts the drawing offset (XYPoint topLeft = new
XYPoint(10, 10)).

graphics.pushRegion(rectangle);
graphics.fillRect(10, 10, 30, 30);
graphics.drawRect (15, 15, 30, 30);
graphics.popRegion();

Invert an area

Inverting an area on the Graphics object reverses the pixels by inverting the bits in each pixel value
(that is, Os become 1s, 1s become Os). Most fields use inversion to signify focus; however, you can create
your own focus behavior for custom fields.

To invert an arbitrary portion of the Graphics object, provide coordinates, or invert a specified XYRect
object.

Specify the portion of the Graphics object to push onto the stack. After you invoke pushContext() (or
pushRegion()), provide the portion of the Graphics object to invert.

graphics.pushContext(rectangle);
graphics.invert(rectangle); // invert the entire XYRect object
graphics.popContext();

Translate an area

To move an area to another location in the graphics context, invoke translate().

XYRect rectangle = new XYRect(l, 1, 100, 100);
XYPoint newLocation = new XYPoint(20, 20);
rectangle.translate(newLocation);

The XYRect is translated from its origin of (1, 1) to an origin of (20, 20). After translation, the
bottom portion of the XYRect object extends past the bounds of the graphics context and is clipped.

Creating custom Ul components

You can only add custom context menu items and custom layouts to a custom field.

4

BlackBerry Application Developer Guide

42

Creating custom fields

To override default field behaviour, create a custom field.

Note: Do not use Screen objects for text input. Screen does not implement disambiguation, which is required for complex
input methods such as international keyboards. For seamless integration of the different input methods, extend Field or
one of its subclasses.

To enable drawing styles on custom fields, implement the DrawSty1e interface. See " Implementing the
DrawsStyle interface" on page 63 for more information.

Your custom field should implement all relevant system styles. For example, USE_ALL_WIDTH and
USE_ALL_HEIGHT are appropriate for many fields.

Extend the Field class
Extend the Field class, or one of its subclasses, to specify the characteristics of the custom field.

public class CustomButtonField extends Field implements DrawStyle {
public static final int RECTANGLE = 1;
public static final int TRIANGLE = 2;
public static final int OCTAGON = 3;
private String _Tlabel;
private int _shape;
private Font _font;
private int _labelHeight;
private int _labelWidth;

Implement constructors

To define the button label, shape, and style, implement constructors.

public CustomButtonField(String Tabel) {
this(label, RECTANGLE, 0);

}

public CustomButtonField(String label, int shape) {
this(label, shape, 0);

}

public CustomButtonField(String Tabel, Tong style) {
this(label, RECTANGLE, style);

}
public CustomButtonField(String label, int shape, long style) {
super(style);
_label = label;
_shape = shape;
_font = getFont(Q);
_TlabelHeight = _font.getHeight();
_TabelWidth = font.getWidth();
}

Implement layout()

Any class that extends Field must implement Tayout (). The field manager invokes 1ayout() to
determine how the field should arrange its contents, according to the available space.

protected void layout(int width, int height) {
_font = getFont();

3: Creating user interfaces

_TlabelHeight = _font.getHeight();
_TabelWidth = _font.getAdvance(_Tlabel);
width = Math.min(width, getPreferredwidth());
height = Math.min(height, getPreferredHeight());
setExtent(width, height);

}

The width and height parameters specify the available horizontal and vertical space, respectively. To
calculate the available width and height, invoke Math.min() to return the smaller of the specified width
and height and the preferred width and height of the field. See " Return a preferred field size" on page
43 for more information.

To set the required dimensions for the field, invoke setExtent(int, int). If you do not invoke
setExtent(), the field is not painted and an exception is not thrown.

Tip: Arrange field data so that you perform the most complex calculations in Tayout (), instead of in paint (). Implement
paint() to be as efficient as possible.

Recalculate pixel layout, cached fonts, and locale strings in Tayout (). The framework invokes this method whenever
system preferences change. For example, when the system default font changes, all fields in the system update
automatically if their layout method is implemented correctly. The same is true for locale changes and date format changes.

Return a preferred field size

In most cases, override getPreferredwidth() and getPreferredHeight() to make sure that the
proper layout appears in custom layout managers.

Define the preferred width

Implement getPreferredwidth() the preferred width of the custom button based on the relative
dimensions of the button label. Using the relative dimensions makes sure that the label does not exceed
the button dimensions.

public int getPreferredwidth() {
switch(_shape) {
case TRIANGLE:
if (_labelWidth < _labelHeight) {
return _labelHeight << 2;
} else {
return _labelWidth << 1;
}
case OCTAGON:
if (_labelWidth < _labelHeight) {
return _labelHeight + 4;
} else {
return _TlabelWidth + 8;

}
case RECTANGLE: default:
return _labelWidth + 8;

Define the preferred height

Implement getPreferredHeight () to determine the preferred height of the custom button based on
the relative dimensions of the button label. This ensures that the label does not exceed the button
dimensions.

public int getPreferredHeight() {
switch(_shape) {

43

BlackBerry Application Developer Guide

case TRIANGLE:
if (_labelWidth < _labelHeight) {
return _labelHeight << 1;
} else {
return _labelWidth;
}
case RECTANGLE:
return _labelHeight + 4;
case OCTAGON:
return getPreferredwidth();
}

return 0;

Define the appearance of the custom field

To define the appearance of the custom field on handheld screens, implement paint(). The field
manager invokes paint() to redraw the field whenever an area of the field is marked as invalid.

O Tips: Verify that paint() is efficient because the Ul framework calls paint() whenever an area of the field changes.
For large fields, use Graphics.getClippingRect() to save drawing time by painting only within the visible region.

Avoid allocating in paint(); arrange field data so that complex calculations are performed in Tayout() instead of in
paint().

protected void paint(Graphics graphics) {
int textX, textY, textWidth;
int w = getWidth(Q;
switch(_shape) {
case TRIANGLE:
int h = (w>>1);
int m (w>>1)-1;
graphics.drawLine(0, h-1, m, 0);
graphics.drawLine(m, 0, w-1, h-1);
graphics.drawLine(0, h-1, w-1, h-1);
textWidth = Math.min(_labelWidth,h);
textX = (w - textWidth) >> 1;
textY = h >> 1;
break;
case OCTAGON:
int x = 5*w/17;
int x2 = w-x-1;
int x3 = w-1;
graphics.drawLine(0, x, 0, x2);
graphics.drawLine(x3, x, x3, x2);
graphics.drawLine(x, 0, x2, 0);
graphics.drawLine(x, x3, x2, x3);
graphics.drawLine(0, x, x, 0);
graphics.drawLine(0, x2, x, x3);
graphics.drawLine(x2, 0, x3, x);
graphics.drawLine(x2, x3, x3, x2);
textWidth = Math.min(_Tabelwidth, w - 6);
textX = (w-textWidth) >> 1;
textY = (w-_labelHeight) >> 1;
break;
case RECTANGLE: default:
graphics.drawRect(0, 0, w, getHeight());

44

3: Creating user interfaces

textX = 4;

textY = 2;
textWidth = w - 6;
break;

}
graphics.drawText(_Tabel, textX, textY, (int)(getStyle() & DrawStyle.ELLIPSIS
| DrawStyTe.HALIGN_MASK), textWidth);

Handle focus events

To support focus events, use the Field.FOCUSABLE style and implement Field.moveFocus (). If you
want your field to receive focus, override Field.isFocusable() to return true.

The framework invokes onFocus () when the field gains focus and onunfocus () when the field loses
focus. Override these methods if your field requires specific behavior for these events. The framework
invokes moveFocus () to handle focus movements in a field. This corresponds to the trackwheelRo11
event. Override moveFocus () for special behavior.

To change the appearance of the default focus indicator (inverting the contents of the entire field),
override drawFocus Q).

Implement set and get methods
To add capabilities to your field, implement the various get and set methods of Field.

Note: All accessor and mutator (get and set) methods should work before and after the field is added to a Screen. For
example, setLabel() should update the display with the new value if the field is currently on screen by invoking
invalidate() or updatelayout() as appropriate.

public String getLabel() {
return _label;

}

public int getShape() {
return _shape;

}

public void setlLabel(String label) {
_label = Tabel;
_TabelWidth = _font.getAdvance(_Tlabel);
updatelLayout();

}
public void setShape(int shape) {

_shape = shape;
updatelLayout();
}

Code example
The CustomButtonField.java sample creates button fields of various shapes.

Example: CustomButtonField.java

/ ek
* CustomButtonField.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

*/

package com.rim.samples.docs.custombuttons;

45

BlackBerry Application Developer Guide

46

import net.rim.device.api.ui.*;
import net.rim.device.api.system.*;

/ * %
* CustomButtonField 1is a class that creates button fields of various
* shapes. Demonstrates how to create custom UI fields.

*/

public class CustomButtonField extends Field implements DrawStyle {
public static final int RECTANGLE = 1;
public static final int TRIANGLE = 2;
public static final int OCTAGON = 3;

private String _Tlabel;
private int _shape;
private Font _font;
private int _labelHeight;
private int _labelWidth;

/* Constructs a button with specified label, and the default style and shape.
% /
public CustomButtonField(String Tabel) {
this(label, RECTANGLE, 0);
}

/* Constructs a button with specified label and shape, and the default style.
% /
public CustomButtonField(String Tabel, int shape) {
this(label, shape, 0);
b

/* Constructs a button with specified label and style, and the default shape.
*/
public CustomButtonField(String Tabel, long style) {
this(label, RECTANGLE, style);
b
/* Constructs a button with specified label, shape, and style */
public CustomButtonField(String Tabel, int shape, long style) {
super(style);
_label = Tabel;
_shape = shape;
_font = getFont();
_TabelHeight = _font.getHeight();
_TabelWidth = _font.getAdvance(_Tlabel);
}

/* Method that draws the focus indicator for this button and
* dinverts the inside region of the shape.
*/
protected void drawFocus(Graphics graphics, boolean on) {
switch(_shape) {
case TRIANGLE:
int w = getWidth(Q);
int h = w >> 1;
for (int i=h-1; i>=2; --i) {

3: Creating user interfaces

graphics.invert(i, h - i, w - (i << 1), 1);
}
break;
case RECTANGLE:
graphics.invert(l, 1, getWidth() - 2, getHeight() - 2);
break;
case OCTAGON:
int x3 = getWidth(Q;
int x = 5 * x3 / 17;
int x2 = x3 - x;
x3 = x3 - 1;
X2 = x2 - 1;
graphics.invert(l, x, getWidth() - 2, x2 - x + 1);

for (int i=1; i<x; ++i) {
graphics.invert(1+i, x-i,
getWidth() - ((i+D<<1), 1);
graphics.invert(1+i, x2+i,
getWidth() - ((i+1)<<1), 1);
}

break;

}

/* Returns the label. */

public String getLabel() {
return _label;

b

/* Returns the shape. */

public int getShape() {
return _shape;

}

/* Sets the label. */
public void setlLabel(String Tabel) {
_label = Tabel;
_TabelWidth = _font.getAdvance(_Tlabel);

updatelLayout();
b

/* Sets the shape. */
public void setShape(int shape) {
_shape = shape;
updateLayout();
}
/* Retrieves the preferred width of the button. */
public int getPreferredwidth() {
switch(_shape) {
case TRIANGLE:
if (_labelWidth < _TabelHeight) {
return _labelHeight << 2;
} else {
return _labelWidth << 1;
}

47

BlackBerry Application Developer Guide

case OCTAGON:
if (_labelWidth < _TabelHeight) {
return _labelHeight + 4;
} else {
return _TlabelWidth + 8;
}
case RECTANGLE: default:
return _labelWidth + 8;

}

/* Retrieves the preferred height of the button. */
public int getPreferredHeight() {
switch(_shape) {
case TRIANGLE:
if (_labelWidth < _labelHeight) {
return _labelHeight << 1;
} else {
return _labelWidth;
}
case RECTANGLE:
return _labelHeight + 4;
case OCTAGON:
return getPreferredwidth();
}

return 0;

¥
/:’: *

* Lays out this button’s contents.
* This field’s manager invokes this method during the Tayout
* process to instruct this field to arrange its contents, given an
* amount of available space.
wk [
protected void Tayout(int width, int height) {
// Update the cached font in case it has been changed.
_font = getFont();
_TlabelHeight = _font.getHeight(Q);
_TabelWidth = _font.getAdvance(_Tabel);

// Calculate width.
width = Math.min(width, getPreferredwidth());
// Calculate height.
height = Math.min(height, getPreferredHeight());
// Set dimensions.
setExtent(width, height);
b

/:’:
* Redraws this button. The field’s manager invokes this method during the
* repainting process to instruct this field to repaint itself
*/
protected void paint(Graphics graphics) {
int textX, textY, textWidth;
int w = getWidth(Q);
switch(_shape) {

48

3: Creating user interfaces

case TRIANGLE:
int h = (w>>1);
int m = (w>>1)-1;
graphics.drawLine(0, h-1, m, 0);
graphics.drawLine(m, 0, w-1, h-1);
graphics.drawLine(0, h-1, w-1, h-1);

textWidth = Math.min(_labelWidth,h);
textX = (w - textWidth) >> 1;
textY = h >> 1;
break;

case OCTAGON:
int x = 5*w/17;
int x2 = w-x-1;
int x3 = w-1;
graphics.drawLine(0, x, 0, x2);
graphics.drawLine(x3, x, x3, x2);
graphics.drawLine(x, 0, x2, 0);
graphics.drawLine(x, x3, x2, x3);
graphics.drawLine(0, x, x, 0);
graphics.drawLine(0, x2, x, x3);
graphics.drawLine(x2, 0, x3, x);
graphics.drawLine(x2, x3, x3, x2);
textWidth = Math.min(_labelWidth, w - 6);
textX = (w-textWidth) >> 1;
textY = (w-_labelHeight) >> 1;
break;

case RECTANGLE: default:
graphics.drawRect(0, 0, w, getHeight());
textX = 4;
textY = 2;
textWidth = w -
break;

6;

}

graphics.drawText(_Tabel, textX, textY, (int)(getStyle() &
DrawStyle.ELLIPSIS | DrawStyle.HALIGN_MASK),
textWidth);

Creating custom context menus

The system invokes getContextMenu() when context menu events occur. It invokes
makeContextMenu() to reset the context menu with the menu items that are appropriate for that field.
The context menu contents remain set until the next time getContextMenu() is invoked.

To add custom context menu items to specific fields, create custom context menu items and then
override makeContextMenu() and makeMenu() to provide and display a context menu.

Custom context menus can only be added to custom fields. See " Creating custom fields" on page 42 for
more information.

49

BlackBerry Application Developer Guide

50

Create custom context menu items

In your field class, create the custom context menu items. See " Displaying screens" on page 29 for more
information on implementing menus.

private Menultem myContextMenuItemA = new MenuItem(_resources, MENUITEM_ONE,
200000, 10) {
public void run() {
onMyMenuItemA(Q);
}
1
private Menultem myContextMenultemB = new MenuItem(_resources, MENUITEM_ONE,
200000, 10) {
public void run() {
onMyMenuItemB(Q);
}
1

Provide a context menu

In your main application class, override makeContextMenu() to provide a context menu.

protected void makeContextMenu(ContextMenu contextMenu) {
contextMenu.addItem(myContextMenuIltemA) ;
contextMenu.addItem(myContextMenuIltemB) ;

Create the application menu

In your main application class, override makeMenu () to create the application menu and update the
context menu whenever a particular field has the focus.

protected void makeMenu(Menu menu) {
Field focus =
UiAppTlication.getUiApplication().getActiveScreen().getLeafFieldWithFocus(Q);
if (focus != null) {
ContextMenu contextMenu = focus.getContextMenu();
if (!contextMenu.isEmpty()) {
menu.add(contextMenu) ;
menu.addSeparator();

}

Code example

Example: ContextMenuSample.java

/ * %
* ContextMenuSample.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.contextmenus;

import net.rim.device.api.il8n.*;
import net.rim.device.api.ui.*;

3: Creating user interfaces

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;
import com.rim.samples.docs.baseapp.*;

public class ContextMenuSample extends BaseApp implements
ContextMenuSampleResource {

private MyContextField myContextField;

private static ResourceBundle _resources = ResourceBundle.getBundle(
ContextMenuSampTleResource.BUNDLE_ID,
ContextMenuSampTleResource.BUNDLE_NAME) ;

public static void main(String[] args) {
ContextMenuSampTle app = new ContextMenuSample();
app.enterEventDispatcher();

}

// Inner class to define a new field.
private class MyContextField extends RichTextField {
private Menultem myContextMenultemA = new MenuItem(
_resources, MENUITEM_ONE, 200000, 10) {
public void run(Q) {
onMyMenuItemA(Q);
3
};
private Menultem myContextMenultemB = new MenuItem(
_resources, MENUITEM_TwO, 200000, 10) {
public void run() {
onMyMenuItemB();
3
};

private void onMyMenuItemA() {

// Perform an action when user selects menu item.
}
private void onMyMenuItemB() {

// Perform an action when user selects menu 1item.

}

protected void makeContextMenu(ContextMenu contextMenu) {
contextMenu.addItem(myContextMenultemA) ;
contextMenu.addItem(myContextMenuIltemB);

}

MyContextField(String text) {
super(text);
}
}

protected void makeMenu(Menu menu) {
super.makeMenu(menu, 0); // Implemented by BaseApp.
}

public ContextMenuSample() {

51

BlackBerry Application Developer Guide

52

MainScreen mainScreen = new MainScreen();

MyContextField myContextField = new MyContextField("Field label: ");
mainScreen.add(myContextField);

mainScreen.addKeylListener(this);
mainScreen.addTrackwheellListener(this);

pushScreen(mainScreen);

}

public void onExit() {
// Perform action when application closes.

}

Creating custom layout managers

Manager objects control the position of Ul components and determine how fields are organized on the
handheld screen.

To create a custom layout manager, extend the Manager class and customize it as follows:

¢ Implement getPreferredwidth() and getPreferredHeight().

e Implement sublayout().

¢ Handle focus.

¢ Implement subpaint().

Extend Manager
To create a custom layout manager, extend the Manager class or one of its subclasses.

class DiagonalManager extends Manager {
public DiagonalManager(long style){
super(style);
}

Implement getPreferredWidth()
Override getPreferredwidth() so that it returns the preferred field width for the manager.

Implementations of getPreferredwidth() return a different value depending on the purpose of the
layout manager. For example, if a manager extends HoriztonalFieldManager, getPreferredwidth()
returns the sum of the widths of each field. If a manager extends VerticalFieldManager,
getPreferredwidth() retumns the width of the widest field.

public int getPreferredwidth() {
int width = 0;
int numberOfFields = getFieldCount();
for (int i=0; i<numberOfFields; ++i) {
width += getField(i).getPreferredWidth();

3: Creating user interfaces

}

return width;

Note: TextFields and Managers use the entire width that is assigned to them. To organize two or more of these objects
horizontally, override their respective getPreferredWidth() methods accordingly. To organize multiple TextFields
horizontally, override Tayout ()

Implement getPreferredHeight()
Override getPreferredHeight () so that it returns the preferred field height for the manager.

public int getPreferredHeight() {
int height = 0;
int numberOfFields = getFieldCount();
for (int i=0; i<numberOfFields; ++i) {
height += getField(i).getPreferredHeight();
}
return height;

Implement sublayout()

The subTayout () method specifies how the manager organizes fields on the screen. It retrieves the total
number of fields in the manager and sets the appropriate positioning and layout for the child fields.

The Tayout () method invokes sublayout(). The sublayout () method controls how each child field is
added to the screen by calling setPositionChild() and layoutChild() for each field that the
manager contains.

protected void sublayout(int width, int height) {

int x = 0;

int y = 0;

Field field;

int numberOfFields = getFieldCount();

for (int i=0; i<numberOfFields; ++i) {
field = getField(i);
TayoutChild(field, width, height);
setPositionChild(field, x, y);
field.setPosition(x,y);
x += field.getPreferredwidth();
y += field.getPreferredHeight();

53

BlackBerry Application Developer Guide

54

setExtent(width,height);

o Note: To set the required size for the fields, invoke setExtent () in subTayout (). If you do not invoke setExtent (), the
field is not painted and an exception is not thrown.

Handle focus

To specify how fields should be given focus when the user rolls the trackwheel, override nextFocus Q).
The direction parameter indicates the direction in which the focus moves (generally, down and to the
right when the trackwheel is rolled down, and up and to the left when the trackwheel is rolled up).

protected int nextFocus(int direction, boolean alt) {
int index = this.getFieldWithFocusIndex();
ifcalt) {
if(direction > 0) {
// action to perform if trackwheel is rolled up
} else {
// action to perform if trackwheel is rolled down
}
}
if (index == this.getFieldWithFocusIndex())
return super.nextFocus(direction, alt);
else
return index;

}

To shift the focus to a field that is not the next field in the layout order of the manager, override
nextFocus (). For example, nextFocus () is useful if you want to implement page-up and page-down
functionality for the manager.

Implement subpaint()

By default, the custom manager invokes paint() to repaint all the fields without regard to the clipping
region. If this results in unnecessary repainting, implement subpaint() so that fields are repainted only
when the visible region changes.

Code example

Example: DiagonalManager.java
/7':7':

* DiagonalManager.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.custommenu;

import net.rim.device.api.system.*;
import net.rim.device.api.ui.container.¥*;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;

class DiagonalManager extends Manager {
public DiagonalManager(long style) {
super(style);
b

3: Creating user interfaces

public int getPreferredwidth() {
int width = 0;
int numberOfFields = getFieldCount();
for (int i=0; i<numberOfFields; ++i) {
width += getField(i).getPreferredWidth();
}
return width;

}

public int getPreferredHeight() {
int height = 0;
int numberOfFields = getFieldCount();
for (int i=0; i<numberOfFields; ++i) {
height += getField(i).getPreferredHeight(;

}
return height;
}
protected void sublayout(int width, int height) {
int x = 0;
int y = 0;

Field field;

int numberOfFields = getFieldCount();

for (int i=0; i<numberOfFields; ++i) {
field = getField(i);
TlayoutChild(field, width, height);
setPositionChild(field, x, y);
x += field.getPreferredwWidth();
y += field.getPreferredHeight();

}

setExtent(width,height);

B

protected int nextFocus(int direction, boolean alt) {
int index = this.getFieldWithFocusIndex();
ifcalt) {
if(direction > 0) {
// Action to perform if trackwheel is rolled up.

3
else {

// Action to perform if trackwheel is rolled down.
}

}
if (index == this.getFieldWithFocusIndex())
return super.nextFocus(direction, alt);
else
return index;

55

BlackBerry Application Developer Guide

56

Creating lists

A ListField contains rows of selectable items. To enable users to select multiple items in the list,
declare lists as MULTI_SELECT.

Implement the ListFieldCallback interface

A ListFieldCallback object controls all repainting tasks for the list. Each time the field is required to
display an entry in the list, the necessary methods are invoked on the callback object.

To create a callback object, implement the ListFieldCallback interface. The system calls methods in
this interface to paint a particular list row, get a particular list element, or determine the list width.

private class ListCallback implements ListFieldCallback {
// the TistETements vector contain the entries in the 1ist
private Vector TistElements = new Vector();

}

In your implementation of ListFieldCallback object, implement the following three methods:
e drawlListRow() to repaint the row when required

e get() to retrieve an entry from the list

e getPreferredwidth() to retrieve the ideal width of the list

Implement drawListRow()
To enable the field to repaint a row, implement drawListRow(). The graphics context that is passed
into drawL1istRow() represents the entire list; accordingly, your call must specify which row to paint.

public void drawListRow(ListField 1list, Graphics g, int index, int y, int w) {
String text = (String)listElements.elementAt(index);
g.drawText(text, 0, y, 0, w);

Implement get()
To enable the field to retrieve an entry from the list, implement get (). This method returns the object
contained in the row specified by index.

public Object get(ListField 1ist, int index) {
return TistElements.elementAt(index);

}

Implement getPreferredWidth()
To specify the ideal width for the List, implement getPreferredwidth(). In the following
implementation, getPreferredwidth() returns the total drawing width of the screen.

Your implementation of getPreferredwidth() returns a different value depending on the type of field
manager. For example, if the field manager organizes fields horizontally, getPreferredwidth() should
return the sum of the widths of each field. If the manager organizes fields vertically,
getPreferredwidth() should return the width of the widest field.

public int getPreferredwidth(ListField Tist) {
return Graphics.getScreenWidth(Q);
}

3: Creating user interfaces

Assigning the callback and adding the list
Create the list objects and assign the callback to the list.

Create the list objects
Create the ListField and ListCallback objects for this list. (ListCallback is the custom
ListFieldCallback class created in “Implement the ListFieldCallback interface” on page 56.)

ListField myList = new ListField();
ListCallback myCallback = new ListCallback();

Set the callback
Invoke setCallback() to associate the ListFieldCallback with the ListField. This association
enables the callback to add items to the list.

myList.setCallback(myCallback);

Add the list entries
To add entries to the list, create entries, specify an index at which to insert each entry on the ListField
object, and then insert each ListField object into the ListFieldCallback.

String fieldOne = new String("Field one Tabel");
String fieldTwo = new String("Field two Tabel");
String fieldThree = new String("Field three label™);
myList.insert(0);

myList.insert(l);

myList.insert(2);

myCallback.insert(fieldOne, 0);
myCallback.insert(fieldTwo, 1);
myCallback.insert(fieldThree, 2);
mainScreen.add(myList);

Code example

Example: SampleListFieldCallback.java

/ sk
* SampleListFieldCallback.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.listfields;

import java.util.*;

import net.rim.device.api.system.*;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;

public class SamplelListFieldCallback extends UiApplication {
private ListField myList;
public static void main(String[] args) {
SamplelListFieldCallback app = new SamplelListFieldCallback();
app.enterEventDispatcher();
b
private static class ListCallback implements ListFieldCallback {

57

BlackBerry Application Developer Guide

private Vector listElements = new Vector();

public void drawListRow(
ListField 1ist, Graphics g, int index, int y, int w) {
String text = (String)listElements.elementAt(index);
g.drawText(text, 0, y, 0, w);

}

public Object get(ListField Tist, int index) {
return listElements.elementAt(index);

}

public int indexOfList(ListField Tist, String p, int s) {
return listElements.indexOf(p, s);

}

public int getPreferredwWidth(ListField Tist) {
return Graphics.getScreenwWidth();

}

public void insert(String toInsert, int index) {
TistElements.addElement(toInsert);

}

public void erase() {
TistElements.removeAlTETements();

}

b
public SamplelListFieldCallback() {

MainScreen mainScreen = new MainScreen();

myList = new ListField(Q);

ListCallback myCallback = new ListCallback();

myList.setCalTlback(myCallback);

String fieldOne = "ListField one";

String fieldTwo = "ListField two";

String fieldThree = "ListField three";

myList.insert(0);
myCallback.insert(fieldOne, 0);
myList.insert(l);
myCallback.insert(fieldTwo, 1);
myList.insert(2);
myCallback.insert(fieldThree, 2);

mainScreen.add(myList);

pushScreen(mainScreen);

58

3: Creating user interfaces
Working with images

Using raw image data

Invoke Bitmap.getARGB() to retrieve raw image data from a specified region of a bitmap and store the
data in an integer array. Applications can then manipulate the raw image data directly.

0 Note: The getARGB() method is only available on handhelds with color screens.

void getARGB(int[] argbData, int offset, int scanLength, int x, int y, int width,
int height);

Parameter Description
argbData integer array that stores the ARGB data; each pixel is stored in OXAARRGGBB format

offset offset into the data from which to start retrieving
scanLength width of a scan line within the data array

X left edge of the rectangle from which to retrieve image data
y top edge of the rectangle from which to retrieve image data
width width of the rectangle from which to retrieve image data
height height of the rectangle from which to retrieve image data

Image data is represented as one integer for each pixel, with 8 bits each for alpha (opacity), red, green,
and blue values. The color components are packed into the int as OXxAARRGGBB.

Retrieve image data

Initialize an integer array, and then invoke Bitmap.getARGB() to store the raw image data of the new
or predefined bitmap in the integer array.

Bitmap original = Bitmap.getPredefinedBitmap(Bitmap.INFORMATION) ;

int[] argb = new int[original.getWidth() * original.getHeight()];

original.getARGB(argb, 0, original.getWidth(), 0, 0, original.getWidth(Q),
original.getHeight());

Compare two images
Invoke Bitmap.equals() to determine if the two bitmaps are identical.

if(restored.equals(original)) {

System.out.println("Success! Bitmap renders correctly with RGB data.");
} else if(!restored.equals(original)) {

System.out.println("Bitmap rendered incorrectly with RGB data.");

}

Using encoded images

The net.rim.device.api.system.EncodedImage class encapsulates encoded images of various
formats. The handheld supports the following image formats: .gif, .png, .wbmp, and .jpeg. Only
handhelds with color screens support .jpeg images.

6 Note: The JPEGEncodedImage class requires a signature that is not available to third-party developers.

59

BlackBerry Application Developer Guide

60

Use EncodedImage subclasses, PNGEncodedImage and WBMPEncodedImage, to access specific
properties of .png and .wbmp images, respectively. For example, PNGEncodedImage provides methods to
retrieve the bit depth of the image, the bit depth of the alpha channel, and the color type.

An application can directly access images that are added to its project or to a library project on which it
depends in the IDE.

Access an image

Save an image to the project folder or subfolder, and then add the image to the project in the IDE.
Invoke Class.getResourceAsStream() to retrieve the image as an input stream of bytes.

private InputStream input;

try {
input = Class.forName("com.rim.samples.docs.imagedemo.ImageDemo") .
getResourceAsStream("/images/example.png");

} catch (ClassNotFoundException e) {

System.out.println("Class not found™);
}

Decode an image

To encode an image, invoke EncodedImage.createEncodedImage (). This method creates an instance
of EncodedImage using the raw image data in the byte array. It throws an
I11egalArgumentException if the byte array that is provided as a parameter does not contain a
recognized image format.

private byte[] data = new byte[2430]; // store the contents of the image file
try {

input.read(data); // read the image data into the byte array
} catch (IOException e) {

// handle exception
}
try {

EncodedImage image = EncodedImage.createEncodedImage(data, 0, data.length);
} catch (I1legalArgumentException iae) {

System.out.printin("Image format not recognized.");

}

Tip: By default, the handheld software detects the MIME type of an image based on the image format. If the correct MIME
type is not detected automatically, use the following form of EncodedImage.createEncodedImage() to specify a
particular MIME type:

createEncodedImage(byte[] data, createEncodedImage(byte[] data, int offset, int length, String
mimeType)

This method throws an I1TegalArgumentException if the image format does not match the specified MIME type.
Supported MIME types include: image/gif, image/png, image/vnd.wap.wbmp, and image/jpeg.

Display an encoded image

Invoke BitmapField.setImage() to assign the encoded image to a BitmapField, and then invoke
add () to add the BitmapField to the screen.

BitmapField field = new BitmapField();
field.setImage(image);
add(field);

3: Creating user interfaces

Set the decoding mode

Invoke EncodedImage.setDecodeMode () to set the decoding mode of the image. Provide one of the
following modes as a parameter to the method:

Decoding mode Description

DECODE_ALPHA decodes an alpha channel, if one exists (this is the default mode)

DECODE_NATIVE forces the bitmap to be decoded to the native bitmap type of the handheld software
DECODE_READONLY marks the decoded bitmap as read-only

Set the scaling factor

To set the integer factor that is used to downscale an image when decoding, invoke
EncodedImage.setScale(). The image is scaled by the inverse of the integer specified by the scale
parameter. For example, if you set the scaling factor to 2, the image is decoded at 50% of its original
size.

Code example

The ImageDemo.java sample retrieves raw data from an image that is included in its project, and then
uses that raw data to recreate an EncodedImage.

Example: ImageDemo.java

Vol
* ImageDemo.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/
package com.rim.samples.docs.imagedemo;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;
import java.io.*;

public class ImageDemo extends UiApplication {
public static void main(String[] args) {
ImageDemo app = new ImageDemo();
app.enterEventDispatcher();
b
public ImageDemo() {
pushScreen(new ImageDemoScreen());
}
}

final class ImageDemoScreen extends MainScreen {
private static final int IMAGE_SIZE = 2430;
private InputStream input;
private byte[] data = new byte[IMAGE_SIZE];

public ImageDemoScreen() {
super(Q);

setTitle(new LabelField("Image Demo Sample™));

try {

61

BlackBerry Application Developer Guide

input =
Class.forName("com.rim.samples.docs.imagedemo.ImageDemo") .getResourceAsStream(
"/images/hellokitty.png");
} catch (ClassNotFoundException e) {
System.out.printin("Class not found");

}

if(input == null) {

System.out.printin("Error: input stream is not initialized");
} else if (input != null) {

System.out.printIn("OK: input stream is initialized");

try {
int code = input.read(data);
System.out.println("Total number of bytes read into buffer: " +
code) ;
} catch (IOException e) {
// Handle exception.

}

try {
EncodedImage image = EncodedImage.createEncodedImage(data, O,
data.length);
add(new BitmapField(image.getBitmap()));
} catch (I11egalArgumentException iae) {
System.out.printin("Image format not recognized.™);

}

Drawing using graphics objects

Graphics objects enable applications to perform drawing functions and rendering operations. Use the
Graphics class to draw over the entire screen or on a BitmapField. If your application does not contain
any fields, invoke Screen.getGraphics() to obtain the graphics context for the entire screen.

To draw over a specific BitmapField, an application obtains a graphics context for a particular field by
passing the field into the Graphics constructor. When drawing over a BitmapField, the field manager
passes the graphics context to the fields when the fields repaint. To perform custom drawing over a field,
override the Graphics.paint() method when you extend the Field class.

The Graphics class enables you to draw shapes, such as arcs, lines, rectangles, and circles.

Use the graphics context

To draw with the Graphics class, obtain a graphics context for an individual field or the entire screen.
To obtain a graphics context for an individual field, invoke the Graphics () constructor.

Bitmap surface = new Bitmap(100, 100);
BitmapField surfaceField = new BitmapField(surface);
Graphics graphics = new Graphics(surface);

To obtain a graphics context for the entire screen, invoke Screen.getGraphicsQ).

62

3: Creating user interfaces

Graphics graphics = Screen.getGraphics(Q);

To draw using any graphics context, your methods must perform their drawing functions within the
boundaries of the field or screen.

graphics.fillRect (10, 10, 30, 30);
graphics.drawRect(15, 15, 30, 30);

If your graphics context does not apply to the entire screen, add the BitmapField to the screen.

mainScreen.add(surfaceField);

Implementing the DrawStyle interface

The DrawSty1e interface provides styles that are used by Graphics and Field objects. Implementing
DrawStyTe enables you to create an interface that is consistent with standard BlackBerry user interfaces.
If you are extending the Field class to create a custom field, your code should accept the appropriate
styles so that it acts similarly to standard BlackBerry applications.

DrawStyTe is applied to fields as style parameters, as in the following example:
ButtonField buttonField = new ButtonField(DrawStyle.ELLIPSIS);

You can use DrawStyle elements in the following objects:
* BitmapField

* ButtonField

e DateField

* (Graphics

e LabelField

® ObjectListField

Drawing in color

Drawing in color is only applicable to handhelds with color screens. To determine whether handhelds
provide color display, invoke Graphics.isColor(). To determine the number of colors that handhelds
support, invoke Graphics.numColors().

Set alpha values

The global alpha value determines the transparency of pixels in the drawing area, where 0 (0x0000) is
completely transparent (invisible) and 255 (OxOOFF) is fully opaque. To set or get the global alpha value,
invoke Graphics.setGlobalApha() or Graphics.getGlobalAlpha(Q).

o Note: The alpha value is used only for certain raster operations. Text and drawing operations do not use the alpha value.

Determine raster operation support

To determine if a Graphics object supports a particular raster operation, invoke
Graphics.isRopSupported(int rop).

Constant Raster operation
ROP_CONST_GLOBALALPHA blends the constant foreground color using a constant global alpha value with destination pixels

63

BlackBerry Application Developer Guide

64

Constant Raster operation
ROP_SRC_GLOBALALPHA blends a source bitmap using a constant global alpha value with destination pixels

Draw a path

To draw a set of shaded, filled paths, invoke Graphics.drawShadedFilledPath():

public void drawShadedFilledPath(int[] xPts, int[] yPts, byte[] pointTypes, int[]
colors, int[] offsets);

Constant Description
xPts This ordered list defines x values for each vertex in the paths.
yPts This ordered list defines y values for each vertex in the paths.
pointTypes Specify one of the following constants for each (x,y) point defined. If pointTypes is nu11, all points default to
Graphics.CURVEDPATH_END_POINT.
* Graphics.CURVEDPATH_END_POINT
* Graphics.CURVEDPATH_QUADRATIC_BEZIER_CONTROL_POINT
* Graphics.CURVEDPATH_CUBIC_BEZIER_CONTROL_POINT

colors This ordered list defines color values for each vertex, in 0XOORRGGBB format. If nu11, a solid filled path is drawn
in the current foreground color.

offsets This list defines the start of each path in the xPts and yPts data arrays. nu11 indicates a single path; a path that
begins at point (xPts[offsets[i]],yPts[offsets[i]]) and ends at point (xPts[offsets[i+1]]-
1,yPts[offsets[i+1]]-1).

The following example draws a path that blends from blue to red.

Bitmap surface = new Bitmap(240, 160);
BitmapField surfaceField = new BitmapField(surface);
add(surfaceField);
Graphics graphics = new Graphics(surface);
int[] X_PTS = { 0, 0, 240, 240 };
int[] Y_PTS = { 20, 50, 50, 20 };
int[] drawColors = { 0x0000CC, 0x0000CC, 0xCC0000, 0xCCO000 };
try {
graphics.drawShadedFilledPath(X_PTS, Y_PTS, null, drawColors, null);
} catch (I1l1egalArgumentException iae) {
System.out.println("Bad arguments.");

}

Use drawing styles

To turn a drawing style on or off, invoke Graphics.setDrawingStyle(int drawStyle, boolean
on), where on specifies whether to turn the style on (true) or off (false). To determine if a drawing style
is set, invoke Graphics.isDrawingStyleSet(int drawStyle).

Constant Description
DRAWSTYLE_AALINES style for anti-aliased rendering of lines; used by setDrawingStyle() and isDrawingStyTleSet()

DRAWSTYLE_AAPOLYGONS style for anti-aliased rendering of polygons; used by setDrawingStyle() and isDrawingStyleSet()
DRAWSTYLE_FOCUS style set by the framework when painting is being done for focus drawing
DRAWSTYLE_SELECT style set by the framework when painting is being done for selection drawing

Use monochrome bitmap fields like a stamp

The STAMP_MONOCHROME option enables applications to use monochrome bitmaps like a stamp by
rendering the non-transparent region in color. This option applies to bitmaps that are 1 bit and have
alpha defined.

3: Creating user interfaces

BitmapField field = new BitmapField(original, BitmapField.STAMP_MONOCHROME) ;

Draw an image from raw data

1. Create an empty bitmap. In this example, the type and size are copied from an existing bitmap.

2. Create a Graphics object using the newly created bitmap as the drawing surface.

3. Invoke Graphics.rawRGB() to draw a new image using raw data retrieved from the original.

Bitmap restored = new Bitmap(original.getType(), original.getWidth(),
original.getHeight());

Graphics graphics = new Graphics(restored);

try {
graphics.drawRGB(argb, 0, restored.getWidth(), 0, 0, restored.getWidth(),
restored.getHeight());
} catch(Exception e) {
System.out.println("Error occurred during drawing:

+ e);

}

Using bitmap types

Note: The following details on bitmap types are provided for information only. Applications should not rely on the actual
bit format of bitmaps as formats are subject to change in future releases of BlackBerry Handheld Software.

To determine the Bitmap type, invoke Bitmap.getType(). This method returns one of the following
constants:

Bitmap Type Description

COLUMNWISE_MONOCHROME Data is stored in columns, with 1 bit for each pixel: O is white and 1 is black. Uppermost pixels are in
the less significant bits in a byte, and lower numbered bytes contain the uppermost pixels within a
column.

ROWWISE_MONOCHROME Data is stored in rows, with 1 bit for each pixel: O is black and 1 is white. Each row is a multiple of 4
bytes in width. Leftmost pixels are in the less significant bits in a byte, and lower numbered bytes
contain the leftmost pixels within a row.

ROWWISE_16BIT_COLOR Data is stored in rows, with 2 bytes for each pixel: O is black and a Oxffff (65535) is white. Each row
is a multiple of 4 bytes in width.

¢ On handhelds with monochrome screens, data is ordered in columns, so Bitmap.getType() returns
COLUMNWISE_MONOCHROME. The first 2 bytes represent the first 16 pixels in the first column of the
bitmap.

e On handhelds with color screens, data is ordered in rows, so Bitmap.getType() returns
ROWWISE_MONOCHROME for monochrome images or ROWWISE_16BIT_COLOR for color images. In a
monochrome image, the first 2 bytes represent the first 16 pixels in the first row of the bitmap,
going from left to right. In a color image, the first 2 bytes represent the first pixel.

The following two forms of the Bitmap constructor enable you to specify a type parameter:
e Bitmap(int type, int width, int height)

e Bitmap(int type, int width, int height, byte[] data)

To retrieve the default bitmap type for the handheld, invoke Bitmap.getDefaultType().

Code example

The DrawDemo.java sample retrieves raw data from a predefined bitmap image, and then draws a new
bitmap using the data. It then displays the original and restored images.

65

BlackBerry Application Developer Guide

Example: DrawDemo.java

/*
* DrawDemo.java
* Copyright (C) 2002-2004 Research In Motion Limited.

*/
package com.rim.samples.docs.drawing;

import net.rim.device.api.system.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.¥*;

import net.rim.device.api.ui.container.¥*;
public class DrawDemo extends UiApplication {

public static void main(String[] args) {
DrawDemo app = new DrawDemo();
app.enterEventDispatcher();

}

public DrawDemo() {
pushScreen(new DrawDemoScreen());
}
}

final class DrawDemoScreen extends MainScreen {
public DrawDemoScreen() {
super(Q);

LabelField title = new LabelField("UI Demo", LabelField.USE_ALL_WIDTH);
setTitle(title);

Bitmap original = Bitmap.getPredefinedBitmap(Bitmap.INFORMATION) ;
Bitmap restored = new Bitmap(original.getType(), original.getWidth(Q),
original.getHeight());

Graphics graphics = new Graphics(restored);

// Retrieve raw data from original image.

int[] argb = new int[original.getWidth() * original.getHeight()];

original.getARGB(argb, 0, original.getWidth(), 0, 0, original.getWidth(Q),
original.getHeight());

// Draw new image using raw data retrieved from original image.
try {
graphics.drawRGB(argb, 0, restored.getWidth(), 0, O,
restored.getWidth(),
restored.getHeight());
} catch(Exception e) {
System.out.printin("Error occurred during drawing:

+ e);

}

if(restored.equals(original)) {

66

3: Creating user interfaces

System.out.println("Success! Bitmap renders correctly with RGB data.");
} else if(!restored.equals(original)) {
System.out.println("Bitmap rendered incorrectly with RGB data.");

}

BitmapField fieldl = new BitmapField(original,
BitmapField.STAMP_MONOCHROME) ;

BitmapField field2 = new BitmapField(restored);

add(new LabelField("Original bitmap: "));

add(fieldl);

add(new LabelField("Restored bitmap: "));

add(field2);

Listening for changes to Ul objects

Ul EventListeners enable applications to respond to a change to a Ul object. There are three types of
Ul event listeners:

Listener Description
FieldChangeListener notifies when a field property changes
FocusChangeListener notifies when a field gains or loses focus

Scrol1ChangeListener notifies when the horizontal or vertical scrolling value of a manager changes

Listen for field property changes

To monitor changes to fields, implement the FieldChangeListener interface and assign it to a field by
invoking setChangelListener().

private class FieldListener implements FieldChangelListener {
public void fieldChanged(Field field, int context) {
if (context != FieldChangeListener.PROGRAMMATIC) {
// perform action if user changed field
} else {
// perform action if application changed field
}
}
}
/] ...
FieldListener myFieldChangelListener = new FieldListener()
myField.setChangelListener(myFieldChangelListener);

Listen for focus changes

To monitor changes in focus between fields, assign them a FocusChangeListener by implementing
FocusChangelistener and invoking setChangelListener(). A FocusChangelListener considers the
gain, loss, or change of focus in relation to a particular field.

67

BlackBerry Application Developer Guide

68

Your implementation of FocusChangeListener should specify what action to take when the field
gains, loses, or changes the focus by implementing focusChanged().

private class FocusListener implements FocusChangelListener {
public void focusChanged(Field field, int eventType) {
if (eventType == 0) {
// perform action when this field gains the focus
}
if (eventType == 1) {
// perform action when the focus changes for this field
}
if (eventType == 2) {
// perform action when this field loses the focus
}
}
}
FocusListener myFocusChangelListener = new FocusListener();
myField.setChangelListener(myFocusChangelistener);

Listen for scroll events

To enable your field manager to manage scroll events, implement the Scro11Changelistener interface
and then invoke setScrol1Listener (). When the horizontal or vertical (or both) scrolling values
change, the scro11Changed() method passes in the new values.

Tip: Typically, listening for scrolling changes is unnecessary because your application can listen for focus changes to fields;
however, Scrol1ChangeListener can be useful in a game implementation.

To assign a listener to a field, invoke setScrol1Listener() on the field manager.

private class ScrollListener implements ScrollChangelListener {
scrol1Changed(Manager manager, int newHoriztonalScroll, int newVerticalScroll){
// perform action
}
}
ScrollListener myScrollChangelListener = new ScrollListener();
myManager.setScrollListener(myScrol1ChangelListener);

Supporting media content

* PME content

e Playing media content

e Listening for media engine events
e Creating custom connections

PME content

BlackBerry handhelds support rich media content in PME format.

Content developers can create PME content using Plazmic Content Developer's Kit for BlackBerry®™.
This tool, and accompanying documentation, is available from the Plazmic web site at www.plazmic.com.

The Media Engine APIs (in the net.rim.plazmic.mediaengine and
net.rim.plazmic.mediaengine.io packages) enable applications to retrieve and play PME content
that is stored on the handheld or on the network.

6 Note: The Media Engine APIs support the media type application/x-vnd. rim.pme. Web servers must set the MIME type
for .pme files to appT1ication/x-vnd.rim.pme.

Overview of PME APIs

The following three main classes (in the net.rim.plazmic.mediaengine package) provide the ability
to load and play PME media content:

Class Description

MediaManager provides methods for loading content from local storage or the network
MediaPTlayer provides methods for playing PME media

MediaException provides exception codes for errors specific in retrieving or playing media

Media loading

The Media Engine API enables applications to load media content using one of the following four
protocols:.

Protocol Description

http:// The http protocol downloads content from a web server on the network using an HTTP connection.
This protocol requires a BlackBerry Enterprise Server™ with the Mobile Data Service enabled.

https:// The https protocol downloads content from a web server on the network using a secure HTTP (HTTPS)
connection. This protocol requires a BlackBerry Enterprise Server with the Mobile Data Service
enabled.

jar:///<pme_file> The jar protocol loads content from a jar file that is stored locally on the handheld.

jar:///sample.pme
Note that the leading slash is required.

In the IDE, the .jar file must be added to the same project as the calling application or to a library
project on which the application depends.

http://www.plazmic.com/en/developer/download/index.html

BlackBerry Application Developer Guide

Protocol Description
cod:// The cod protocol loads content from a .cod file (module) that is stored locally on the handheld.

<moduTe><pme_file> cod://mediasample/sample.pme

To use another protocol, implement a custom Connector. See " Creating custom connections" on page
79 for more information.

Playback states
To retrieve the current state of the MediaPlayer, invoke MediaPTlayer.getState().
State Description
UNREALIZED The MediaPlayer is not ready to play media. To move to the REALIZED state, invoke
MediaPlayer.setMedia().
REALIZED The MediaPlayer is ready to play media. To start playback and move to the STARTED state, invoke
MediaPlayer.start().
STARTED The MediaPTlayer is playing media. To stop playback and return to the REALIZED state, invoke

MediaPlayer.stop().

Exceptions

Methods on MediaEngine and MediaManager classes throw a MediaException that includes a
standard HTTP response code or one of the following exception codes. To retrieve the error code
associated with an exception, invoke MediaException.getCode() .

Exception code Description
INVALID_HEADER The media format is invalid.
REQUEST_TIMED_OUT The request has timed out.
INTERRUPTED_DOWNLOAD The download was cancelled by the application invoking MediaManager.cancel().
UNSUPPORTED_TYPE The media format (MIME type) is unsupported.
UPGRADE_PLAYER The current version of the media engine is not compatible with the requested content.
UPGRADE_MEDIA The current version of the media engine no longer supports the requested content.
CHECKSUM_MISMATCH The checksum verification failed, so the media cannot be read.
OUT_OF_BOUNDS An array index is out of bounds, or the application tried to read from an input stream after the end
of the file.
Events

The MediaListener interface enables applications to receive and respond to the following events:

Event Description

MEDIA_REQUESTED Media has been requested for loading; occurs when an animation automatically requests new
content or when the user clicks a hyperlink for media content.

MEDIA_REALIZED Media has been created for playback; occurs when MediaManager.createMedialLater() is
invoked.

MEDIA_COMPLETE Media has been loaded and played successfully.

MEDIA_IO Media is being loaded.

See " Listening for media engine events" on page 73 for more information.

70

4: Supporting media content

Playing media content

To retrieve PME content on handhelds or networks, use methods on the MediaManager. To play PME
content that has been downloaded to handhelds, use methods on the MediaPlayer class.

Download content

To download PME content, create a MediaManager object, and then invoke
MediaManager.createMedia().

MediaManager manager = new MediaManager();
try {
Object media = manager.createMedia("http://webserver/sample.pme™);
} catch (IOException ioe) {
System.out.printin("Error: requested content was not downloaded.");
} catch (MediaException me) {
System.out.println("Error:

“«

+ me.getCode());
}

Notes: The following default protocols are supported: http.//, https.//, jar.// and cod://. See " Media loading" on page
69 for more information.

The first time that you invoke MediaManager.createMedia(), the URL must be absolute, unless you first invoke
MediaManager.setProperty(“URI_BASE”, <base_url>) to set a base URL. When you invoke createMedia()
subsequently, the previous URL is used as the base.

Play PME content

Set the PME object for playback
To set the PME object for playback, invoke MediaPlayer.setMedia().

MediaPTlayer player = new MediaPlayer();
try {
player.setMedia(media);
} catch (MediaException me) {
System.out.println("Error: requested content type is not supported.”);

}

Display PME content

To return a Ul object that can display the PME content, invoke MediaPlayer.getUI(). Cast the object
that getUI () returns as a Field and add it to a Screen for display.

add((Field)player.getUIQ));

Start playing PME content

To start playing the downloaded content, invoke MediaPlayer.start().

if(player.getState() == MediaPlayer.REALIZED) {
try {
player.start();
} catch(MediaException me) {
System.out.println("Error occurred during media playback: +

71

BlackBerry Application Developer Guide

72

me.getCode() + me.getMessage());

Tip: Verify the current state of the MediaPlayer before you invoke MediaPlayer.start(). The start() method throws
an exception if the media player is not in the REALIZED state

Code example

The MediaSample.java sample retrieves a PME file from a web server and displays it.

Example: MediaSample.java
/7': ¥

* MediaSample.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

package com.rim.samples.docs.mediasample;

import java.io.*;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;

import net.rim.plazmic.mediaengine.*;
public class MediaSample extends UiAppTlication {

public static void main(String[] args) {
MediaSample app = new MediaSample();
app.enterEventDispatcher();
}
public MediaSample() {
pushScreen(new MediaSampleScreen());
}
final static class MediaSampleScreen extends MainScreen {
public MediaSampleScreen() {
super();
LabelField title = new LabelField("Media Sample", LabelField.ELLIPSIS
| LabelField.USE_ALL_WIDTH);
setTitle(title);

MediaPlayer player = new MediaPlayer();
MediaManager manager = new MediaManager();

try {
Object media = manager.createMedia("http://webserver/SVGFILE.pme");
player.setMedia(media);

} catch (IOException ioe) {

} catch (MediaException me) {
System.out.printin("Error during media Toading: ");
System.out.printin(me.getCode());
System.out.println(me.getMessage());

4: Supporting media content

}

add((Field)player.getUI());

try {
player.start();

} catch(MediaException me) {
System.out.printin("Error occured during media playback: ");
System.out.println(me.getCode());
System.out.printin(me.getMessage());

Listening for media engine events

The MediaListener interface enables applications to register to receive media engine events.
Applications can register listeners on both MediaPlayer and MediaEngine objects.

When an application implements the listener, it can perform the following actions:
* provide information on the status of content downloads

¢ download content in the background and play it when it arrives

e download content that is requested automatically by an animation

The MediaListener interface includes one method, the listen method.

public void mediaEvent(Object sender, int event, int eventParam, Object data);

Parameter Description
sender This parameter refers to the object that sent the event, such as a MediaPTlayer or MediaManager object.
event This parameter is one of the following events:

® MEDIA_REQUESTED: Sent when new content is requested.

® MEDIA_COMPLETE: Sent when all scheduled media actions have been completed.

® MEDIA REALIZED: Sent by a MediaManager to return downloaded media.

* MEDIA_IO: Sent by the MediaLoader to provide information on download progress or status.

eventParam Do not use this parameter as it may receive an arbitrary value. It exists in order to provide a consistent interface
for additional events.

data When event is MEDIA_REQUESTED, data refers to the requested URL as a String object.
When event is MEDIA_REALIZED, data refers to the media object that was created.
When event is MEDIA_IO0, data refers to a net.rim.plazmic.mediaengine.io.LoadingStatus object.

Implement the listener

Implement the MediaListener interface, including mediaEvent (). The following example uses a
switch statement to handle possible media events.

public final class MedialListenerImpl implements MedialListener {
public void mediaEvent(Object sender, int event, int eventParam, Object data) {
switch(event) {
case MEDIA_REQUESTED: break;
case MEDIA_COMPLETE: break;

73

BlackBerry Application Developer Guide

74

case MEDIA_REALIZED: break;
case MEDIA_I0: break;

Register the listener

To register your listener, invoke addMediaListener () on the MediaPlayer and MediaManager
objects.

private MedialListenerImpl _listener = new MedialListenerImpl1();
private MediaPlayer player = new MediaPlayer();

private MediaManager manager = new MediaManager();
player.addMedialListener(_listener);
manager.addMedialListener(_1listener);

Load content in the background

When you implement MedialListener, you can download PME content in the background
(asynchronously), and then play the content when the download is complete.

Invoke MediaManager.createMedialater() to download content for future playback.

6 Note: Unlike createMedia(), createMedialater() does not return an Object with the media content.

In MediaListener.mediaEvent(), add code to handle the MEDIA_REALIZED event that occurs when
the requested content has been loaded successfully. To register the content that is specified in the data
parameter, invoke MediaPlayer.setMedia(data). To start playback, invoke MediaPlayer.start().

manager.createMedialLater("http://webserver/sample.pme");
public void mediaEvent(Object sender, int event, int eventParam, Object data) {
switch(event) {

case MEDIA REALIZED:

try {
player.setMedia(data);
player.start();

} catch(MediaException me) {
System.out.printin("Error playing media” + me.getCode() +
me.getMessage());

}

break;

4: Supporting media content

Track download progress

To obtain information about download progress, use the
net.rim.plazmic.mediaengine.qio.LoadingStatus class. This class includes methods that enable

you to retrieve the media content type, the total number of bytes, the number of bytes read, and the
source URL of the content.

Status Description

LOADING_STARTED Loading has started.

LOADING_READING The data stream is being parsed.
LOADING_FINISHED The media has been loaded successfully.
LOADING_FAILED The media has not been loaded successfully.

* To obtain detailed error codes, invoke getCode (). See " Exceptions" on page 70 for more information.
* To obtain the exception message, invoke getMessage().

In the implementation of mediaEvent (), when the MEDIA_IO event occurs, cast the Object in the data
parameter to a LoadingStatus object.

Use a switch statement to handle each status. Invoke LoadingStatus.getStatus() to retrieve the
download status.

For each normal status, print a message to the console.

For the LOADING_FAILED status, perform the following actions:

¢ Invoke LoadingStatus.getCode() to retrieve the error code.

¢ Invoke LoadingStatus.getMessage() to retrieve the detailed message.

¢ Invoke LoadingStatus.getSource() to retrieve the URL string of the content.

public void mediaEvent(Object sender, int event, int eventParam, Object data) {
switch(event) {

case MEDIA_IO: {
LoadingStatus s = (LoadingStatus)data;

}
break;
}
break;

switch(s.getStatus()) {
case LoadingStatus.LOADING_STARTED:
System.out.printin("Loading in progress");
break;
case LoadingStatus.LOADING_READING:
System.out.println("Parsing in progress");
break;
case LoadingStatus.LOADING_FINISHED:
System.out.printin("Loading completed");
break;
case LoadingStatus.LOADING_FAILED:
String errorName = null;
int code = s.getCode();
switch (code) {
case MediaException.INVALID_HEADER:
errorName = "Invalid header" + "\n" + s.getSource();

75

BlackBerry Application Developer Guide

break;

case MediaException.REQUEST_TIMED_OUT:
errorName = "Request timed out" + "\n" +
s.getSource();

break;

case MediaException.INTERRUPTED_DOWNLOAD:

break;

case MediaException.UNSUPPORTED_TYPE:
errorName = "Unsupported type" + s.getMessage() + "\n" +
s.getSource();

break;

default: {
if (code > 200) {

// A code > 200 indicates an HTTP error

errorName = "URL not found";
} else {
// default unidentified error
errorName = "Loading Failed";
}
errorName += "\n" + s.getSource() + "\n" + s.getCode()
+ ": " + s.getMessage();
break;
}
}
System.out.println(errorName);
break;
} //end switch s.getStatus
break;

Code example

The MediaSample2.java sample implements a listener to download media content in the background
and display the download status to the console.

Example: MediaSample2.java

/~,\-~,\-
* MediaSample2.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
7':/

package com.rim.samples.docs.mediasample;

import java.io.*;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;

import net.rim.plazmic.mediaengine.*;
import net.rim.plazmic.mediaengine.io.*;

public class MediaSample2 extends UiApplication {

76

4: Supporting media content

private MediaPlayer player = new MediaPlayer();
private MediaManager manager = new MediaManager();
private MedialListenerImpl _listener = new MedialListenerImpl1();

private MediaSample2Screen _screen;

public static void main(String[] args) {
MediaSample2 app = new MediaSample2();
app.enterEventDispatcher();

}

public MediaSample2() {
_screen = new MediaSample2Screen();
pushScreen(_screen);

}

public final class MedialListenerImpl implements MedialListener {
public void mediaEvent(Object sender, int event, int eventParam, Object
data) {
switch(event) {
case MEDIA_REQUESTED:
System.out.println("Media requested");
break;
case MEDIA_COMPLETE:
System.out.println("Media completed");
break;
case MEDIA_REALIZED:
try {
player.setMedia(data);
player.start(Q);

}
catch(MediaException me) {
System.out.printin("Error during media loading: " +
me.getCode() + me.getMessage());
}
break;

case MEDIA_IO0: {
LoadingStatus s = (LoadingStatus)data;
switch(s.getStatus()) {

case LoadingStatus.LOADING_STARTED:
System.out.println("Loading in progress");
break;

case LoadingStatus.LOADING_READING:
System.out.printin("Parsing in progress");
break;

case LoadingStatus.LOADING_FINISHED:
System.out.printin("Loading completed");
break;

case LoadingStatus.LOADING_FAILED:
String errorName = null;
int code = s.getCode();
switch (code) {

case MediaException.INVALID_HEADER:
errorName = "Invalid header" + "\n" +
s.getSource();
break;

77

BlackBerry Application Developer Guide

case MediaException.REQUEST_TIMED_OUT:
errorName = "Request timed out" + "\n" +
s.getSource();
break;

case MediaException.INTERRUPTED_DOWNLOAD:
break;

case MediaException.UNSUPPORTED_TYPE:
errorName = "Unsupported type" + s.getMessage()
+ "\n" + s.getSource();
break;

default: {
if (code > 200) {
// A code > 200 indicates an HTTP error.

errorName = "URL not found";
}
else {
// Default unidentified error.
errorName = "Loading Failed";
}

errorName += "\n" + s.getSource() + "\n"
+ s.getCode() + ": " + s.getMessage();

break;
}
}
System.out.println(errorName) ;
break;
} // End switch s.getStatus().

break;

}
}

final class MediaSample2Screen extends MainScreen {
public MediaSample2Screen() {
super(Q);
LabelField title = new LabelField("Media Sample", LabelField.ELLIPSIS
| LabelField.USE_ALL_WIDTH);
setTitle(title);

player.addMedialListener(_listener);
manager.addMedialistener(_Tlistener);

// Change this to the location of a test .pme file.

manager.createMedialLater("http://test.rim.com/SVGBS0001.pme");
add((Field)player.getUI());

78

4: Supporting media content

Creating custom connections

MediaManager uses a Connector object to load media and open an input stream. The default
Connector supports the following protocols: http.//, https.//, jar.//, and cod://. To add support for a
custom protocol or to override default behavior, create a custom Connector by implementing the
net.rim.plazmic.mediaengine.io.Connector interface.

Method signature Implementation

InputStream getInputStream(String uri, Implement this method to return an input stream to read content from the
ConnectionInfo info) specific URI.

void releaseConnection(ConnectionInfo Implement this method to release the connection. MediaManager invokes
info) this method to inform a Connector that it can release the connection.
void setProperty(String name, String Implement this method to set connector-specific properties.

value)

Implement a custom connector

To perform processing for a custom protocol, implement the Connector interface, including
getInputStream() . To handle a standard protocol, invoke the default Connector.

To set specific properties, implement setProperty(String name, String value). In this example,
the connector does not have to set any specific properties, so the implementation of setProperty ()
invokes setProperty () on the default Connector.

public class SampleConnector implements Connector {
Connector delegate; // the default Connector
SampleConnector(Connector delegate) {
this.delegate = delegate;
}
public InputStream getInputStream(String uri, ConnectionInfo info)
throws IOException, MediaException {
InputStream input = null;
if (uri.startsWith("myprotocol://")) {
//perform special tasks
info.setConnection(new MyProtocolConnection());
info.setContentType("application/x-vnd.rim.pme");
// openMyInputStream is a custom method that opens
//stream for "myprotocol://"
input = openMyInputStream(uri);
} else {
input = delegate.getInputStream(uri, info);
}
return input;
}
public void releaseConnection(ConnectionInfo info)
throws IOException, MediaException {
Object o = info.getConnection();
if (o instanceof MyProtocolConnection) {
((MyProtocolConnection)o).close(); // perform cleanup
} else {
delegate.releaseConnection(info);
}
}
public void setProperty(String property, String value) {

79

BlackBerry Application Developer Guide

80

delegate.setProperty(property, value);

Reglster a custom connector
In your main method, invoke MediaManager.setConnector() to register your custom connector.

MediaManager manager = new MediaManager();
manager.setConnector(new CustomPMEConnector(manager.getDefaultConnector()));

Code example

The CustomPMEConnector.java sample provides a framework for implementing a custom connector.

Example: CustomPMEConnector.java
/ ¥

* CustomPMEConnector.java
* Copyright (C) 2003-2004 Research In Motion Limited. A1l rights reserved.

package com.rim.samples.docs.mediasample;

import java.io.*;
import net.rim.plazmic.mediaengine.*;
import net.rim.plazmic.mediaengine.io.*;

public class CustomPMEConnector implements Connector {

private Connector delegate;
private InputStream input;

CustomPMEConnector(Connector delegate) {
this.delegate = delegate;
}
public InputStream getInputStream(String uri, ConnectionInfo info)
throws IOException, MediaException {
if (uri.startsWith("myprotocol://")) {
// Perform special tasks.
info.setConnection(new MyProtocolConnection());
info.setContentType("application/x-vnd.rim.pme");
// OpenMyInputStream() is a custom method that opens
//stream for "myprotocol://"
input = openMyInputStream(uri);
} else {
input = delegate.getInputStream(uri, info);
}
return input;

}

private InputStream openMyInputStream(String uri) {
InputStream input = null;

4: Supporting media content

// @todo: open stream here
return input;
b
public void releaseConnection(ConnectionInfo info)
throws IOException, MediaException {
Object o = info.getConnection();
if (o instanceof MyProtocolConnection) {
((MyProtocolConnection)o).close(); // Perform cleanup.
} else {
delegate.releaseConnection(info);
}
}
public void setProperty(String property, String value) {
delegate.setProperty(property, value);
b
// Inner class that defines the connection class.
public static class MyProtocolConnection {
public MyProtocolConnection() {

// ...

}

public void close() {
// ...

}

81

Connecting to networks

e HTTP and socket connections

e Using HTTP connections

e Using HTTPS connections

* Using socket connections

e Using port connections

e Using Bluetooth serial port connections

HTTP and socket connections

Although you can implement HTTP over a socket connection, it is preferable to use an HTTP connection
because socket connections do not support the Mobile Data Service features, such as push. It is also
preferable to use HTTP connections because applications that use socket connections typically require
significantly more bandwidth than those that use HTTP connections.

Tip: If you use sockets, design the application to accommodate intermittent connections to the wireless network. For
example, the application should re-open the connection if an error occurs.

Using HTTP connections

6 Note: The BlackBerry Internet Service Browser does not allow Java applications to initiate HTTP, HTTPS, or TCP connections.

Open an HTTP connection

To open an HTTP connection, invoke Connector.open(), specifying http as the protocol. Cast the
returned object as an HTTPConnection or a StreamConnection object. An HttpConnection is a
StreamConnection that provides access to specific HTTP functionality, including headers and other
HTTP resources.

HttpConnection conn = null;
String URL = "http://www.myServer.com/myContent";
conn = (HttpConnection)Connector.open(URL);

Set the HTTP request method

To set the HTTP request method (GET or POST), invoke HttpConnection.setRequestMethod() .

conn.setRequestMethod (HttpConnection.POST);

Set or retrieve header fields

To set or retrieve header fields for HTTP request or HTTP response messages, invoke
getRequestProperty() or setRequestProperty() onthe HttpConnection.

conn.setRequestProperty("User-Agent", "BlackBerry/3.2.1");
String lang = conn.getRequestProperty("Content-Language");

Send and receive data over HTTP

5: Connecting to networks

To send and receive data, acquire input and output streams by invoking openInputStream() and
openOutputStream() on the HTTPConnection.

InputStream in = conn.openInputStream();

OutputStream out = conn.openOutputStream();

Code example

The HttpFetch.java example uses an HTTP connection to retrieve data. It performs the following steps:

1. Creates a connection thread.

Defines a method to retrieve data.

Defines a method to display data to the user.

2
3
4. Defines a method to exit the application.
5

Creates the application constructor.

Note: The HTTPFetch.java example requires you to create resource files in the application project and define the required

resource keys. See " Localizing applications" on page 109 for more information.

Example: HTTPFetch.java

/ ek

* HTTPFetch.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

*/

package com.rim.samples.docs.httpfetch;

import
import
import
import
import
import
import
import

public
//

net.
net.
net.
net.
net.

rim.device.

rim.device

api

.api
rim.device.
rim.device.
rim.device.

api
api
api

javax.microedition
java.io.*;
com.rim.samples.docs.baseapp.*;

Uil
.ui.component.*;
.ui.container.*;
.i18n.%;
.system.*;
.i0.%;

class HTTPFetch extends BaseApp implements HTTPFetchResource {
Constants.
private static final String SAMPLE_PAGE = "http://localhost/testpage/
sample.txt";
private static final String[] HTTP_PROTOCOL = {"http://", "http:\\"};

// Members.
private MainScreen _mainScreen;
private RichTextField _content;

/7’: %

83

BlackBerry Application Developer Guide

84

* Send and receive data over the network on a
* separate thread from the main thread of your application.
:':/

ConnectionThread _connectionThread = new ConnectionThread();

//statics
private static ResourceBundle _resources = ResourceBundle.getBundle(
HTTPFetchResource.BUNDLE_ID, HTTPFetchResource.BUNDLE_NAME);

public static void main(String[] args) {
HTTPFetch theApp = new HTTPFetch();
theApp.enterEventDispatcher();

The ConnectionThread class manages the HTTP connection.

Fetch operations are not queued, but if a second fetch request
is made while a previous request is still active,

* the second request stalls until the previous request completes.
*/

private class ConnectionThread extends Thread {

private static final int TIMEOUT = 500; //ms

private String _theUrl;

/* The volatile keyword indicates that because the data is shared,

* the value of each variable must always be read and written from memory,
instead of cached by the VM. This technique is equivalent to wrapping
the shared data in a synchronized block, but produces less overhead.

*

*

:':/
private volatile boolean _start = false;
private volatile boolean _stop = false;

/7“:7“:
* Retrieve the URL. The synchronized keyword ensures that only one
* thread at a time can call this method on a ConnectionThread object.
:':/
public synchronized String getUr1() {
return _theUrl;

}

/:'::':
* Fetch a page. This method is invoked on the connection thread by
* fetchPage(), which is invoked in the application constructor when
* the user selects the Fetch menu item.
*/
public void fetch(String url) {

_start = true;

_theUrl = url;

/7“:7“:

:':/

public void stop() {
_stop = true;

Close the thread. Invoked when the application exits.

5: Connecting to networks

3
/:“::“:

* Open an input stream and extract data. Invoked when the thread
* is started.

*/
public void run() {
for(;) {
// Thread control.
while(!_start && !_stop) {
// No connections are open for fetch requests,
// but the thread has not been stopped.
try {
sTeep(TIMEOUT) ;
} catch (InterruptedException e) {
System.err.printin(e.toString());
}
}
// Exit condition.
if (_stop) {
return;
}
/* Ensure that fetch requests are not missed
* while received data is processed.
*/
synchronized(this) {
// Open the connection and extract the data.
StreamConnection s = null;
try {
s = (StreamConnection)Connector.open(getUr1());
InputStream input = s.openInputStream();
// Extract data in 256 byte chunks.
byte[] data = new byte[256];
int Ten = 0;
StringBuffer raw = new StringBuffer();
while (-1 != (Ten = input.read(data))) {
raw.append(new String(data, 0, len));
}
String text = raw.toString(Q);
updateContent(text);
input.close();
s.close();
} catch (IOException e) {
System.err.printin(e.toString());
// Display the text on the screen.
updateContent(e.toString());
}
// Reset the start state.
_start = false;
}
}
}

85

BlackBerry Application Developer Guide

// Constructor.

public HTTPFetch() {
_mainScreen = new MainScreen();
_mainScreen.setTitle(new LabelField(
_resources.getString(APPLICATION_TITLE), LabelField.ELLIPSIS
| LabelField.USE_ALL_WIDTH));
_mainScreen.add(new SeparatorField());
_content = new RichTextField(
_resources.getString(HTTPDEMO_CONTENT_DEFAULT));
_mainScreen.add(_content);
_mainScreen.addKeyListener(this);
_mainScreen.addTrackwheelListener(this);

// Start the helper thread.
_connectionThread.start();
pushScreen(_mainScreen);
fetchPage (SAMPLE_PAGE) ;

}

// Retrieve web content.
private void fetchPage(String url) {
// Perform basic validation (set characters to lowercase and add http:// or
https://).
String lcase = url.toLowerCase();
boolean validHeader = false;
int i = 0;
for (i = HTTP_PROTOCOL.length - 1; i >= 0; --i) {
if (-1 != Tcase.indexOf(HTTP_PROTOCOL[i])) {
validHeader = true;
break;
}
}
if (!validHeader) {
// Prepend the protocol specifier if it is missing.
url = HTTP_PROTOCOL[0] + url;
}

// Create a new thread for connection operations.
_connectionThread. fetch(url);
}
// Display the content.
private void updateContent(final String text) {
/* This technique creates several short-lived objects but avoids
* the threading issues involved in creating a static Runnable and
* setting the text.
:':/
UiApplication.getUiApplication().invokelLater(new Runnable() {
public void run(Q) {
_content.setText(text);
3
s
}
// Close the connection thread when the user closes the application.
protected void onExit() {
_connectionThread.stop();

}

86

5: Connecting to networks

Using HTTPS connections

0 Note: The BlackBerry Internet Service Browser does not allow Java applications to initiate HTTP, HTTPS, or TCP connections.

Open an HTTPS connection

To open an HTTPS connection, invoke Connector.open(), specifying https as the protocol. Cast the
returned object as an HttpsConnection.
HttpsConnection stream = (HttpsConnection)Connector.open("https://host:443/");

Specify proxy or end-to-end mode

By default, the connection uses HTTPS in proxy mode. Users can also set a handheld option to use end-
to-end mode by default. See " HTTPS support" on page 151 for more information.

To open an HTTPS connection in end-to-end mode, add one of the following parameters to the
connection string passed to Connector.open():

Parameter Description

END_TO_END_REQUIRED This parameter specifies that an end-to-end HTTPS connection mustbe used from the handheld to the
target server. If an end-to-end HTTPS connection cannot be set up, the connection is closed.

END_TO_END_DESIRED This parameter specifies that an end-to-end HTTPS connection shou/d be used from the handheld to
the target server, if the handheld supports it. If the handheld does not support end-to-end TLS, and the
user permits proxy TLS connections, then a proxy connection is used.

HttpsConnection stream = (HttpsConnection)Connector.open("https://host:443/
;END_TO_END_DESIRED");

o Note: The modules for end-to-end HTTPS are not installed on handhelds by default; however, they are included with the
BlackBerry Desktop Software version 3.6.0 or later. To load the required modules when the application is loaded onto the
handheld, add the following tags to the .alx file for your application:

<requires id="net.rim.blackberry.cryptol"/>
<requires id="net.rim.blackberry.crypto2"/>

See ".alx files" on page 145 for more information.

Using socket connections

o Note: The BlackBerry Internet Service Browser does not allow Java applications to initiate HTTP, HTTPS, or TCP connections.

Specifying TCP settings
Applications can set up a Transmission Control Protocol (TCP) socket connection, or an HTTP connection
over TCP, in one of two modes:

87

BlackBerry Application Developer Guide

¢ Proxy mode: The Mobile Data Service feature of the BlackBerry Enterprise Server sets up the TCP
connection to the web server on behalf of the handheld.

* Direct mode: The handheld sets up a direct TCP connection to the web server.

Note: Using direct TCP mode requires that you work closely with service providers. Contact your service provider to verify
that direct TCP socket connections are supported.

To specify TCP settings programmatically, add the optional deviceside parameter to the connection
string passed to Connector.open().

To specify TCP settings in handhelds on GSM networks, users click TCP on the handheld options.
o Note: TCP only appears under the handheld options if the IT policy settings allow TCP connections.

If TCP settings are not specified, the following defaults are used.

Network Default TCP setting Alternate TCP setting
GSM proxy mode direct mode
iDEN direct mode proxy mode

See Connector in the AP/ Reference for more information.

Open a socket connection
To open a socket connection, invoke Connector.open(), specifying socket as the protocol.

private static String URL = "socket://Tocalhost:4444";
StreamConnection conn = null;
conn = (StreamConnection)Connector.open(URL);

Send and receive data on a socket connection

To send and receive data on a socket connection, acquire input and output streams using
openInputStream() and openOutputStream().

OutputStreamWriter _out = new OQutputStreamWriter(conn.openOutputStream());
String data = "This is a test";

int length = data.lengthQ);

_out.write(data, 0, length);

InputStreamReader _in = new InputStreamReader(conn.openInputStream());
char[] input = new char[length];

for (int i = 0; i < length; ++i) {
input[i] = (char)_in.read(Q);
}

Close the connection

To close the input and output streams, and the socket connection, invoke close() .

o Note: Each of the close() methods throws an I0Exception. You should implement error handling.

_in.close();

88

5: Connecting to networks

_out.close();
conn.close();

Using port connections

Using a serial or USB connection, handheld applications can communicate with desktop applications
when they are connected to a computer using a serial or USB port. This type of connection can also be
used to communicate with a peripheral device that plugs into the serial or USB port.

Note: If you are using the port connection to communicate with a desktop application, you must not have any other
applications running that are using the serial or USB port, such as the BlackBerry Desktop Manager.

Open a port connection

To open a USB or serial port connection, invoke Connector.open(), specifying comm as the protocol
and COML or USB as the port.

private StreamConnection _conn = (StreamConnection)Connector.open(
"comm:COM1;baudrate=9600;bitsperchar=8;parity=none;stopbits=1");

Send data on a port connection

To send data on a port connection, acquire an output stream by invoking openDataOutputStream() or
openQutputStream().

DataOutputStream _dout = _conn.openDataOutputStream();
Use the write methods on the output stream to write data.

private String data = "This is a test";
_dout.writeChars(test);

Receive data on a port connection

To receive data on a port connection, acquire an input stream by invoking openInputStream() or
openDataInputStream().

DataInputStream _din = _conn.openInputStream();
Use the read methods on the input stream to read data.

String contents = _din.readUTFQ);

Note: You cannot read from the input stream on the main event thread, because this operation blocks until data is received.
Create a separate thread on which to receive data.

Close a port connection

To close the input and output streams, and port connection, invoke close().

0 Note: Each of the close() methods can throw an I0Exception. You should implement error handling.

89

BlackBerry Application Developer Guide

_din.close();
_dout.close();
conn.close();

Using Bluetooth serial port connections

90

The Bluetooth API (net.rim.device.api.bluetooth) enables handheld applications to initiate a
server or client Bluetooth serial port connection to a computer or other Bluetooth wireless technology
enabled device.

Notes: Check for a ControlledAccessException when your application first accesses the Bluetooth API. This runtime

exception is thrown if the system administrator restricts access to the Bluetooth API using application control. See
" Application control" on page 12 for more information.

The handheld simulator does not support Bluetooth.

Open a Bluetooth serial port connection

To open a Bluetooth serial port connection, invoke Connector.open(), providing the serial port
information returned by BluetoothSerialPort.getSerialPortInfo() as a parameter. The
connection string returned by this method specifies btspp:// as the protocol and one of the following
items:

« If you are opening the connection as a client, the connection string returned by
getSerialPortInfo().toString() contains the device id and port number on which the server
device is listening.

< If you are opening the connection as a server, the connection string returned by
getSerialPortInfo().toString() contains the port on which your device is listening.

BluetoothSerialPortInfo[] info = BluetoothSerialPort.getSerialPortInfo();

StreamConnection _conn = (StreamConnection)Connector.open(info.toStringQ),
Connector.READ_WRITE);

Send and receive data

The procedures for sending and receiving data on a Bluetooth serial port connection are identical to
those for any port connection. See "Send data on a port connection” on page 89 and “Receive data on a
port connection” on page 89 for more information.

Close a port connection
To close the input and output streams, and the Bluetooth serial port connection, invoke close().

if (_bluetoothConnection != null) {
try {
_bluetoothConnection.close();
} catch(IOException ioe) {

}

}

if (_din !'= null) {
try {

5: Connecting to networks

_din.close();
} catch(IOException ioe) {

}
}
if (Ldout !'= null) {
try {
_dout.close();
} catch(IOException ioe) {
}
}

_bluetoothConnection = null;
_din = null;
_dout = null;

Code example

The following code sample is the client side of a simple Bluetooth serial port application. This
application listens for data on the serial port and renders the data when it arrives.

Example: BluetoothSerialPortDemo.java

/ ek
* BluetoothSerialPortDemo.java
* Copyright (C) 2004 Research In Motion Limited.
*/

/* The client side of a simple serial port demonstration app.
* This application listens for text on the serial port and
* renders the data when it arrives.

7':/
package com.rim.samples.docs.bluetoothserialportdemo;

import java.io.*;

import javax.microedition.io.*;

import net.rim.device.api.bluetooth.*;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.il8n.*;

import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

import com.rim.samples.docs.baseapp.*;

public class BluetoothSerialPortDemo extends BaseApp implements
BluetoothSerialPortDemoResResource {
//statics =——mmmmmm e e e
private static ResourceBundle _resources;

private static final int INSERT = 1;
private static final int REMOVE = 2;
private static final int CHANGE = 3;
private static final int JUST_OPEN = 4;

91

BlackBerry Application Developer Guide

private static final int CONTENTS = 5;
private static final int NO_CONTENTS = 6;

static {

_resources =
ResourceBundle.getBundle(BluetoothSerialPortDemoResResource.BUNDLE_ID,
BluetoothSerialPortDemoResResource.BUNDLE_NAME) ;

}

private EditField _infoField;

private StreamConnection _bluetoothConnection;
private DatalnputStream _din;

private DataOutputStream _dout;

public static void main(String[] args)

{
BluetoothSerialPortDemo theApp = new BluetoothSerialPortDemo();
theApp.enterEventDispatcher();

}

//CONSErUCTOr === == == = oo e e e e e e e
public BluetoothSerialPortDemo()
{

MainScreen mainScreen = new MainScreen();

mainScreen.setTitle(new LabelField(_resources.getString(TITLE),
LabelField.USE_ALL_WIDTH));

_infoField = new EditField(Field.READONLY);
mainScreen.add(_infoField);

mainScreen.addKeyListener(this);
mainScreen.addTrackwheelListener(this);

pushScreen(mainScreen);

invokeLater(new Runnable() {
public void run(Q) {
openPort();
}
b
B

protected void onExit() {
closePort();

}

// Close the serial port.
private void closePort() {
if (_bluetoothConnection != null) {
try {
_bluetoothConnection.close();
} catch(IOException ioe) {
}
}
if (_din !'= null) {
try {

92

5: Connecting to networks

_din.close();
} catch(IOException ioe) {

}
}
if (_dout !'= null) {
try {
_dout.close();
} catch(IOException ioe) {
}
}

_bluetoothConnection = null;
_din = nulT;
_dout = null;

}

// Open the serial port.
private void openPort() {

try {
if (_bluetoothConnection != null) {
closePort();
}

BluetoothSerialPortInfo[] info =
BluetoothSerialPort.getSerialPortInfo();
if(info == null || info.length == 0) {
Dialog.alert("No bluetooth serial ports available for connection."
)
onExit(Q);
System.exit(1);
}

_bTuetoothConnection = (StreamConnection)Connector.open(
info[0].toString(), Connector.READ_WRITE);

_din = _bluetoothConnection.openDatalnputStream();

_dout = _bluetoothConnection.openDataOutputStream();

new InputThread().start(Q);

} catch(IOException e) {
invokeLater(new Runnable() {
public void run() {
Dialog.alert("Unable to open serial port");
onExit();
System.exit(1);

b;

}
private class InputThread extends Thread {

public void run() {
try {
int type, offset, count;
String value;
_dout.writeInt(JUST_OPEN);
_dout.flush();

93

BlackBerry Application Developer Guide

for (55) {
type = _din.readInt();
if (type == INSERT) {
offset = _din.readInt();
value = _din.readUTF(Q);
insert(value, offset);
} else if (type == REMOVE) {
offset = _din.readInt();
count = _din.readInt(Q);
remove (offset, count);
} else if (type == JUST_OPEN) {
// Send contents to desktop.
value = _infoField.getText();
if (value == null || value.equals("")) {
_dout.writeInt(NO_CONTENTS);
_dout.flush(Q;
} else {
_dout.writeInt(CONTENTS);
_dout.writeUTF(_infoField.getText());
_dout.flush();
b
} else if (type == CONTENTS) {
String contents = _din.readUTFQ);
synchronized(Application.getEventLock()) {
_infoField.setText(contents);
B
} else if (type == NO_CONTENTS) {
} else {
throw new RuntimeException();
}
}
} catch(IOException ioe) {
invokeLater(new Runnable() {
public void run() {
Dialog.alert("Problems reading from or writing to serial
port.");
onExit(Q);
System.exit(1);

b;

}

private void insert(final String msg, final int offset) {
invokelLater(new Runnable() {
public void run(Q) {
_infoField.setCursorPosition(offset);
_infoField.insert(msg);
}
b
}

private void remove(final int offset, final int count) {
invokeLater(new Runnable() {

94

5: Connecting to networks

public void run() {
_infoField.setCursorPosition(offset+count);
_infoField.backspace(count);

3
b
}
Vo
* QOverride makeMenu to add custom menu 1items.
*/
protected void makeMenu(Menu menu, int instance)
{
if (_infoField.getTextLength() > 0) {
menu.add(new MenuItem(_resources, MENUITEM_COPY, 100000, 10) {
public void run() {
Clipboard.getClipboard().put(_infoField.getText());
}
I9H
}
super.makeMenu(menu, instance);
b

95

Using datagram
connections

e Datagram connections

e Using UDP connections

e Using Mobitex networks

* Sending and receiving SMS messages

Datagram connections

BlackBerry handhelds support datagram connections using the User Datagram Protocol (UDP).
Applications use UDP to communicate with standard network services.

Datagrams are independent packets of data that applications send over networks. A Datagram object is
a wrapper for the array of bytes that is the payload of the datagram. To retrieve a reference to this byte
array, invoke getData().

Unlike HTTP connections, datagram connections are stateless: packets arrive in any order, and delivery is
not guaranteed. Applications are responsible for making sure that the data payload of request
datagrams is formatted according to the standards of the network service over which the datagram is
transmitted. Applications must also be able to parse the datagrams that are sent back from the server.

Use datagram connections to send SMS messages. See " Sending and receiving SMS messages" on page
105 for more information.

Using UDP connections

To use a UDP connection, you must have your own infrastructure to connect to the wireless network,
including an access point name (APN) for General Packet Radio Service (GPRS) networks.

o Note: Datagram connections do not use the BlackBerry Infrastructure, so communication is not encrypted.
The APN of the simulator is net. rim.gprs.

The javax.microedition.io.DatagramConnection interface, which extends the Connection class,

defines connections that send and receive datagrams. The Datagram interface defines the packets that

are sent and received over a datagram connection.

o Note: Using UDP connections requires that you work closely with service providers. Contact your service provider to verify
that UDP connections are supported.

You might not be able to set up a UDP connection if your service provider does not support multiple PDP contexts. One
PDP context is reserved for the blackberry.net APN, which is used for email. You might, however, be able to use
blackberry.net as the APN for UDP. Contact your service provider for more information.

Open a UDP connection

To retrieve a DatagramConnection, invoke Connector.open() using the following format. Specify
udp as the protocol.

6: Using datagram connections

(DatagramConnection)Connector.open("udp://host:dest_port[;src_port]/apn");

Parameter Description

host This parameter specifies the host address in dotted ASCII-decimal format.

dest_port This parameter specifies the destination port at the host address
(optional for receiving messages).

src_port This parameter specifies the local source port (optional).

apn This parameter specifies the network APN in string format.

0 Note: You can send and receive UDP datagrams on the same port.

To send data on a UDP connection, specify a destination port in the connection string. To receive data on
a UDP connection, specify a source port in the connection string. To receive datagrams from all ports at
the specified host, omit the destination port.

6 Note: To open a connection on a non-GPRS network, do not specify an APN. Include the slash mark after the source port.
For example, the address for a CDMA network connection would be udp://121.0.0.0:2332;6343/.

Create a datagram
Invoke DatagramConnection.newDatagram().

Datagram outDatagram = conn.newDatagram(buf, buf.length);

Add data to a datagram
Invoke Datagram.setData(). The format of the data is determined by the service that receives it.

byte[] buf = new byte[256];
outDatagram.setData(buf, buf.length);

Send data on a UDP connection

Invoke send() on a DatagramConnection instance.

conn.send(outDatagram);

6 Note: If an application attempts to send a datagram on a UDP connection and the recipient is not listening on the specified
source port, an I0Exception is thrown.

Receive data on a UDP connection
Call receive() on the datagram connection.

byte[] buf = new byte[256];
Datagram inDatagram = conn.newDatagram(buf, buf.length);
conn.receive(inDatagram);

Note: The receive() method blocks other operations until it receives a packet. If the packet is lost, the application waits
indefinitely. Set a timer to retransmit the request or close the connection if a reply does not arrive.

Extract data from a datagram

Invoke getData(). If you know the type of data that you are receiving, convert the data to the
appropriate format.

String received = new String(inDatagram.getData());

97

BlackBerry Application Developer Guide

Close the UDP connection

As with all connections in the MIDP framework, invoke close () on input and output streams to close
them, and then invoke close () on the connection to close it.

Using Mobitex networks

98

The DatagramConnectionBase class provides methods that handle BlackBerry datagram connection
and transmission operations over Mobitex networks.

Open a Mobitex datagram connection

Open a DatagramConnection using Connector.open(), and then castitas a
DatagramConnectionBase. The DatagramConnectionBase class implements DatagramConnection
but provides additional methods that are necessary to register a datagram status listener.

To open a DatagramConnection, invoke Connector.open() and provide as a parameter a connection
string using the following format:

mobitex:<type>:<MAN>

Parameter Description

<type> accepts the following values: " TEXT", " DATA", " STATUS" or " HPDATA{HPID}" (in which case HPID is
in ASClI-decimal format)

<MAN> Mobitex Access Number; accepts ASClI-decimal format

0 Note: If you open a server connection (a listener), leave the MAN blank.

// datagram connection <type> is DATA and the MAN 1is left blank for an incoming
// connection

DatagramConnection dc = (DatagramConnection)Connector.open("mobitex:DATA:");
DatagramConnectionBase dcb = (DatagramConnectionBase)dc;

Listening for datagram status events

If you want to register a datagram status listener, use a DatagramBase rather than a Datagram to hold
data. DatagramBase implements the Datagram interface, but provides additional methods that are
necessary to register a datagram status listener.

// dc is a DatagramConnection

Datagram d = dc.newDatagram(dc.getMaximumLength());
d.setAddress(address);

d.setData(raw, 0, raw.length);

DatagramBase db = (DatagramBase)d; //an error if this fails

Register a datagram status listener

To listen for events, such as the receipt of a datagram, implement the DatagramStatusListener
interface. See DatagramStatusListener in the AP/ Reference for a complete list of datagram status
events.

6: Using datagram connections

To allocate a datagram ID and assign it to the DatagramStatusListener implicitly, invoke
DatagramConnectionBase.allocateDatagramId().

int id = dcb.allocateDatagramId(d);

Preallocating the datagram ID in this way ensures that your listener code is aware of the datagram that
is associated with the ID.

Obtain datagram information

The MobitexAddress class encapsulates Mobitex addressing information, such as the Mobitex Access
Number (MAN), the type of message, and the message status.

The MobitexPacketHeader class provides low-level access to the radio header field. To use the
MobitexPacketHeader for all addressing operations and ignore the other Mob1itexAddress fields,
invoke MobitexAddress.setPacketHeader().

Obtain radio and network information

The MobitexInfo class provides objects to store general information about the state of the radio. The
MobitexInfo.MobitexCellInfo class provides objects to store Mobitex cell information.

Code example

The MobitexDemo . java code example demonstrates the use of the Mobitex radio layer APIs.

Example: MobitexDemo.java

/%
* MobitexDemo.java

* © Research In Motion Limited, 2003-2003
* Confidential and proprietary.

*/
package com.rim.docs.samples.mobitexdemo;

import javax.microedition.io.*;

import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.il8n.*;

import java.util.*;

import net.rim.device.api.io.*;

import net.rim.device.api.system.*;
import java.io.*;

import com.rim.docs.samples.baseapp.*;

/ ek
* A simple mobitex layer sample
¥ /

public final class MobitexDemo extends BaseApp implements MobitexDemoResource {

99

BlackBerry Application Developer Guide

private MainScreen _mainScreen;

private EditField _pin;

private EditField _data;

private RichTextField _messages;
private SenderThread _sendThread;
private ReceiverThread _receiverThread;

//StatiCs ——--—— o m -
private static ResourceBundle _resources =
ResourceBundle.getBundle(MobitexDemoResource.BUNDLE_ID,
Mob1itexDemoResource.BUNDLE_NAME) ;

static public void main(String[] args)
{
new MobitexDemo().enterEventDispatcher();

}

//menuitems ——-—----m oo
//cache the send menu item for reuse

private Menultem _sendMenultem = new Menultem(_resources,
MOBITEXDEMO_MENUITEM_SEND, 100, 10) {
public void runQ)

{
//don't execute on a blank address
String pin = _pin.getText(Q);
String data = _data.getText();
if (pin.length() > 0)
{
send(pin, data);
}
}

};
//cache the clear messages menu item for reuse
private Menultem _clearMessages = new MenuItem(_resources,
MOBITEXDEMO_MENUITEM_CLEARMESSAGES, 105, 10) {

public void runQ)

{

_messages.setText("");

}

};

pub1ic MobitexDemo()
{

_mainScreen = new MainScreen();

_mainScreen.setTitle(new
LabelField(_resources.getString(MOBITEXDEMO_TITLE), LabelField.ELLIPSIS |
LabelField.USE_ALL_WIDTH));

_pin = new EditField(_resources.getString(MOBITEXDEMO_ LABEL_PIN), null,
Integer.MAX_VALUE, EditField.FILTER_PIN_ADDRESS);

_mainScreen.add(_pin);

_data = new EditField(_resources.getString(MOBITEXDEMO_LABEL_DATA), null);
_mainScreen.add(_data);

_mainScreen.add(new SeparatorField());

100

6: Using datagram connections

_messages = hew
RichTextField(_resources.getString(MOBITEXDEMO_CONTENT_DEFAULT));
_mainScreen.add(_messages);

_mainScreen.addKeyListener(this); //implemented by the super
_mainScreen.addTrackwheelListener(this); //implemented by the super

//start the helper threads
_sendThread = new SenderThread();
_sendThread.start();

_receiverThread = new ReceiverThread();
_receiverThread.start();

pushScreen(_mainScreen); //push the main screen - a method on the
UiApplication class

}

//methods —------—---mm
/*public boolean keyChar(char key, int status, int time)
{

if (
UiApplication.getUiApplication().getActiveScreen().getLeafFieldWithFocus() ==
_pin && key == Characters.ENTER)

{
_sendMenuItem.run();
return true; //I've absorbed this event, so return true
}
else
{
return super.keyChar(key, status, time);
}
Y/
protected void makeMenu(Menu menu, int instance)
{
menu.add(_sendMenuItem);
menu.add(_clearMessages);
menu.addSeparator();
super.makeMenu(menu, instance);
}
private void send(String pin, String data)
{
_sendThread.send(pin, data);
}
private void message(String msg)
{
System.out.printin(msg);
_messages.setText(_messages.getText() + msg + "\n");
}

101

BlackBerry Application Developer Guide

//innerclasses —=——==—-— - mmm e
private class ReceiverThread extends Thread

{
private DatagramConnection _dc;
//shutdown the thread
public void stop()
{
try {
_dc.close();
} catch(IOException e) {
MobitexDemo.this.message(e.toString());
}
}
public void run()
{
try {
//inbound data connection - leave the MAN blank
_dc = (DatagramConnection)Connector.open("mobitex:DATA:");
for(;)
{
Datagram d = _dc.newDatagram(_dc.getMaximumLength());
_dc.receive(d);
DatagramBase db = (DatagramBase)d;
MobitexAddress ma = (MobitexAddress)db.getAddressBase();
MobitexPacketHeader mph = ma.getPacketHeader();
StringBuffer sb = new StringBuffer();
sb.append("Recieved packet");
sb.append("\nFROM: ") ;
sb.append(mph.getSourceAddress());
sb.append("\nTO:");
sb.append(mph.getDestinationAddress());
sb.append("\nFLAGS:");
sb.append(Integer.toHexString(mph.getPacketFlags()));
sb.append("\nDATA:");
sb.append(new String(db.getData()));
MobitexDemo.this.message(sb.toString());
}
} catch (IOException e) {
Mob1itexDemo.this.message(e.toString());
}
}
}
Yok
* The ConnectionThread class manages the datagram connection
*/
private class SenderThread extends Thread implements DatagramStatusListener
{

private static final int TIMEOUT = 500; //ms

102

6: Using datagram connections

private Vector _sendQueue = new Vector(5);

private volatile boolean _start = false;
private volatile boolean _stop = false;

//queue something for sending
public void send(String pin, String data)

{
synchronized(_sendQueue)
{
_sendQueue.addElement(new String[] { pin, data });
_start = true;
}
}

//shutdown the thread
public void stop()

{

_stop = true;
}
public void runQ)
{

for(;;)

{

String pin = null;
String data = null;
//Thread control\
synchronized(_sendQueue)

{
while(!_start & !_stop)
{
//sleep for a bit so we don't spin
try {
_sendQueue.wait(TIMEOUT) ;
} catch (InterruptedException e) {
System.err.println(e.toString();
h
}
if (_start)
{
String[] a = (String[])_sendQueue.firstElement();
if (a != null)
{
pin = a[0];
data = a[l];
}
_start = false;
}
//exit condition
else if (_stop)
{
return;
}
}

103

BlackBerry Application Developer Guide

//open the connection and extract the data
DatagramConnection dc = null;
try {
String address = "DATA:" + pin;
dc = (DatagramConnection)Connector.open("mobitex:" + address);
DatagramConnectionBase dcb = (DatagramConnectionBase)dc; //an
error if this fails

Datagram d dc.newDatagram(dc.getMaximumLength());

byte[] raw = data.getBytes();

d.setAddress(address);

d.setData(raw, 0, raw.length);

DatagramBase db = (DatagramBase)d; //an error if this fails

dcb.allocateDatagramId(d); //allocate a datagram id - not
necssary, but if we want to know about status

// for this particular datagram, then we can allocate the id
here and Tog it for later follow up

//setup a status listener
db.setDatagramStatusListener(this);

dcb.send(d);
dc.close();

} catch (IOException e) {
MobitexDemo.this.message(e.toString());

}

//we're done one connection so reset the start state

_start = false;

}

public void updateDatagramStatus(int dgId, int code, Object context)

{

String msg = "Datagram: + Integer.toHexString(dgId) + "\nStatus: +
DatagramStatusListenerUtil.getStatusMessage(code);
MobitexDemo.this.message(msg);

}
B
protected void onExit()
{
_sendThread.stop(Q);
_receiverThread.stop();
B

104

6: Using datagram connections

Sending and receiving SMS messages

Send and receive SMS messages in datagram packets using UDP. SMS datagram packets, which include
the BlackBerry header information, have a fixed size of 160 bytes.

Note: SMS messaging is not fully supported on all networks. Check with your service provider to verify that the relevant
networks have full or partial support for SMS messaging. In most cases, SMS is supported on GPRS and CDMA network-
enabled handhelds.

If the service provider supports SMS, system administrators can also use an IT policy to control the use of SMS messaging
by corporate users. Administrators can set the ENABLE_SMS item to TRUE or FALSE. The default is TRUE (SMS messaging
is allowed).

Sending SMS messages

Open a datagram connection for sending SMS messages

Invoke Connector.open(). Provide a connection string using the following format, where
<peer_address> is the phone number—Mobile Station ISDN Number (MSISDN)—of the recipient.

DatagramConnection _dc = Connector.open("sms://<peer_address>");

You can also omit the peer_address and invoke Datagram.setAddress () instead to set the
destination address of the message.

Create an SMS message

Invoke DatagramConnection.newDatagram().

Datagram smsMessage = conn.newDatagram(buf, buf.length);

Set SMS message contents

Invoke setData().

private String _msg = "This is a test message";
byte[] data = _msg.getBytes();
smsMessage.setData(data, 0, data.length);

Send an SMS message

Note: Open network connections on a separate thread from the main application thread so the Ul does not stall.

If you did not specify peer_address in the connection string, invoke Datagram.setAddress() to set
the SMS address. To send the SMS message, invoke DatagramConnection.send().

smsMessage.setAddress("sms://+15555551234");
_dc.send(datagram) ;

Code example

The SendSms.java code example demonstrates how to send an SMS message on a separate thread.

Example: SendSms.java

Yok

* SendSms.java

105

BlackBerry Application Developer Guide

* Copyright (C) 2002-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.smsdemo;

import net.rim.device.api.io.*;
import net.rim.device.api.system.*;
import javax.microedition.io.*;
import java.util.¥;

import java.io.*;

public class SendSms extends Application {
private static final int MAX_PHONE_NUMBER_LENGTH = 32;
// Members.
private String addr = "15195551234";
private String msg = "This is a test message.";
private DatagramConnection _dc = null;
private static String _openString = "sms://";
public static void main(String[] args) {
new SendSms().enterEventDispatcher();

b
public SendSms() {
try {
_dc = (DatagramConnection)Connector.open(_openString);
byte[] data = msg.getBytes();
Datagram d = _dc.newDatagram(_dc.getMaximumLength());
d.setAddress("//" + addr);
_dc.send(d);
} catch (IOException e) {
}
System.exit(0);
B

Receiving SMS message

Create a separate listener thread
Listen for messages on a separate thread from the main application thread so that the Ul does not stall.

Open a datagram connection
Invoke Connector.open(). Provide a connection string using the following format:

_dc = (DatagramConnection)Connector.open("sms://<peer_address><port>");

where:
e <peer_address> is the phone number—Mobile Station ISDN Number (MSISDN)—of the receiver

e <port> is the port number for which the application receives SMS messages

Retrieve a datagram

Create a Datagram object to store the datagram. To retrieve the SMS message datagram, invoke
receive() on the datagram connection. This operation blocks until data is received.

106

6: Using datagram connections

Datagram d = _dc.newDatagram(160); // SMS messages have a fixed size of 160 bytes

_dc.receive(d);

Extract data from a datagram

To extract the address from the SMS message, invoke Datagram.getAddress (). To extract the data
from the SMS message, invoke Datagram.getData().

String address = d.getAddress();
String msg = new String(d.getData());

Code example
The ReceiveSms.java code example demonstrates how to receive an SMS message on a separate thread.

Example: ReceiveSms.java
/**
* ReceiveSms.java
* Copyright (C) 2002-2004 Research In Motion Limited. A1l rights reserved.
:':/
package com.rim.samples.docs.smsdemo;

import net.rim.device.api.io.*;
import net.rim.device.api.system.*;
import javax.microedition.io.*;
import java.util.*;

import java.io.*;

public class ReceiveSms extends Application {
private ListeningThread _listener;
// Additional code required for complete sample.

public static void main(String[] args) {
new ReceiveSms().enterEventDispatcher();

}

ReceiveSms () {
_Tistener = new ListeningThread();
_Tlistener.start(Q);

}

private static class ListeningThread extends Thread {
private boolean _stop = false;
private DatagramConnection _dc;
public synchronized void stop() {
_stop = true;
try {
_dc.close(); // Close the connection so the thread returns.
} catch (IOException e) {
System.err.printin(e.toString());

}

107

BlackBerry Application Developer Guide

public void run() {
try {

_dc = (DatagramConnection)Connector.open("sms://");

for(G;) {
if (_stop) {

return;

}
Datagram d = _dc.newDatagram(_dc.getMaximumLength());
_dc.receive(d);
String address = new String(d.getData());
String msg = new String(d.getData());
System.out.printin("Message received:
System.out.println("From: " + address);
System.exit(0);

+ msg);

}
} catch (IOException e) {
System.err.println(e.toString());

}

108

Localizing applications

e Resource files

e Adding localization support to applications

e Retrieving strings from a resource file

e Managing resource files for application suites

Resource files

Design applications so that they can be localized (adapted to specific languages and regions) without
coding changes. Instead of including textual elements in your source code, store text strings in separate
resource files. In your source code, use unique identifiers to map to the appropriate resource.

Storing text strings in separate resource files has two benefits:

« Text translation is more efficient because all of the text strings for a given locale are stored in a
single file, outside your source code.

* Applications can dynamically retrieve the appropriate text to display to the user, based on the user
locale.

The BlackBerry JDE includes a built-in resource mechanism for creating string resources. The Localization

APl is included in the net.rim.device.api.i18n package.

0 Note: MIDP applications do not support localization.

The resources for a given locale are stored in a ResourceBundle object. A ResourceBundleFamily
object contains a collection of ResourceBundles, which groups the resources for an application. The
application can switch languages, depending on the user locale, without requiring new resource bundles.

The IDE compiles each resource bundle into a separate compiled .cod file. You can load the appropriate
.cod files onto handhelds with the other .cod files for the application.

File required for
localization

Resource header file This file defines descriptive keys for each localized string. AppName.rrh

Description Example

When the IDE builds a project, it creates a resource interface with the same
name as the .rrh file and appends Resource. For example, if you create
AppName. rrh, the interface is AppNameResource.

Resource content file This file maps resource keys to string values for the root (global) locale. It has AppName.rrc
(root locale) the same name as the resource header file.

Resource content file This file maps resource keys to string values for specific locales (language and AppName_en.rrc
(specific locales) country). Files have the same name as the resource header file, followed by AppName_en_GB.rrc
an underscore (_) and the language code, and then, optionally, an underscore -

(_) and country code. AppName_fr.rc

Two-letter language and country codes are specified in 1S0-639 and 1SO-
3166, respectively.

Initialization file This file initializes the resource bundle mechanism. This file is required only init.java
when resources are compiled as a separate project.

BlackBerry Application Developer Guide

Resource inheritance

Resources are organized in a hierarchy based on inheritance. If a string is not defined in a locale, a string
from the next closest locale is used.

Adding localization support to applications

Add resource header files

In the IDE, on the File menu, click New.

—_

In the Source file name field, type a file name.

Click Browse.

Select the folder that contains the file.

Click OK.

In the field, type the package name, for example, com.rim.samples.docs.countryinfo.
Click OK.

Click Yes.

Leave the file that appears in the text editor empty except for the package statement.

© © N U W

10. Add the file to your project by right-clicking the file in the right pane, and then clicking Insert into
project.

Add resource content files

Create three resource content files in the same folder where CountryInfo.java is located:
CountryInfo.rrc (root locale), CountryInfo_en.rrc (English), and CountryInfo_fr.rrc (French).

1. On the File menu, click New.
Type a file name and location.
Click OK.

Click Yes.

Leave the file empty.

IS

Add the .rrc file to the application project by right-clicking the file in the right pane, and then
clicking Insert into project.

Add resources

1. Inthe IDE, double-click a resource header file.

110

7: Localizing applications

2. On the Root tab, type resource keys and values for each string or string array in your application.

Each row defines a single resource. The Keys column displays a descriptive name for the resource.
This is the name that you use in your code to retrieve the localized text. The Values column displays
the text for this resource in a particular locale.

o Tip: To add an array of values for a single resource key, in the resource editor, right-click a resource and click Convert to
Multiple Values. Add one or more values to the array.
3

To specify a different text string in other locales, select the tab for a locale, such as fr for the French
language.

4. In the Value cell for the resource, type the text string for the locale. If you do not define a value for a
resource in a particular locale, the value for the root locale is used.

o Tip: Type unicode characters directly into the Value cell. Visit http://www.unicode.org for more information.

Set an application title

You can provide a localized application title to display on the handheld Home screen. If you do not
provide a resource for the application title, the value entered into the Title field on the Application tab of
the project properties window is used.

1. In the resource editor, add a resource for the application title, such as APPLICATION_TITLE.
2. Type a value for this resource in each locale that you support.

o Tip: To create a shortcut key for an application, add the unicode underscore character (\u0332) after the letter that you
want to use as a shortcut key. A shortcut key is a key that a user can press on the Home screen to start the application.

In the IDE, right-click the application project, and then click Properties.

3

4. Click the Resources tab.

5. Select the Title Resource Available option.
6

From the Resource Bundle drop-down list, select the resource header file name to use for this
application.

7. From the Resource Id drop-down list, select the resource to use for the application title, such as
APPLICATION_TITLE.

Code example

The Countrylnfo.java sample demonstrates how to store text strings in separate resource files for specific
locales rather than providing text strings directly in the code. In your source code, you retrieve the string
from the resource to display the appropriate text for the user locale.

o Tip: The CountryInfo.java sample adds resources to the project for a single application. If you are creating a suite of

applications, organize resources into separate projects for each locale. The sample workspace that is included in the JDE
provides an example of this organization. See the /DF Online Help for more information.

Example: Countrylnfo.java

/**

* CountryInfo.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
:':/

package com.rim.samples.docs.countryinfo;

m

BlackBerry Application Developer Guide

import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;
import net.rim.device.api.il8n.*;

public class CountryInfo extends UiApplication {
public static void main(String[] args) {
CountryInfo theApp = new CountryInfo();
theApp.enterEventDispatcher();
}

public CountryInfo() {
pushScreen(new HelloWorldScreen());
b
}

final class HelloWorldScreen extends MainScreen implements CountryInfoResource {
private InfoScreen _infoScreen;
private ObjectChoiceField choiceField;
private int select;

private static ResourceBundle _resources = ResourceBundle.getBundle(
BUNDLE_ID, BUNDLE_NAME);

public HelloWorldScreen() {
super(Q);
LabelField title = new LabelField(_resources.getString(APPLICATION_TITLE),
LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);
setTitle(title);
add(new RichTextField(_resources.getString(FIELD_TITLE)));
String choices[] = _resources.getStringArray(FIELD_COUNTRIES);
choiceField = new ObjectChoiceField(
_resources.getString(FIELD_CHOICE), choices);
add(choiceField);
}

public boolean onClose() {
Dialog.alert(_resources.getString(CLOSE));
System.exit(0);
return true;

}

private Menultem _viewItem = new MenuItem(_resources, MENUITEM_VIEW, 110, 10) {
public void run() {
select = choiceField.getSelectedIndex();
_infoScreen = new InfoScreen();
UiApplication.getUiApplication().pushScreen(_infoScreen);

b
private Menultem _closeltem = new MenuItem(_resources, MENUITEM_CLOSE,
200000, 10) {

public void run() {
onClose(Q);

112

7: Localizing applications

}s

protected void makeMenu(Menu menu, int instance) {
menu.add(_viewItem);
menu.add(_closeItem);

}

private class InfoScreen extends MainScreen {
public InfoScreen() {

super();

LabelField 1f = new LabelField();

BasicEditField popField = new BasicEditField(

_resources.getString(FIELD_POP), null, 20, Field.READONLY);

BasicEditField TangField = new BasicEditField(

_resources.getString(FIELD_LANG), null, 20, Field.READONLY);
BasicEditField citiesField = new BasicEditField(

_resources.getString(FIELD_CITIES), null, 50, Field.READONLY);
add(1);

add(new SeparatorField());

add(popField);

add(langField);

add(citiesField);

if (select == 0) {
1f.setText(_resources.getString(FIELD_US));
popField.setText(_resources.getString(FIELD_US_POP));
langField.setText(_resources.getString(FIELD_US_LANG));
citiesField.setText(_resources.getString(FIELD_US_CITIES));

} else if (select == 1) {
1f.setText(_resources.getString(FIELD_CHINA));
popField.setText(_resources.getString(FIELD_CHINA_POP));
langField.setText(_resources.getString(FIELD_CHINA_LANG));
citiesField.setText(_resources.getString(FIELD_CHINA_CITIES));

} else if (select == 2) {
1f.setText(_resources.getString(FIELD_GERMANY));
popField.setText(_resources.getString(FIELD_GERMANY_POP));
langField.setText(_resources.getString(FIELD_GERMANY_LANG));
citiesField.setText(

_resources.getString(FIELD_GERMANY_CITIES));

Retrieving strings from a resource file

Implement the resource interface

For internationalization, implement the appropriate resource interface. The IDE compiles this interface
from the resource header (.rrh) automatically. The interface has the same name as the .rrh file, with
Resource appended to it.

13

BlackBerry Application Developer Guide

14

public class HelloWorldScreen extends MainScreen implements CountryInfoResource

{ ...}

Retrieve the resource bundle

Declare a class variable to hold the resource bundle for this application. A ResourceBundle object
contains all localized resources, such as strings, for an application. An application can select the
appropriate bundles at runtime based on its locale.

private static ResourceBundle _resources = ResourceBundle.getBundle(BUNDLE_ID,
BUNDLE_NAME) ;

To retrieve the appropriate bundle family, invoke getBundle(). The IDE creates the BUNDLE_ID and
BUNDLE_NAME constants when it creates the resource interface as part of building the project.

Create menu items using resources

To create MenuItem objects using resources, use the MenuItem constructor that accepts a resource
bundle and a resource instead of a String for the name of the menu item. Do not implement
toString(), because the text of the menu item is provided by the resource.

private Menultem _viewItem = new Menultem(_resources, MENUITEM_VIEW, 110, 10) {
public void run() {
select = choiceField.getSelectedIndex();
_infoScreen = new InfoScreen();
UiApplication.getUiApplication().pushScreen(_infoScreen);

Replace text strings with the appropriate resources

For each field that appears on the main screen, replace the text string with the appropriate resource.
Invoke getString() orgetStringArray() to retrieve the string for the appropriate language.

LabelField title = new LabelField(_resources.getString(APPLICATION_TITLE),
LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);

add(new RichTextField(_resources.getString(FIELD_TITLE)));

String choices[] = _resources.getStringArray(FIELD_COUNTRIES);

choiceField = new ObjectChoiceField(_resources.getString(FIELD_CHOICE), choices);

Code example

The following example modifies the CountryInfo.java sample to retrieve strings from a resource file.

Example: Countrylnfo.java (with localization support)

/ ek
* CountryInfo.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

*/

7: Localizing applications

package com.rim.samples.docs.localization;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;

import net.rim.device.api.il8n.*;

public class CountryInfo extends UiApplication {
public static void main(String[] args) {
CountryInfo theApp = new CountryInfo();
theApp.enterEventDispatcher();
}
public CountryInfo() {
pushScreen(new HelloWorldScreen());
b
}
final class HelloWorldScreen extends MainScreen implements CountryInfoResource {
private InfoScreen _infoScreen;
private ObjectChoiceField choiceField;
private int select;
private static ResourceBundle _resources = ResourceBundle.getBundle(BUNDLE_ID,
BUNDLE_NAME);
public HelloWorldScreen() {
super(Q);
LabelField title = new LabelField(_resources.getString(APPLICATION_TITLE),
LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH);
setTitle(title);
add(new RichTextField(_resources.getString(FIELD_TITLE)));
String choices[] = _resources.getStringArray(FIELD_COUNTRIES);
choiceField = new ObjectChoiceField(
_resources.getString(FIELD_CHOICE), choices);
add(choiceField);
b
public boolean onClose() {
Dialog.alert(_resources.getString(CLOSE));
System.exit(0);
return true;
B
private Menultem _viewItem = new Menultem(_resources, MENUITEM_VIEW, 110, 10) {
public void run() {
select = choiceField.getSelectedIndex();
_infoScreen = new InfoScreen();
UiApplication.getUiApplication().pushScreen(_infoScreen);
}
};
private Menultem _closeItem = new MenuIltem(_resources, MENUITEM_CLOSE, 200000,
10) {
public void run() {
onClose();
}
b
protected void makeMenu(Menu menu, int instance) {
menu.add(_viewItem);
menu.add(_closeltem);
B

private class InfoScreen extends MainScreen {

115

BlackBerry Application Developer Guide

public InfoScreen() {

super();

LabelField 1f = new LabelField();

BasicEditField popField = new BasicEditField(

_resources.getString(FIELD_POP), null, 20, Field.READONLY);

BasicEditField langField = new BasicEditField(

_resources.getString(FIELD_LANG), null, 20, Field.READONLY);

BasicEditField citiesField = new BasicEditField(

_resources.getString(FIELD_CITIES), null, 50, Field.READONLY);

add(1);

add(new SeparatorField());

add(popField);

add(langField);

add(citiesField);

if (select == 0) {
1f.setText(_resources.getString(FIELD_US));
popField.setText(_resources.getString(FIELD_US_POP));

langField.setText(_resources.getString(FIELD_US_LANG));

citiesField.setText(_resources.getString(FIELD_US_CITIES));

} else if (select == 1) {
1f.setText(_resources.getString(FIELD_CHINA));
popField.setText(_resources.getString(FIELD_CHINA_POP));
langField.setText(_resources.getString(FIELD_CHINA_LANG));
citiesField.setText(_resources.getString(FIELD_CHINA_CITIES));

} else if (select == 2) {
1f.setText(_resources.getString(FIELD_GERMANY));
popField.setText(_resources.getString(FIELD_GERMANY_POP));
langField.setText(_resources.getString(FIELD_GERMANY_LANG));
citiesField.setText(
_resources.getString(FIELD_GERMANY_CITIES));

Managing resource files for application
suites

To set up projects in the IDE that group resource files for each locale, perform the following actions:
1. Create resource projects.
Specify output file names.

Create an initialization file.

> N

Add files to appropriate resource projects.

Create resource projects

Create a project for each resource bundle (locale), including the root locale.

116

7: Localizing applications

Give the projects for each locale the same name as the project for the root locale, followed by a double
underscore (__), the language code, and, optionally, an underscore (_) followed by the country code. For
example, if the root locale project is named com_company_app, the projects for each locale would be
named com_company_app__en, com_company_app__en_GB, com_company_app__fr.

Specify output file names

1. Right-click the project, and then click Properties.

2. Click the Build tab.

3. In the Output file name field, type a name for the compiled file, without a file name extension.

Note: The output file names for all resource locale projects must be the same as for the root locale, followed by a double
underscore and the appropriate language and country codes. For example, if the output file name for the root locale project
is com_company_app, the output file name for the French-language locale must be com_company_app__fr.

Create an initialization file

When you compile resources in a separate project, create an initialization file (for example, init.java).
The IDE provides a built-in initialization mechanism, so that you only need to create an empty
initialization class with an empty mainQ).

package com.rim.samples.device.resource;
import net.rim.device.api.il8n.*;
public class init {

public static void main (String[] args) { }

}

Add files to appropriate resource projects

Create one resource header file for each application and one resource content file for each application,
for each supported locale. Organize the resource files into projects.

1. Add the initialization file (init.java) to each resource project. Do not include the initialization file
in the application projects.

2. Add the resource header (.rrh) files to the projects for each application and also to each resource
project. This is necessary to define the dependency between the application project and its resource

projects.
In each resource project, right-click each .rrh file, and then click Properties.
Select Dependency only. Do not build.

v~ W

Add the resource content (.rrc) files to the resource projects for the appropriate locales.

O Tip: If you support a large number of locales, create a single library project for all resource header (.rrh) files and set the
project type to Library. For each resource locale in this project, define a dependency between the projects.

17

Using IT policies

e IT policies
e Retrieving IT policy items
e Listening for policy changes

IT policies

The BlackBerry IT policy API (net.rim.device.api.itpolicy) enables applications to access the IT
policy database on handhelds. Applications can retrieve custom IT policy settings to change their
behavior or functionality accordingly.
Note: The IT policy API enables applications to retrieve values for custom (third-party) IT policy items only. Applications
cannot retrieve values for standard IT policy items.
Each IT policy item consists of a descriptive key and a value. The value can be a string, integer, or
Boolean value. For example, the A11owPhone policy can have a value of true or false.
With the BlackBerry Enterprise Server version 3.5 or later for Microsoft® Exchange and BlackBerry
Handheld Software version 3.5 or later, handheld policy settings are synchronized and updated
wirelessly. With earlier versions of handheld software, handheld policy settings are updated when the
user synchronizes the handheld with the desktop.
See the BlackBerry Enterprise Server for Microsoft Exchange Handheld Management Guide for more
information.

Retrieving IT policy items

To retrieve the value of an IT policy item, invoke getString(), getInteger(), or getBoolean().

Retrieve custom policies

To retrieve custom third-party IT policies by name, use the form of each method that accepts a String
parameter.

public static String getString(String name);
public static boolean getBoolean(String name, boolean defaultValue);
public static int getInteger(String name, int defaultValue);

The defaultValue parameter specifies the return value if the parameter has not been set.

Listening for policy changes

A global event is generated when the IT policy database is updated on the handheld.

8: Using IT policies

To use IT policies, applications implement the GlobalEventListener interface and register this listener
to receive global events. The GlobalEventListener.eventOccurred() method is invoked when a
global event, such as a change in IT policies, occurs. In its implementation of eventOccurred(),
applications can retrieve values for IT policy items that they use to determine whether values have
changed.

Controlling application downloads

Code

With the BlackBerry Enterprise Server version 3.6 or later for Microsoft Exchange or BlackBerry
Enterprise Server version 2.2 or later for IBM Lotus® Domino®, system administrators can set the
following IT policies to control the use of third-party applications.

IT Policy Default Description

DISABLETHIRDPARTYAPPLICATIONDOWNLOADS FALSE Determines whether the user can install third-party applications,
either wirelessly or using the desktop software. Administrators
can install approved applications for the user, and then set this IT
policy to TRUE to prevent the user from installing additional
applications.

ALLOWAPPRUN TRUE Determines whether third-party applications can run on the
handheld. For example, set this IT policy to FALSE to prevent

users from using third-party applications that they have already
downloaded.

Additional IT policies enable the corporate IT administrator to control the access of third-party
applications to handheld resources, such as the persistent store, and to the network.

See the BlackBerry Enterprise Server Handheld Management Guide for more information on setting IT
policies.

example

The ITPolicyDemo.java sample implements IT policy controls.

Example: ITPolicyDemo.java

/ *ik

* ITPolicyDemo.java

* Copyright (C) 2002-2004 Research In Motion Limited.
7':/

package com.rim.samples.docs.itpolicy;

import net.rim.device.api.system.*;
import net.rim.device.api.itpolicy.*;

public class ITPolicyDemo extends Application implements GlobalEventListener {
public static void main(String[] args) {
ITPolicyDemo app = new ITPolicyDemo();
app.enterEventDispatcher();
}
ITPolicyDemo() {
this.addGlobalEventListener(this);

119

BlackBerry Application Developer Guide

boolean appEnabled = ITPolicy.getBoolean("DemoAppEnabTled", true);
System.out.printin("App Enabled: " + appEnabled);
System.exit(0);

}
public void eventOccurred(long guid, int dataO, int datal, Object obj0O, Object
objl) {
if (guid == ITPolicy.GUID_IT_POLICY_CHANGED) {
String security = ITPolicy.getString("DemoSecuritylLevel™);
boolean appEnabled = ITPolicy.getBoolean("DemoAppEnabled", true);
int retries = ITPolicy.getInteger("DemoAppRetries", 10);
}
}

120

Creating client/ server
push applications

e Push applications

e Client/ server push requests

e Writing a client-side push application
e Writing a server-side push application
e Troubleshooting push applications

Push applications

Note: Push applications require BlackBerry Enterprise Server version 3.5 or later for Microsoft Exchange, or BlackBerry
0 Enterprise Server version 2.2 or later for IBM Lotus Domino, with the Mobile Data Service enabled.

Push applications enable you to send new web content and alerts to specific users. Users do not have to
request or download the data because the push application delivers the information as it becomes
available.

There are two types of push applications:

< Browser push applications: Web content is sent to the browser on the handheld. The BlackBerry
Browser configuration supports Mobile Data Service push applications. The WAP Browser
configuration supports WAP push applications. The Internet Browser configuration does not support
push applications. See the BlackBerry Browser Developer Guide for information on writing a browser
push application.

 Client/server push applications: Data is sent to a custom Java application on the handheld. Client/
server push applications consist of a custom client application for the handheld and a server-side
application that pushes content to it. This approach provides more control over the type of content
that you can send out and how this data is processed and displayed on the handheld compared to
browser push applications.

Client/ server push requests

Applications can push content to handhelds using one of two methods:
* Push Access Protocol (PAP), which is part of the WAP 2.0 specification
¢ RIM push

Note: The Mobile Data Service only queues 1000 push requests, including both RIM and PAP push requests. The Mobile
o Data Service responds to the server with an error if it receives more than 1000 requests.

Both push service implementations support the following tasks:
e sending a server-side push submission
¢ specifying a reliability mode for the push submission

BlackBerry Application Developer Guide

122

* In transport-level reliability mode, messages are considered to be delivered when the Mobile
Data Service receives acknowledgements for all sent packets.

* In application-level reliability mode, messages are considered to be delivered when the Mobile
Data Service receives confirmation from the application that initiated the push.
* specifying a deliver-before time-stamp for the push submission
* requesting a result notification of the push submission
The PAP implementation supports the following additional tasks:
* specifying a deliver-after timestamp for the push submission
e cancelling a push request submission
e querying the status of a push request submission

PAP pushes are stored in a database, whereas RIM pushes are stored in RAM. RIM pushes may be lost if
the server is rebooted.

Transcoding

If applicable, the Mobile Data Service applies a transcoder to push requests according to its transcoder
rules.

Push requests can override these rules to request a specific transcoder by using the transfer-encoding
header. For example, if the HTTP header transfer-encoding: vnd.wap.wm1 is set, the Mobile Data
Service runs the wm1 transcoder before it pushes the data to the handheld.

Transport-level acknowledgement

When the push arrives at a handheld, the Mobile Data Service initiates a connection to the URL specified
in the push request to inform the server of the delivery. Transport-level acknowledgement is available in
the BlackBerry Handheld Software version 3.6 or later.

Application-level acknowledgement

When the push arrives at a handheld, the application acknowledges the content. The Mobile Data
Service initiates a connection to the URL specified during the push request to inform the server of the
delivery. If an error is encountered, the Mobile Data Service sends an error message to the server.
Application-level acknowledgement is available in handheld software version 4.0.
RIM push provides an application-preferred option, which uses application-level acknowledgement in
handheld software version 4.0 and transport-level acknowledgement otherwise.

Note: The Mobile Data Service version 4.0 or earlier cannot query the BlackBerry Enterprise Server for device characteristics.
o To obtain device characteristics, the Mobile Data Service must receive an HTTP request before it receives a push request.

To provide the necessary requests, browse to a web page using the BlackBerry Browser and a Mobile Data Service browser
configuration.

Send a RIM push request

To push data to handhelds using RIM push, send an HTTP POST request using the following format,
where <destinatiorr> is the destination PIN or email address, <port> is the destination port, <ur& is the
URI sent to the device, and <content> is a byte stream:

9: Creating client/server push applications

/push?DESTINATION=<destination>&PORT=<port>&REQUESTURI=<uri><headers><content>

The following headers are valid for RIM push requests:

HTTP header Description

X-RIM-Push-ID This header specifies a unique message 1D, which can be used to cancel or check the
status of a message. Typically, specify a URL in combination with a value, such as such as
123@rim.com.

X-RIM-Push-NotifyURL This header specifies the URL to which a result notification is sent.

X-RIM-Push-ReTiability- This header specifies the delivery reliability mode of the content—transport-level

Mode (TRANSPORT), application-level (APPLICATION) and application preferred (APPLICATION-
PREFERRED).

X-RIM-Push-Deliver-Before This header specifies the date and time by which the content must be delivered to the
handheld. Content that has not been delivered before this date is not delivered.

X-RIM-Push-Priority This header specifies the priority of channel push messages. Permitted strings include
none (default), low, medium, and high. If the priority is low, medium or high, users receive
notification of channel updates. If the priority is high, a status dialog accompanies the
notification.

Send a PAP push request

To push data to handhelds using PAP, send an HTTP POST request using the following format, where
<destinatior> is the destination PIN or email address, and <port> is the destination port:
/push?DESTINATION=<destination>&PORT=<port>&REQUESTURI=/pap

The request is a MIME multipart message, which consists of the following items:

¢ an XML document specifying the control entity

e the push content

For example, the control entity might contain information for the handheld address, message D, and
delivery timestamps.

Use the PAP Document Type Definition (DTD) to specify the following attributes:

XML control entity attributes Description Example
X-Wap-Application-Id This entity attribute specifies the equivalent ~ "/"

of the REQUEST URI HTTP parameter for RIM

push.
push-id Specifies a unique message ID. Additionally, 123@wapforum.org

this control entity attribute can be used to
cancel or check the status of a message. It is
recommended that you use a URL in
combination with a value. For example,

123@wapforum.org
ppg-notify-requested-to Specifies the URL that result notification is http://wapforum:8080/
sent to. ReceivePAPNotification

deliver-before-timestamp Specifies the date and time by which the 2004-01-20T22:35:00z
content must be delivered to the handheld.
Content that has not been sent by this date is
not delivered.
deliver-after-timestamp Specifies the date and time after which 2004-01-20T21:35:00z
content is delivered to the handheld. Content
is not delivered before this date.
address-value Specifies the address of the handheld thatthe ' WAPPUSH= destinatior?o3Aportl/
push content is sent to. The destinationis the TYPE=USER@rim.net
destination email address or PIN.

123

BlackBerry Application Developer Guide

124

XML control entity attributes Description Example

deTivery-method Specifies the delivery reliability mode of the confirmed; unconfirmed
content, transport-level or application-level.

See the Push Access Protocol (WAP-247-PAP-20010429-a) specification for more information on writing
server-side push applications using PAP. See the PAP 2.0 DTD for information on the WAP Push DTDs.

Example: PAP push request

Content-Type: multipart/related; type="application/xml"; boundary=asdlfkjiurwghasf
X-Wap-AppTlication-Id: /

--asd1fkjiurwghasf
Content-Type: application/xml

<?xml version="1.0"7>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN" "http://www.wapforum.org/DTD/
pap_2.0.dtd">
<pap><push-message push-id="a_push_id" ppg-notify-requested-to="http://
foo.rim.net/ReceiveNotify">
<address address-value="WAPPUSH=john.doe%40acme.com%3A7874/
TYPE=USER@rim.net"/>
<quality-of-service delivery-method="unconfirmed"/>
</push-message></pap>

--asd1fkjiurwghasf
Content-Type: text/html

<html><body>Hello, PAP world!</body></html>
--asd1fkjiurwghasf--

Send a PAP push cancellation request

Use the following header to cancel a push submission that has already been sent to the Mobile Data
Service.

XML control entity attributes Description Example
cancel-message push-id Specifies cancelling the push message that ~ 123@wapforum.org
was previously submitted.

You must include the address attribute in this
request.

Example: PAP push cancellation request

Content-Type: application/xml

<?xml version="1.0"7>
<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"
"http://www.wapforum.org/DTD/pap_2.0.dtd">
<pap>
<cancel-message push-id="a_push_id">
<address address-value=
“WAPPUSH=john.doe%40acme.com%3A7874/TYPE=USER@rim.net” />

9: Creating client/server push applications

</cancel-message>
</pap>

Send a PAP push query request

To query the status of a push submission that has already been sent to the Mobile Data Service, use the
following header.:

XML control entity attributes Description Example

statusquery-message push-id Specifies the push message for which statusis 123@wapforum.org
desired. A response is returned with one of the
following message states: delivered, pending,
undeliverable, expired, rejected, timeout,
cancelled, aborted or unknown.

You must include the address attribute in this
request.

Example: PAP push status query request

Content-Type: application/xml

<?xml version="1.0"7>

<!DOCTYPE pap PUBLIC "-//WAPFORUM//DTD PAP 2.0//EN"
"http://www.wapforum.org/DTD/pap_2.0.dtd">

<pap>

<statusquery-message push-id="“a_push_id">
<address address-value=

“WAPPUSH=john.doe%40acme.com%3A7874/TYPE=USER@rim.net” />
</statusquery-message>
</pap>

Writing a client-side push application

Create a listening thread

Send and receive data on a separate thread so that you do not block the main event thread.

Open an input stream

Open the connection once and keep the connection open. Re-open the connection only if an
IOException occurs. Do not close and re-open the connection every time pushed data is received,
because pushed data can be lost if it arrives before Connector.open() is invoked again after a previous
push.

To avoid conflicts with other applications, choose a high port number. Port numbers must be from 1 to
65535. Port 7874 is reserved for the BlackBerry Browser.

125

BlackBerry Application Developer Guide

StreamConnectionNotifier _notify =
(StreamConnectionNotifier)Connector.open("http://:6234");

// open a server-side socket connection

StreamConnection stream = _notify.acceptAndOpen();

// open an input stream for the connection

InputStream input = stream.openInputStream();

Close the stream connection notifier
Invoke close () on the stream connection notifier.

_notify.close(Q);

Code example

The HTTPPushDemo.java sample demonstrates how to write a handheld application that listens for
inbound data from a web server. You create a listening thread to listen for image data on a specific port
and then display it when it arrives.

Example: HTTPPushDemo.java

/ ek
* HTTPPushDemo. java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

*/
package com.rim.samples.docs.httppush;

import java.io.*;

import javax.microedition.io.*;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.il8n.*;

import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

import com.rim.samples.docs.baseapp.*;

public class HTTPPushDemo extends BaseApp {
// Constants.
private static final String URL = "http://:6234";
private static final int CHUNK_SIZE = 256;

// Fields.

private ListeningThread _listeningThread;
private MainScreen _mainScreen;

private RichTextField _infoField;

private BitmapField _imageField;

public static void main(String[] args) {

HTTPPushDemo theApp = new HTTPPushDemo();
theApp.enterEventDispatcher();

126

9: Creating client/server push applications

Vs
* Create a separate listening thread so that you do not
* block the application’s main event thread.
*/
private class ListeningThread extends Thread {
private boolean _stop = false;
private StreamConnectionNotifier _notify;

public synchronized void stop() {
_stop = true;
try {
_notify.close(); // Close the connection so thread returns.
} catch (IOException e) {
System.err.println(e.toString());
} catch (NullPointerException e) {
// The notify object Tikely failed to open, due to an IOException.
3
}
public void run() {
StreamConnection stream = null;
InputStream input = null;
try {
synchronized(this) {
// Open the connection once or re-open after an IOException.
_notify = (StreamConnectionNotifier)Connector.open(URL);
3
while (!_stop) {
// NOTE: This method blocks until data is received.
stream = _notify.acceptAndOpen();
input = stream.openInputStream();

// Extract the data from the input stream.
DataBuffer db = new DataBuffer();
byte[] data = new byte[CHUNK_SIZE];
int chunk = 0;
while (-1 != (chunk = input.read(data))) {
db.write(data, 0, chunk);
}
input.close();
data = db.getArray(Q;
updateBitmap(data);
}
} catch (IOException e) {
System.err.printin(e.toString()); // It is likely the stream was
closed.

}
}
// Constructor.
public HTTPPushDemo() {
_mainScreen = new MainScreen();
_mainScreen.setTitle(new LabelField("Latest Logos",
LabelField.USE_ALL_WIDTH));
_infoField = new RichTextField();
_mainScreen.add(_infoField);
_mainScreen.add(new SeparatorField());

127

BlackBerry Application Developer Guide

_imageField = new BitmapField(null, BitmapField.HCENTER|BitmapField.TOP);
_mainScreen.add(_imageField);

_mainScreen.addKeyListener(this);
_mainScreen.addTrackwheellListener(this);

_TlisteningThread = new ListeningThread();
_TlisteningThread.start();

_infoField.setText("Application is listening...");
pushScreen(_mainScreen);
}
private void updateBitmap(final byte[] data) {
AppTication.getApplication().invokeLater(new Runnable() {
public void run() {
// Query the user to Toad the received image.
String[] choices = {"OK", "CANCEL"};
if (0 != Dialog.ask("Do you want to display latest logo?",
choices, 0)) {
return;

}

_infoField.setText("Image received. Size: "+ data.length);
_imageField.setBitmap(Bitmap.createBitmapFromPNG(data, 0,data.length));
}
b
B
protected void onExit() {
// Stop the Tistening thread.
_TlisteningThread.stop();
try {
_TisteningThread.join();
} catch (InterruptedException e) {
System.err.printin(e.toString());

}

Writing a server-side push application

Any programming language that can establish an HTTP connection can be used to create a push
application. The following sections use standard Java to demonstrate a server-side push application.

Construct the push URL

Format RIM push requests as follows:
/push?DESTINATION=<destination>&PORT=<port>&REQUESTURI=<uri><headers><content>

See " Send a RIM push request" on page 122 for more information on constructing a URL for a RIM push
request.

Format PAP push requests as follows:

128

9: Creating client/server push applications

/push?DESTINATION=<destination>&PORT=<port>&REQUESTURI=/pap

See " Send a PAP push request" on page 123 for more information on constructing a ULR for a PAP push
request.

Connect to the BlackBerry Enterprise Server

Invoke openConnection() on the push URL, and then cast the returned object as an
HttpURLConnection. An HttpURLConnection represents a connection to a remote object.

HttpURLConnection conn =(HttpURLConnection)url.openConnection();

Set properties for the HTTP POST request
Server-side push applications use a request method of POST.

conn.setRequestMethod("POST"); // post to BlackBerry Enterprise Server

To receive confirmation, set doInput to true to indicate that the application intends to read data from
the URL connection.

conn.setDoInput(true);

To send data, set doOutput to true to indicate that the application intends to send data to the URL
connection.

conn.setDoOutput(true);

Write data to the server connection
Invoke getOutputStream() to access an output stream. Write to the output stream, and then close it.

OutputStream out = conn.getOutputStream();
out.write(data);
out.close();

Read the server response

Invoke getInputStream() to access an input stream. Determine the size of the content and, if it is
nonzero, open a data input stream, and then read in the content.

InputStream ins = conn.getInputStream();

int contentlLength = conn.getContentLength();

if (contentLength > 0) {
byte[] someArray = new byte [contentlLength];
DataInputStream dins = new DataInputStream(ins);
dins.readFully(someArray);
System.out.println(new String(someArray));

}

ins.close();

129

BlackBerry Application Developer Guide

130

Disconnect the connection
Invoke disconnect() to indicate that the application plans to make no further requests to the server.

conn.disconnect();

Code example

The HTTPPush.java sample application, which is written using standard Java, sends a single .png image
to a listening client application on the handheld. The application pushes data based on an email
address. To test push applications with the simulator, define a mapping between the email address and
the simulator PIN (2100000A).

The following code compiles using J2SE 1.4.2.

Example: HTTPPushServer.java
/:':

* HttpPushServer.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.docs.samples.httppush;

import java.io.*;
import java.net.*;
import java.util.¥*;

public class HTTPPushServer {

//constants

private static final String HANDHELD_EMAIL = "scott.tooke@rim.com";

private static final String HANDHELD_PORT = "6234";

private static final String BES_HOST = "localhost";

private static final int BES_PORT = 8080;

private static final String CONTENT = "com/rim/docs/samples/httppush/logo.png";

//constructor
public HTTPPushServer() {
B

private static URL getPushURL(String HandheldEmail) {
URL _pushURL = null;
try {

if ((HandheldEmail == null) || (HandheldEmail.length() == 0)) {
HandheldEmail = HANDHELD_EMAIL;

}

_pushURL = new URL("http", BES_HOST, BES_PORT,
"/push?DESTINATION="+ HandheldEmail
+"&PORT="+HANDHELD_PORT+"&REQUESTURI=/");

} catch (MalformedURLException e) {

System.err.printin(e.toString());

}
return _pushURL;

9: Creating client/server push applications

public static void postData(byte[] data) {
try {

URL url = getPushURL(HANDHELD_EMAIL);
System.out.printin("Sending to" + url.toString(Q));
HttpURLConnection conn = (HttpURLConnection)url.openConnection();
conn.setDoInput(true); //for receiving the confirmation
conn.setDoOutput(true); //for sending the data
conn.setRequestMethod("POST"); //post the data to the BES
OutputStream out = conn.getOutputStream();
out.write(data); //write the data
out.close();
InputStream ins = conn.getInputStream();
int contentLength = conn.getContentLength();
System.out.printin("Content length: "+ contentlLength);
if (contentLength > 0) {
byte[] someArray = new byte [contentlLength];
DatalnputStream dins = new DataInputStream(ins);
dins.readFully(someArray);
System.out.println(new String(someArray));
3
ins.close();
conn.disconnect();

} catch (IOException e) {

}
}

System.err.printin(e);

public static void main (String args[]) {
try {

File f = new File(CONTENT);
if (f == null) {
throw new RuntimeException("Unable to Open File");
}
FileInputStream fi = new FileInputStream(f);
if Cnull == fi) {
throw new RuntimeException("Unable to open file");
}
int size = fi.available();
byte[] imageData = new byte[size];
int bytesRead = fi.read(imageData);
fi.close(Q);
postData(imageData);

} catch (IOException e) {

}

System.err.println(e.toString());

131

BlackBerry Application Developer Guide

Troubleshooting push applications

Push applications identify handhelds based on their email address. If users stop receiving data from a
push application after they switch to a different handheld, it might indicate that the mapping between
users' email addresses and handheld PINs is out-of-date. Verify that the BlackBerry Enterprise Server is
operating correctly.

132

BlackBerry Enterprise Server for Microsoft Exchange: The Mobile Data Service uses a Database
Consistency tool, dbconsistency .exe, to maintain the mapping between email addresses and
handheld PINs. Administrators can configure the frequency at which this tool runs, and can also run
this tool manually. See the BlackBerry Enterprise Server for Microsoft Exchange Handheld
Management Guide for more information.

BlackBerry Enterprise Server for IBM Lotus Domino: An agent synchronizes the BlackBerry Directory
with the BlackBerry Profiles database, in which the email-to-PIN mapping is stored. Administrators
can configure the frequency at which the agent runs (by default, it runs every 5 minutes). When
multiple BlackBerry Enterprise Servers are deployed, administrators must set up an appropriate
replication schedule so that user information remains synchronized between each Mobile Data
Service in the domain. At a minimum, you should replicate the BlackBerry Directory Database
(bbdir.nsf). See the BlackBerry Enterprise Server for IBM Lotus Domino Handheld Management
Guide for more information.

Packaging and deployment

* Deploying applications using the BlackBerry Desktop Software
e Deploying applications wirelessly

Deploying applications using the BlackBerry

Desktop Software

The Application Loader tool, which is part of the BlackBerry Desktop Software, uses an application loader

(-alx) file to load new applications onto the handheld.

Create an application loader (.alx) file for each application, and then distribute the .alx and .cod files to

users. See the Application Loader Online Help for more information.

Create application loader files

1. Inthe IDE, select a project.
2. On the Project menu, click Generate .alx File.

Distribute this .alx file with the .cod files for the application to users. When users connect their handheld
to the computer, they can use the BlackBerry Desktop Software to load the application onto their

handheld.

Note: By default, the .cod files for the application must exist in the same folder as the .alx file. If you change the location
of .cod files relative to the .alx file, edit the .alx file and add the <directory> element to specify the file location. See

" Appendix A: format of .alx files" on page 145 for more information.

Deploying applications wirelessly

The BlackBerry Handheld Software enables users to download applications wirelessly using the

BlackBerry Browser. Users can download both standard MIDlets and BlackBerry applications. For users to

download the application wirelessly, you must provide an application descriptor (.jad) with the

appropriate parameters, and the .cod or .jar files for the application. In the BlackBerry Browser, the user

selects the .jad file to download the application.

System administrators can set IT policies to control the use of third-party applications. See " Controlling

application downloads" on page 119 for more information.

Make BlackBerry or MIDlet applications available for users to download wirelessly in one of the
following ways:

e Use the Mobile Data Service to convert .jar files to .cod files.

e Use the BlackBerry JDE, which generates .cod files, to build your projects.

BlackBerry Application Developer Guide

134

Deploy .jar files

The Mobile Data Service feature of the BlackBerry Enterprise Server provides a built-in transcoder to
convert .jar files to .cod files, which enables users to download standard MIDlets. For example, corporate
administrators can maintain a list of approved MIDlets on an Intranet site. Users can browse to the web
page and select .jad files for applications to download. The BlackBerry Enterprise Server converts .jar files
to .cod files before sending them to the handheld.

Note: The web server must set the MIME type for both .cod files and .jad files. For .cod files, the MIME type is appTication/
vnd. rim.cod. For jad files, the MIME type is text/vnd.sun.j2me.app-descriptor

The following versions of the BlackBerry Enterprise Server provide the transcoder to convert jar files to

.cod files:

» BlackBerry Enterprise Server version 3.6 or later for Microsoft Exchange

» BlackBerry Enterprise Server version 2.2 or later for IBM Lotus Domino

Note: Users can only download .jar files if they access the network using the BlackBerry Enterprise Server with the Mobile
Data Service enabled. The Mobile Data Service converts jar files to the .cod file format that the handheld requires. If users
access the network using a WAP gateway, they can only download .cod files.

MIDlet application properties

Application descriptor files have an extension of .jad. A standard MIDlet .jad file contains the following
predefined attributes, and may contain additional applications defined by the application.

Required MIDlet attribute
MIDlet-Jar-Size

Description
The number of bytes in the jar file.

MIDTet-Jar-URL

The URL from which the jar file can be loaded.

MIDTet-Name
MIDlet-Vendor
MIDlet-Version

Optional MIDlet attribute
MIDTet-Data-Size

MIDlet-Delete-Confirm
MIDlet-Description
MIDlet-Icon

The name of the MIDlet suite.
The organization that provides the MIDlet suite
The version of the MIDlet suite, formatted as <major>.<minor>.<micro>.

Description

The minimum number of bytes of persistent data required by the MIDlet suite. The default
is zero.

A text message provided to the user when prompted to confirm deletion of the MIDlet suite.
A description of the MIDlet suite.
The name of the .png image file within the .jar file used to represent the MIDlet suite.

MIDlet-Info-URL

A URL for further information describing the MIDlet suite.

MIDlet-Install-Notify

A URL to which a POST request is sent to confirm successful installation of the MIDlet suite.

Deploy .cod files

If you write BlackBerry applications using the BlackBerry JDE version 4.0, the BlackBerry JDE creates the
required BlackBerry application descriptor (.jad) file when you build the project. You can also use the
BlackBerry JDE to convert MIDlet .jar files to the .cod file format.

Make the .cod and .jad files available on a web server for users to download. By making .cod files
available, you can deploy applications to users who do not access the network using a BlackBerry

Enterprise Server.

Note: The web server must set the MIME type for both .cod files and .jad files. For .cod files, the MIME type is app1ication/
vnd. rim.cod. For jad files, the MIME type is text/vnd.sun.j2me.app-descriptor.

10: Packaging and deployment

BlackBerry application properties
In addition to the MIDlet application properties, the following attributes apply to BlackBerry .jad files.

Required RIM attribute Description

RIM-COD-Creation-Time The creation time of the .cod file.
RIM-COD-Module-Dependencies A list of modules that the .cod file requires.
RIM-COD-Module-Name The name of the module contained in the .cod file.
RIM-COD-SHAL The SHAT hash of the .cod file

RIM-COD-Size The size (in bytes) of the .cod file.

RIM-COD-URL The URL from which the .cod file can be loaded.
Optional RIM attribute Description

RIM-Library-Flags Reserved for use by RIM.

RIM-MIDlet-Flags Reserved for use by RIM.

RIM-MID1et-NameResourceBundle The name of the resource bundle that the application depends on.

RIM-MIDTet-Position The suggested position of the application icon on the Home screen. Note that this may
not be the actual position of the application icon on the Home screen.

The BlackBerry JDE enables you to create a dual-purpose .jad file to support the downloading of MIDlets
onto BlackBerry handhelds and other wireless devices. To do this, create a .jad file that contains both the
RIM-COD-URL and RIM-COD-Size entries and MIDT1et-Jar-URL and MID1et-Jar-Size. On BlackBerry
handhelds, the .cod files are downloaded; on other devices, the .jar files are downloaded.

135

Testing and debugging

e Test applications
e Using the debugging tools

Test applications

Test applications by running them in the handheld simulator or on a connected handheld. See " Using
the debugging tools" on page 141 for more information.

1. In the IDE, on the Debug menu, click Go.
2. Use the application in the simulator or on a handheld.
3. Inthe IDE, on the Debug menu, click Break Now.

Use the debugging tools on the View menu to retrieve detailed information. See " Using the
debugging tools" on page 141 for more information.

4. To resume running the applications, on the Debug menu, click Continue.
To finish debugging, on the Debug menu, click Stop Debugging.

Testing applications using the simulator

In the IDE, the handheld simulator starts automatically when you run applications.

Action Procedure

Roll the trackwheel Roll the wheel button on your mouse, or press the UP ARROW and
DOWN ARROW keys on your keyboard.

Click the trackwheel Click the wheel button or press ENTER.

Run an application Select the appropriate icon and click the wheel button or press ENTER.

Press keys Press the keys on your keyboard.

Using the email service simulator

The BlackBerry JDE includes an email server simulator (ESS) that enables you to send and receive email
between the handheld simulator and either a desktop email application, such as Microsoft® Outlook®
Express, or POP3 and SMTP servers. A BlackBerry Enterprise Server is not required.

1. On the taskbar, click Start > Programs > Research In Motion > BlackBerry Java Development
Environment 4.0 > Email Server Simulator.

2. Select one of the following modes:

» Standalone mode: The ESS stores messages on the local file system and communicates directly
with a desktop email application. No POP3 or SMTP server is required.

The ESS can communicate with any desktop email application that supports POP3 and SMTP,
such as Outlook Express. The desktop email account must have the POP3 server set to localhost
on port 110 and the SMTP server set to localhost on port 25.

11: Testing and debugging

* Connected mode: The ESS polls the user POP3 email server for incoming messages, and uses the
user SMTP server to send messages. Valid POP3 and SMTP servers are required.

If you select the Standalone mode option, click Clean FS to erase ESS messages that are stored on
the local file system.

If you select the Connected mode option, type the following information in the appropriate fields:
* Qutgoing: Host name of the SMTP server that your email account uses.

¢ Incoming: Host name of the POP3 server that your email account uses.

* User name: User name with which to connect to your email account.

» Password: Password with which to connect to your email account.

¢ Poll inbox: Specifies, in seconds, how often the simulator checks your email Inbox for new
messages.

Type information in the following fields:
* Name: Name to display in outgoing messages from the handheld simulator.
e Email: Email address to display in outgoing messages from the handheld simulator.

¢ PIN: Personal information number (PIN) that is used by the handheld simulator (default PIN is
0x2100000A).

Click Launch.
If you change parameter values in the ESS window, a dialog box prompts you to save your changes.

Check the command prompt window for detailed information on ESS startup, including any login
errors.

After the ESS starts, use applications in the handheld simulator to send and receive email messages
with a desktop email account.

6 Note: If you start the handheld simulator from a command prompt, specify the /rport=0x4d4e parameter to communicate

with the email server simulator.

Testing an application that uses synchronization in the simulator

1.

© © N U A WwN

o

Exit the BlackBerry Desktop Software.

Connect a null modem cable between COM port 1 and COM port 2 on your computer.
In the IDE, on the Edit menu, click Preferences.

In the Preferences window, click the Basic tab.

Select the Set serial port for device(s) option, and then type 1.

Click OK.

Build and run the application in the simulator.

After the simulator starts, start the BlackBerry Desktop Software.

In the BlackBerry Desktop Manager, on the Options menu, click Connection Settings.

. Click Detect to detect the simulator.

If the BlackBerry Desktop Software does not detect the simulator, restart your computer and repeat
steps 7 through 10.

137

BlackBerry Application Developer Guide

138

Testing applications using a connected handheld

When a handheld is connected to a computer, run applications on the handheld and use the IDE
debugging tools to perform testing and optimization.

Note: To attach the IDE to a handheld that is connected to a serial port, install the Java Communications API, version 2.0.
Download the API from http://java.sun.com/products/javacomm/. This APl is not required if the handheld is connected
to a USB port.

Install .debug files

To debug applications using a handheld, the .debug files in the BlackBerry JDE must match the software
build version of the handheld.

1. Download the .debug files for your handheld build version from the BlackBerry Developer Zone.
2. Inthe IDE, on the Edit menu, click Preferences.

3. Click the Debug tab.

4. Click the Other tab.

5. In the Handheld debug file location field, type the location of the downloaded .debug files.

Load an application for testing

a Waming: If your handheld contains any important information, such as messages or contacts, back up this data prior to
loading an application for testing.

The Javaloader.exe tool enables you to add or update applications on a handheld using a command
prompt. Use this tool for development and testing purposes only. For production applications, use the
BlackBerry Desktop Software.

Note: You must load applications with dependencies in the correct order. If project A is dependent on project B, load the
project B .cod file before loading project A.

1. Exit the BlackBerry Desktop Software.
Connect the handheld to the computer.

3. Atthe command prompt, switch to the bin folder in the JDE installation folder and run the following
command:

Javaloader [-usb] [-pport] [-bbps] [-wpassword] Toad files

Option Description

port COM port to which the handheld is connected (default is 1), or the handheld PIN if the handheld is connected
to a USB port (the -usb option must also be specified)

bps bit rate speed to the serial port (default is 115200)

password specifies the password for your handheld, if you have set one
files one or more .cod file names, separated by a space, to load onto the handheld

Delete applications from the handheld

At the command prompt, run the following command, where the -f option forces removal of the
application even if it is in use:

Javaloader [-usb] [-pport] [-bbps] [-wpassword] erase [-f] files

Attach the IDE debugger

1. To attach the IDE debugger to a handheld that is connected to a USB port, start BBDevMgr.exe. The
BBDevMgr.exe tool is installed with the BlackBerry Desktop Software version 3.5.1 or later in
C:\ Program Files\ Common Files\Research In Motion\ USB Drivers.

11: Testing and debugging

2. Perform one of the following actions:

e Fora handheld that is connected to a serial port, click Attach to > Handheld > COM n, where n
is the serial port to which your handheld is connected.

e Fora handheld that is connected to a USB port, click Attach to > Handheld > USB (PIN), where
PIN is the PIN of a connected handheld.

Testing HTTP network connections

To test applications that require an HTTP network connection, use the Mobile Data Service simulator,
which is included in the BlackBerry JDE.

On the taskbar, select Start > Programs > Research In Motion > BlackBerry Java Development
Environment Version 4.0 > MDS Simulator.

Tip: To configure the IDE to start the Mobile Data Service when the simulator launches, in the IDE, on the Edit menu, click
Preferences. Click the Simulator tab. Select Launch Mobile Data Service (MDS) with simulator.
Use a WAP gateway

You can set up an HTTP connection using a WAP gateway that is hosted by your service provider.
BlackBerry handhelds support WAP 1.1 features.

Note: WAP service is not supported on all wireless networks. Before you start development, contact the service provider for
information on how to connect to their WAP gateway.

To set up an HTTP connection using WAP, include the WAPGatewayIP and WapGatewayAPN parameters
in Connector.open() at the end of the URL.

Connector.open("http://host;WAPGatewayIP=127.0.0.1; WAPGatewayAPN=rim.net.gprs");

WAP parameters are separated by a semicolon (;). They must not include spaces.

Parameter Description Default

WapGatewayIP IP address of the gateway -

WapGatewayAPN access point name (for GPRS networks only); for testing purposes, use —
rim.net.gprs

WapGatewayPort gateway port value (if port 9203 is specified, WTLS is used unless 9201

WapEnab1eWTLS=false is specified)

WAP_GATEWAY_PORT_DEFAULT

WapSourceIP IP address of the source 127.0.0.1

WAP_SOURCE_IP_DEFAULT

WapSourcePort source port value 8205

WAP_SOURCE_PORT_DEFAULT

TunnelAuthUsername user name for APN session, when PAP or CHAP authentication is none
used

TunnelAuthPassword password for APN session, when PAP or CHAP authentication is used none

WapEnabTeWTLS enables or disables WTLS (if this parameter is not specified, WTLS is none

used by default for connections to port 9203); the handheld
supports WTLS Class 1 (encryption only, no authentication) and Class
2 (encryption and server authentication)

Note: In the handheld simulator, when you test applications that require a WAP connection, add the command line option
/rport=<wap_source_port>, typically /rport=8205. The APN of the simulator is rim.net.gprs.

In the IDE, on the Edit menu, click Preferences. Click the Simulator tab, and then click the Advanced tab.
Add the necessary command line option to the Simulator Command Line field.

139

BlackBerry Application Developer Guide

140

Configure the Mobile Data Service simulator
1. Open the rimpublic.property file (located in the MDS\ config folder) in a text editor.

2. Edit parameters to configure the following features:

* See " Logging level parameters" on page 140 for more information.

e See " HTTP support parameters" on page 140 for more information.

e See " HTTPS support parameters" on page 141 for more information.

e See " Push support parameters" on page 141 for more information.

e See " Email-to-PIN mapping" on page 141 for more information.

Restart the Mobile Data Service simulator for changes to take effect.

Note: In a production environment, the BlackBerry Enterprise Server system administrator configures the Mobile Data
Service parameters using the BlackBerry Manager. Contact your system administrator for more information.

Logging level parameters

Parameter Description

Logging.Tevel This parameter specifies the type of information that is written to the logs, if

logging is enabled.

¢ 1: writes only information on events, such as Mobile Data Service start or stop

® 2: writes events and errors
® 3: writes events, errors, and warnings

® 4: writes events, errors, warnings, and debugging information

Logging.console.log.level This parameter specifies the type of information that appears in the console, if

logging is enabled. See the description for the Logging. level parameter.

HTTP support parameters

Parameter
appTlication.handler.http.logging

application.handler.http.logging.verbose

appTlication.handler.http.CookieSupport

application.handler.http.
AuthenticationSupport
application.handler.http.
AuthenticationTimeout

application.handler.http.device.connection.

timeout

application.handler.http.server.
connection.timeout

Description

This parameter enables (TRUE) or disables (FALSE) HTTP
standard logging (HTTP headers only).

This parameter enables (TRUE) or disables (FALSE) HTTP
debug logging (HTTP data and headers). This parameter
should be set to TRUE only when necessary to debug a
specific problem.

This parameter enables (TRUE) or disables (FALSE) cookie
storage. If you select TRUE, the Mobile Data Service
manages cookie storage instead of the handheld. This
reduces the load on the handheld significantly.

This parameter enables (TRUE) or disables (FALSE) storage
of user authentication information.

If HTTP authentication is set to TRUE, this parameter
determines the length of time (in milliseconds) before the
authentication information becomes invalid. This timer
resets whenever the user issues a request that invokes the
authentication information for a particular domain.

This parameter sets the length of time (in milliseconds)
before a connection attempt to the handheld expires if the
handheld is unreachable.

This parameter sets the length of time (in milliseconds)

before a connection attempt to a server expires if the server
is unreachable.

Default
4

Default
TRUE

FALSE

TRUE

TRUE

3600000

140000

150000

11: Testing and debugging

HTTPS support parameters

Parameter Description Default

application.handler.https.logging This parameter enables (TRUE) or disables (FALSE) HTTPS logging TRUE
for testing purposes.

application.handler.https. This parameter allows the Mobile Data Service to connect to FALSE

allowUntrustedServer untrusted servers (TRUE), or restricts access to trusted servers only

(FALSE). A server is trusted if its certificate is installed on the
Mobile Data Service host machine. See " Install certificates using
the keytool" on page 151 for more information.

Push support parameters

Do not change these parameters.

Parameter Description Default

WebServer.listen.host This parameter defines the computer on which the Mobile Data Service Tocalhost
listens for HTTP POST requests from push applications.

WebServer.listen.port This parameter defines the port on which the Mobile Data Service listens 8080

for HTTP POST requests from push applications.

Email-to-PIN mapping
In a production environment, the BlackBerry Enterprise Server automatically maps user email addresses

to the personal identification number (PIN) of their handhelds. In the BlackBerry JDE, you can simulate
the mapping between email addresses and PINs.

O Tip: You only need to configure email to PIN mappings if you are testing a push application. See " Creating client/server
push applications" on page 121 for more information.

In the rimpublic.property file, add or change entries in the [Simulator] section. Entries use the
following format:

Simulator.<PIN>=<host>:<port>, <email_address>
For example:
Simulator.2100000a=localhost:81, user2100000a@pushme.com

Change the email address so that you can test push applications that use actual email addresses. Pushed
data is sent to the specified handheld simulator.

The default PIN for the simulator is 2100000a. To change the simulator PIN, set the /rsim option. In the
IDE, on the Edit menu, click Preferences. Click the Simulator tab, and then click the Advanced tab. In the
Simulator Command Line field, change /rsim=0x2100000A.

The port must match the value set in the IPPP.push.listen.tcp.port parameter. The default is 81.

Using the debugging tools

o Note: This section provides an overview of some of the debugging tools that are available in the IDE. See the
IDE Online Help for detailed information on using the IDE.

Analyze code coverage

To display a summary of code that has been run, use the coverage tools. A summary is useful when you
design and run test cases because you can see exactly what has been tested.

141

BlackBerry Application Developer Guide

—_

v wWeN

Set two or more breakpoints in your code.

In the IDE, on the View menu, click Coverage.

To reset information to O, in the coverage pane, click Clear.
Run your application to the next breakpoint.

To display the percentage of code that has been run since you clicked Clear, in the coverage pane,
click Refresh.

Using the profiler

Use the IDE profiler tool to optimize your code. The profiler tool displays the percentage of time that is
spent in each code area, up to the current point of execution.

0 Note: To improve the reliability of results when you run the profiler, exit other Microsoft Windows applications.

Run the profiler

1. At the start of a section of code, press F9 to set a breakpoint.

2. At the end of a section of code, press F9 to set a breakpoint.

3. On the Debug menu, click Go.

4. Use the application in the simulator to run the appropriate code until it reaches the breakpoint.
5. On the View menu, click Profile.

6. In the profile pane, click Options.

7. Select the type of method attribution, a sorting method, and the type of information to profile. See

" Set profile options" on page 143 for more information.

8. Click OK.

9. To remove the profiler data and reset the running time, in the profile pane, click Clear.

10. On the Debug menu, click Go.

11. Use the application in the simulator to run the appropriate code until it reaches the breakpoint.
12. If the profile pane is not visible, on the View menu, click Profile.

13. To retrieve all accumulated profile data, on the profile pane, click Refresh.

14. Click Save to save the contents of the profile pane to a comma separated values (.csv) file.
\I;:::‘;Ie Description

Summary The Summary view displays general statistics about the system and the garbage collector. It displays the percentage

of time that the Java VM has spent idle, running code, and performing quick and full garbage collection. The Percent
column displays the percentage of total VM running time, including idle and collection time.

Methods The Methods view displays a list of modules, sorted either by the information that you are profiling or by the number

of times that each item was run.

Source The Source view displays the source lines of a single method. This enables you to navigate through the methods

142

that call, and are called by, that method. Click the Back and Forward buttons to follow the history of methods that
you have visited in the Source view.

In this view, the Percent column displays the percentage of total VM running time, not including idle and garbage
collection time.

11: Testing and debugging

Set profile options
1. Click the Options tab.
2. From the Method attribution drop-down list, select one of the following options:

¢ To calculate the amount of time that is spent running bytecode in a method and methods that
are invoked by that method, select Cumulative.

e To calculate the amount of time spent executing bytecode in that method only, select In method
only. The timer stops when a call is made to another method.

3. From the Sort method by drop-down list, select Count to sort methods in the Profile views by the
number of times that the item was run, or select the other option to sort methods according to the
data that is being profiled.

4. From the What to profile drop-down list, select the type of data to profile.

Finding memory leaks

Use the memory statistics and objects IDE tools to find and correct memory leaks.

Use the Memory Statistics tool

The Memory Statistics tool displays statistics on the number of objects and bytes that are used for object
handles, RAM, and flash memory.

1. On the View menu, click Memory statistics.
Set two or more breakpoints in your code.
Run your application to the first breakpoint.
Click Refresh to refresh the memory statistics.
Click Snapshot to take a snapshot.

Run the application to the next breakpoint.
Click Refresh.

Click Compare to Snapshot.

© © N U s W

To save the contents of the memory statistics pane to a comma separated values (.csv) file, click
Save.

Use the Objects tool

The Obijects tool displays all of the objects in memory to help you locate object leaks. Object leaks can
cause the VM to run out of flash memory, which resets the handheld.

In the IDE, on the Debug menu, click Go.
On the Debug menu, click Break Now.
On the View menu, click Objects.

Click GC.

Click Snapshot.

On the Debug menu, click Continue.

N o vk W=

Complete tasks in the application that should not increase the number of reachable objects; for
example, create a new contact, and then delete it.

8. On the Debug menu, click Break Now.

143

BlackBerry Application Developer Guide

9. In the objects pane, click GC.

Click Compare to Snapshot. The objects pane displays the number of objects that were deleted and
added since the previous snapshot. If the number of objects that are added is not the same as the
number of objects that are deleted, you might have an object leak. Use the Type and Process filters

to view specific objects.
10. To save the contents of the objects pane to a comma separated values (.csv) file, click Save.

144

Appendix A: format of .alx
files

¢ alxfiles
¢ Elements in .alx files

.alx files

The Application Loader tool, which is part of the BlackBerry Desktop Software, uses an application loader
(-alx) file to load new applications onto the handheld. Use the IDE to generate .alx files for your projects.

The following information is provided only as a supplementary reference. In most cases, you do not need
to edit the .alx files generated in the IDE.

In a text editor, you can edit .alx files that the IDE generates. The .alx file uses an XML format.

Example: Sample .alx file

<loader version="1.0">
<application id="com.rim.samples.device.httpdemo">
<name>Sample Network Application</name>
<description>Retrieves a sample page over HTTP connection.
</description>
<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2003 Research In Motion</copyright>
<language langid="0x000c">
<name>Application D'Echantillon</name>
<description>0Obtenir une page du réseau
</description>
</language>
<fileset Java="1.0">
<directory>samples/httpdemo</directory>
<files>
net_rim_httpdemo.cod
net_rim_resource.cod
net_rim_resource__en.cod
net_rim_resource__fr.cod
</files>
</fileset>
</application>
</Toader>

BlackBerry Application Developer Guide

146

Nesting modules

Create a nested structure in an .alx file to provide optional components for an application. Typically,
nested modules provide optional features that are not applicable to all users. Users can choose whether
to install optional modules.

Nesting creates an implicit dependency for nested modules on the base application. To define an explicit
dependency on another application or library, use the <requires> tag. See " Elements in .alx files" on
page 148 for more information.

Example: Sample .alx file for an application with a nested module

<loader version="1.0">
<application id="net.rim.sample.contacts">
<name>Sample Contacts Application</name>
<description>Provides the ability to store a list of contacts.
</description>
<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2001 Research In Motion</copyright>
<fileset Java="1.0">
<directory>samples/contacts</directory>
<files>
net_rim_contacts.cod
net_rim_resource.cod
net_rim_resource__en.cod
net_rim_resource__fr.cod
</files>
</fileset>
<application id="net.rim.sample.contacts.mail">
<name>Sample Module for Contacts E-Mail Integration</name>
<description>Provides the ability to access the email
applicaton</description>
<version>1.0</version>
<vendor>Research In Motion</vendor>
<copyright>Copyright 1998-2001 Research In Motion</copyright>
<fileset Java="1.0">
<directory>samples/contacts</directory>
<files>
net_rim_contacts_mail.cod
</files>
</fileset>
</application>
</application>
</Toader>

Specifying a handheld version

Applications that use APIs only available on particular versions of the handheld software should specify
supported handheld versions using the _blackberryVersion attribute.

Specify a range using the following rules:

* Square brackets [] indicate inclusive (closed) range matching.

Appendix A: format of .alx files

¢ Round brackets () indicate exclusive (open) matching.

e Missing lower ranges imply O.

e Missing upper ranges imply infinity.

For example, (4.0,] indicates any version between 4.0 and infinity.

The following example prevents modules from loading on versions of the handheld software earlier than
4.0.

<application id="<application_id>" _blackberryVersion="[4.0,)">
</application>
The following example provides alternate modules for different versions of the handheld software.

<application id="<application_id>">

<fileset _blackBerryVersion="(,4.0)">
. modules for handheld software versions earlier than 4.0

</fileset>
<fileset _blackBerryVersion="[4.0,)">
. modules for handheld software versions 4.0 and later

</fileset>
</application>

147

BlackBerry Application Developer Guide

Elements in .alx files

Element Attributes Description

Toader version The Toader element contains one or more application elements.
The version attribute specifies the version of the Application Loader.

application id The application element contains the elements for a single application.

The appTication element can also contain additional nested app1ication elements. Nesting
enables you to require that when an application is loaded, its prerequisite modules are also
loaded.

The 1d attribute specifies a unique identifier for the application. To provide uniqueness, use an
ID that includes your company domain, in reverse. For example,
com.rim.samples.docs.helToworld.

Tibrary id The Tibrary element can be used instead of the appTication tab. It contains the elements
for a single library module. No nested modules are permitted. By default, a library module is
hidden so that it does not appear in the Application Loader.

Typically, use the library element as the target of a <requires> element, so that when a
particular application is loaded onto the handheld, a required library is also loaded.
Note: This element is supported in BlackBerry Desktop Software version 3.6 or later.

name - The name element provides a descriptive name for the application, which appears in the
Application Loader. It does not appear on the handheld.

description - The description element provides a brief description of the application, which appears in the
Application Loader. It does not appear on the handheld.

version - The version element provides the version number of the application, which appears in the
Application Loader. This version number is for information purposes only.

vendor - The vendor element provides the name of the company that created the application, which
appears in the Application Loader.

copyright - The copyright element provides copyright information, which appears in the Application
Loader.

required - The required element enables you to force an application to be loaded. In the Application
Loader, the application is selected for installation, and the user cannot change this. Add the
following line: <required>true</required>.

The required tag should be used by corporate system administrators only; it is not intended
for use by third-party software vendors.
Note: This element is supported in BlackBerry Desktop Software version 3.5 or later.

hidden - The hidden element hides a package so that it does not appear to users in the Application
Loader. Add the following line: <hidden>true</hiddens.

Use this element in conjunction with the required element to load the application by default,

or set the requires tag to load this package if another application is loaded.

The hidden tag should be used by corporate system administrators only; it is not intended for

use by third-party software vendors.

Note: This element is supported in BlackBerry Desktop Software version 3.6 or later.
Tanguage langid The Tanguage tag enables you to override the text that appears in the Application Loader when

148

the Application Loader is running in the language specified by the Tangid attribute.

To support multiple languages, specify multiple Tanguage tags. To specify the name,
description, version, vendor, and copyright tags for each language, nest these tags in the
language tag. If you do not nest a tag, the text appears in the default language.

The Tangid attribute specifies the Win32 Tangid code for the language to which this
information applies. For example, some Win32 Tangid codes are: 0x0009 (English), 0x0007
(German), 0x000a (Spanish), 0x000c¢ (French).

Element
requires

Attributes
id

Appendix A: format of .alx files

Description

The requires element is an optional element that specifies the id of a package on which this
application depends. This element can appear more than once, if the application depends on
more than one other application.

When an application is loaded onto the user handheld, all packages that are specified by the
<requires> tag are also loaded.

Note: This element is supported in BlackBerry Desktop Software version 3.6 or later.

fileset

directory

files

Java
radio
langid
color

The fileset element includes an optional directory element and one or more files
elements. It specifies a set of .cod files, in a single directory, to load onto the handheld. To load
files from more than one directory, include one or more fileset elements in the .alx file.

The Java attribute specifies the minimum version of the BlackBerry Java VM with which the .cod
files are compatible. The current VM is version 1.0. The Java attribute is required.

The radio attribute enables you to load different applications or modules depending on the
network type of the handheld. Possible values include Mobitex, DataTAC, GPRS, CDMA, and
IDEN. The radio attribute is optional.

The Tangid attribute enables you to load different applications or modules depending on the
language support that users add to the handheld. The value is a Win32 langid code; for
example: 0x0009 (English), 0x0007 (German), 0x000a (Spanish), 0x000c (French). The Tangid
attribute is optional.

The color attribute enables you to load different applications or modules for color or
monochrome displays. The value is a Boolean; true means color display and false means
monochrome.

The directory element provides the location of a set of files. The directory element is
optional. If you do not specify a directory, the files must be in the same location as the .alx
file. The directory is specified relative to the location of the .alx file.

The files element provides a list of one or more .cod files, in a single directory, to load onto
the handheld for an application.

149

Appendix B: Mobile Data
Service reference

e HTTP requests

e HTTPS support

e HTTPS support

e Transcoders

e Creating transcoders

e Compile and install transcoders

HTTP requests

A client opens a connection and sends an HTTP request message to a server. The server sends a response
message, which usually contains the requested resource.

<method> <resource_path><version>
Headerl: valuel

Header2: value2

Header3: value3

<optional message>

HTTP request variable Definition

method Method names indicate an action, such as GET, HEAD, or POST. The commonly used method is GET,
which requests a resource from a server.

resource_path The path that points to the requested resource is the part of the URL that appears after the host name.
This is also called the Request URL.

version The version of HTTP that you are running, and is noted as "HTTP/x.x." The BlackBerry Enterprise Server
supports versions 1.0 and 1.1.

header The header provides information about the request or about any object that is sent in the message
body.

optional The HTTP message can contain data. In a request, this is where user-entered data or uploaded files are

message sent to the server. When an object accompanies the message, the request usually also includes headers

that define its properties.

HTTP responses

Upon receipt of an HTTP request message, the server sends a response message, which usually contains
the requested resource.

<HTTP version><status_code><reason>
Headerl: valuel
Header2: value2
Header3: value3

13: Appendix B: Mobile Data Service reference

<message>

HTTPresponse pegintion

HTTP_version This variable indicates the version of HTTP that you are running is noted as "HTTP/x.x." The BlackBerry
Enterprise Server supports versions 1.0 and 1.1.

status_code The status code is a numerical value that reflects the results of the initial request of the client. For
example, 200 (OK) indicates successful transmission; 404 (Not Found) indicates that the requested URL
could not be found.

reason The reason is a text message that is associated with the status code.

header The header provides information about the response and about the object that is being sent in the
message body.

message The HTTP message must contain data. In a response, this message provides content that was requested

by the client; the response also includes headers that define its properties.

O Tip: Applications should check the status code in HTTP response messages. Any code other than 200 (0K) indicates that
an error might have occurred when establishing the HTTP connection.

HTTPS support

To provide additional authentication and security if your application accesses servers on the Internet, set
up a secure HTTP (HTTPS) connection over TLS.

Certificate management for HTTPS

When the handheld requests an HTTPS connection in proxy mode, the Mobile Data Service sets up the
SSL connection on behalf of the handheld. System administrators configure the Mobile Data Service
either to allow connections to untrusted servers, or to restrict access to trusted servers only. This
configuration applies to connections in proxy mode only; in end-to-end mode, the handheld sets up the
SSL connection.

In the BlackBerry Manager, administrators edit the Mobile Data Service properties and set TLS and
HTTPS options. See the BlackBerry Enterprise Server Administration Guide for more information.

O Tip: In the Mobile Data Service simulator, allow or deny access to untrusted servers by editing the rimpublic.property file.
Set the application.handler.https.allowUntrustedServer parameter to true or false. See " Configure the Mobile
Data Service simulator" on page 140 for more information.

A server is trusted if its certificate is installed in the Mobile Data Service.

Install certificates using the keytool
1. Save the certificate from the web site to a file.

2. Copy the certificate file to the jre1.4.1\lib\security folder on the computer on which the Mobile
Data Service resides.

3. To import the certificate into the key store, use the keytool, which is installed in the JRE bin folder,
such as C:\ Program Files\Java\j2re1.4.1\bin. For example, type:

keytool -import -file <cert_filename> -keystore cacerts

Visit http://java.sun.com/j2se/1.3/docs/tooldocs/win32/keytool.html for more information on
using the keytool.

151

BlackBerry Application Developer Guide

Transcoders

The Mobile Data Service supports plug-in Java applications, called transcoders, that perform processing
on data that is sent to and from the handheld.

The Mobile Data Service provides the following transcoders by default:
WML -> WMLC: Converts WML into a compact format

WMLScript -> WMLScriptC: Converts WML Script into compact format
JAD > COD: Converts MIDlet applications into the BlackBerry format

XML -> WBXML: Converts text content in eXtensible Markup Language (.xml) into the following
WAP Binary XML (.wbxml) MIME type: application/vnd.wap.wbxml.

SVG -> PME: Converts Scalable Vector Graphics Format(.svg) into Plazmic Media Engine binary file
format (.pme).

Image transcoder: Converts each of the following image types into the Portable Network Graphics
format (.png):

Joint Photographic Expert Group (.jpeg)
Graphics Interchange Format (.gif)
Tagged Image File Format (.tiff)
Portable Graymap Format (.pgm)
Portable Pixmap Format (.ppm)
Portable Any Map Format (.pnm): this includes ASCII and binary .pbm, .pgm and .ppm files
Icon Format (.ico)

Wireless Bitmap Format (.wbmp)
Portable Bitmap Format (.pbm)
Wireless Bitmap Format (.wbmp)
Bitmap Format (.bmp)

Note: The image transcoder converts the above-mentioned image formats into the following PNG MIME type: image/

vnd.rim.png.

You can also write your own transcoders to perform custom data processing. For example, you might
write a transcoder if your handheld application is exchanging data with a server that is not designed for
a mobile device, and the data that is sent from the server is in an inappropriate format for the handheld.

A transcoder can change the data format or remove extraneous information to reduce network traffic

and to support a simplified application on the handheld. For example, you might write a transcoder to
convert HTML content to WML.

152

: Mobile Data
— HTML Service WML
_—
Transcoder
LY
Application Server BlackBerry Enterprise Server BlackBerry Handheld

Data transcoding process

13: Appendix B: Mobile Data Service reference

If you write a server-side application specifically to support a custom application on the handheld, a
transcoder is not required. You can design the server application to output data in a suitable format.

You can also perform data processing as part of a separate server-side process, before data is sent to the
BlackBerry Enterprise Server.

Transcoder API
Main transcoder class Description
HttpContentTranscoder This class provides methods to control HTTP request and response contents and

properties.
All transcoders must extend this class and implement its abstract methods.

HttpContentTranscoderException This exception is thrown to indicate that the transcoding process is not successful. The
exception is forwarded to the handheld as an I0Exception.

HttpHeader This class provides methods for manipulating header fields in HTTP requests and
responses.

HttpParameter This class represents an HTTP query parameter. It provides methods for retrieving and
setting parameter names and values.

HttpRequest This class extends the HttpTransmission class, and represents an HTTP request that

contains headers, parameters, and content.

HttpResponse This class extends the HttpTransmission class, and represents an HTTP response that
contains headers, parameters, and content.

HttpTransmission This class provides methods to retrieve and set content, headers, and parameters of HTTP
requests and responses.

See the AP/ Reference for more information.

Create an HTTP content transcoder

To create an HTTP content transcoder with full control over HTTP request and response content, extend
the HttpContentTranscoder class. This transcoder can also modify, add, or remove the HTTP request
and response properties.

The transcoder must be defined in the net.rim.protocol.http.content.transcoder.<name>
package, where <name>is the identifier for the transcoder that is used in the mapping file. Its class
name must be Transcoder.

The transcoder location is either specified in the httpcontenttranscoders.property file or by a
handheld application.

Handling HTTP content transcoder exceptions

Any exception that a transcoder throws is sent to the handheld application as an T0Exception. The
associated detailed message is also copied to the I0OException.

Note: Instead of throwing an exception to the HTTP Connection Handler, a transcoder might also send an HTTP response
to a handheld application, indicating that an internal server error has occurred.

Selecting transcoders

To determine whether a transcoder is required when the handheld requests content, the Mobile Data
Service compares the type of content that is requested by the client with the type of content that the
server responds with. If the content types are different, the Mobile Data Service checks the
httpcontenttranscoder.property file to determine whether a transcoder is available to convert the
content.

153

BlackBerry Application Developer Guide

154

The x-rim-transcode-content header, in the HTTP request sent by the handheld, specifies the input
format of the content that is to be converted by the Mobile Data Service. The content is converted if the
following conditions are satisfied:

e The input format specified by the x-rim-transcode-content header is also specified in the Accept
header of the HTTP request that the Mobile Data Service sends to the web server

e The web server responds with a content type, or output type that is different from the content type
accepted by the handheld.

* The httpcontenttranscoder.property file contains a transcoder that can convert the content the web
server sends back to the Mobile Data Service in a format that is accepted by the handheld.

To determine whether a transcoder is required when content is pushed, the Mobile Data Service checks
the content-type and x-rim-transcode-content headers in the server-side push application. If the content-
type and x-rim-transcode-content headers are the same, the Mobile Data Service converts the content
specified in the headers to a format the handheld can display.

The httpcontenttranscoder.property file maps the input format to a given transcoder. The
httpcontenttranscoder.property file specifies that the input format (.wml) in the example below, is
converted to either .wbxml or .wmlc.

content-type: text/vnd.wap.wml
x-rim-transcode-content: text/vnd.wap.wm]l

You can also create custom transcoders that reformat or convert data that is requested by a handheld
application. For example, you could write a transcoder to convert HTML content to WML. See " Creating
transcoders" on page 157 for more information.

HTTP requests

The Mobile Data Service uses MIME types to determine whether the format of the content that is
attached to a server HTTP response matches the format of the content that is requested by the handheld.

The Mobile Data Service examines the list of available transcoders and extends the Accept header. For
example, if a request accepts a MIME type of WML and an HTML-to-WML transcoder exists, HTML is
added to the Accept header. See " Mapping transcoders" on page 156 for more information.

In the HTTP request, the handheld application can include two headers to control the type of content
that it receives:

e Accept header

e Content-Transcoder header

Header Description

Accept header In the Accept header of an HTTP request, the handheld application lists the MIME types that it
accepts from the content server. For example, if the handheld application can accept content in
WML or XML format, it sends the following header in its HTTP request:

Accept: text/wml, text/xml

By default, when the Accept header lists more than one MIME type, the Mobile Data Service
assigns preferences from left to right, where the first MIME type listed is assumed to be preferred.

The handheld application can also assign quality factors to MIME types to indicate preferences.
Quality factors range from O (lowest preference) to 1 (highest preference). For example, the
following header indicates that compiled WML (WMLC) is preferred but WML is also accepted.

Accept: text/vnd.wap.wml;q=0.5, application/vnd.wap.wnlc;g=1

Content-Transcoder header ~ The Content-Transcoder header is a BlackBerry header that enables the application to specify a
particular transcoder to apply to any content before it is returned to the handheld. Using the
Content-Transcoder header overrides the default process that the Mobile Data Service uses to
select a transcoder.

13: Appendix B: Mobile Data Service reference

HTTP responses

The content server produces HTTP responses that include a Content-Type header. The Content-Type
header indicates the MIME type for a particular packet of data. For example, when the content server
returns content in HTML format, the HTTP response includes a Content-Type header with the value
text/html.

The Mobile Data Service compares the request that is made by the handheld application to the response
that is provided by the content server. The following sections demonstrate how Mobile Data Service
determines whether a transcoder is required.

Response type Description

No transcoding required The handheld application sends a request for content that is formatted in WML. The
request contains the following header:

Accept: text/vnd.wap.wml
In its response, the content server sends the following header:
Content-Type: text/vnd.wap.wml

Because the type of content that is returned by the server matches the type that is
requested by the handheld, the Mobile Data Services does not need to perform any
conversion. It forwards the content to the handheld unchanged.

Mobile Data Service performs transcoding The handheld application sends a request for content. The request contains the
following header:

Accept: text/vnd.wap.wml; g=0.5, application/vnd.wap.wmlc; g=1

This header indicates that the handheld application accepts content in either WML or
compiled WML (WMLC) formats, but that WMLC is preferred.

In its response, the content server sends the following header:
Content-Type: text/vnd.wap.wml

Because the type of content that is returned by the server does not match the
preferred content type that the handheld requested, the Mobile Data Service searches
for a transcoder that can convert the available MIME type (WML) into the preferred
MIME type (WMLC).

If an appropriate transcoder is not available, the Mobile Data Service forwards the
WML content to the handheld unchanged, because the initial request indicated that
the handheld application does accepts WML content.

Extending Accept headers
Each transcoder implements a method to create a hash table that maps the formats that the transcoder
accepts as input from a content server and the formats that the transcoder can create as output.

The Mobile Data Service collects this information when it starts so that it can modify the Accept header
field before it forwards an HTTP request from the handheld. For example, a handheld application sends
an HTTP request with the following Accept header:

Accept: application/vnd.wap.wmlc, text/vnd.wap.wmlscriptc
After reviewing the transcoder mapping table, Mobile Data Service appends the following items to the

Accept header line:

application/vnd.wap.wmlscript, text/wml, and text/vnd.wap.wml
Accept: application/vnd.wap.wmlc, text/vnd.wap.wmlscriptc, application/
vhd.wap.wmlscript, text/wml, text/vnd.wap.wml

This extended Accept header now lists all MIME types that the content server can provide, if the
transcoders are available to perform the required conversion before sending the content to the
handheld.

155

BlackBerry Application Developer Guide

156

Mapping transcoders

The httpcontenttranscoderslist.property file, located in the mdshome\ config folder, specifies how the
Mobile Data Service should manage the exchange of various content types between handheld
applications and content servers.

The following is an example of the httpcontenttranscoderslist.property file:
text/vnd.wap.wml->application/vnd.wap.wmlc:vnd.wap.wml
text/vnd.wap.wml->application/vnd.wap.wbxml:vnd.wap.wml
text/vnd.wap.wmlscript->application/vnd.wap.wmlscriptc:wmls
text/html->application/vnd.rim.html.filtered:html
text/vnd.wap.wml:vnd.wap.wml

text/vnd.sun.j2me.app-descriptor->application/vnd.rim.cod:vnd.rim.cod
default:pass

Each entry uses the following format:
InputType [-> OutputType]: Action
where:
e InputType is the MIME type that is available from the content server
e QutputType is the MIME type that the handheld requests
e Action is one of the following values:
e transcoder package name, such as vnd.wap.wm1
* Pass: send data without change
* Discard: discard data without sending it

The following sections explain the possible formats for entries in the httpcontenttranscoderslist.property
file.

Format 1

An entry with the following format specifies the action that the Mobile Data Service perform when the
type of content that is available from the server is different from the type of content that the handheld
has requested:

InputType -> OutputType:Transcoder OR RSV

For example, the handheld application requests text/wm1, but the content server only has text/xm1.
The Mobile Data Service finds this entry for this MIME type:

Text/xml -> Text/wml : vnd.wap.wml

According to this entry, the Mobile Data Service must use the vnd.wap.wm1 transcoder to convert XML
content to WML.

Format 2

An entry with the following format specifies the action that the Mobile Data Service performs when it
receives content of a given type from the server, regardless of what the handheld has requested:

InputType:Transcoder OR RSV

For example, the content server only has content in WML format (text/vnd.wap.wm1). The Mobile Data
Service finds this entry for this MIME type:

text/vnd.wap.wml : vnd.wap.wml

13: Appendix B: Mobile Data Service reference

According to this entry, the Mobile Data Service must apply the vnd.wap .wm1 transcoder to any content
in WML format.

Default entry

A default entry specifies the default action that the Mobile Data Service performs if no entry is found for
a particular MIME type:

default : Transcoder or RSV

For example, content is forwarded to the handheld without change if no entry is found for its content
type in the following default entry:

default:pass

Creating transcoders

Convert HTML tags and content to uppercase

Follow transcoder package hierarchy

Define the HTTP content transcoder in a package that is called
net.rim.protocol.http.content.transcoder.<transcoder name>. All HTTP content transcoders
must be defined in the Transcoder package hierarchy.

package net.rim.protocol.http.content.transcoder.uppercasehtml;

Extend HTTPContentTranscoder

The class name for a transcoder must be Transcoder. Transcoders extend the
HttpContentTranscoder class.

In this example, the HTTP content transcoder is defined in a public class named Transcoder.

public class Transcoder extends HttpContentTranscoder { ... }

Define HTTP headers

Define constants for HTTP headers and the strings that the transcoder adds to these headers.

private static final String CONTENTTYPE_HEADER_NAME = "Content-Type";
private static final String CONTENTLENGTH_HEADER_NAME = "Content-Length";
private static final String ACCEPT_HEADER_NAME = "Accept";

// This Tine 1is added to the Accept header field if it exists when

// the handheld issues an HTTP request.

private static final String ACCEPTLINE= "text/html";

// This line identifies the output content type this transcoder produces
private static final String OUTPUT_TYPE= "text/UPPERCASEHTML";

Create a mapping of input and output types

Implement getMapOfOutputToAcceptLine() to create a mapping of the transcoder's possible input
and output types.

157

BlackBerry Application Developer Guide

158

The Mobile Data Service collects this information when it starts so that it can modify the Accept header
field before it sends an HTTP request to an HTTP server.

public HashMap getMapOfOutputToAcceptLine() {
HashMap mapping = new HashMap(Q);
mapping.put(OUTPUT_TYPE, ACCEPTLINE);
return mapping;

Set the connection URL

Define a method to set the connection URL when the handheld requests an open HTTP connection.

public void setURL(URL newURL) {
url = newURL;

}

Define handheld request processing

Implement transcodeDevice(HttpRequest request) to define any processing on the handheld
request before the Mobile Data Service forwards it to the destination server. In the following example, no
processing is required.

A handheld application can request a specific transcoder by using the HTTP header field that is called
Content-Transcoder

public void transcodeDevice(HttpRequest request) throws
HttpContentTranscoderException {
// implementation

Define handheld response processing

Implement transcodeDevice(HttpResponse response) to define any processing on the handheld
response before the Mobile Data Service forwards it to the destination server. In the following example,
no processing is required.

public void transcodeDevice(HttpResponse response) throws
HttpContentTranscoderException {

// implementation

Define server request processing

Implement transcodeServer(HttpRequest request) to define any processing on the server request
before the Mobile Data Service forwards it to the handheld.

public void transcodeServer(HttpRequest request) throws
HttpContentTranscoderException {
try {
// retrieve the request content, which, in this case, is in HTML
byte[] requestContent = request.getContent();
if (requestContent != null) {
// convert the content to String object
String requestContentAsString = new
String(requestContent) .toUpperCase();
// convert the requestContentAsString to bytes again

13: Appendix B: Mobile Data Service reference

requestContent = requestContentAsString.getBytes();

}
else {
// server 1is not responding with appropriate content
// send an HTML message to indicate this.
StringBuffer sb = new StringBuffer();
sb.append("<HTML>\n") ;
sb.append("<HEAD>\n") ;
sb.append("<TITLE> UPPERCASEHTML TRANSCODER</titTe>\n");
sb.append("</HEAD>\n") ;
sb.append("<BODY>\n");
sb.append("SERVER IS NOT PUSHING APPROPRIATE CONTENT\n");
sb.append("</BODY\n");
sb.append("</HTML>\n") ;
requestContent = sbh.toString().getBytes();
}

request.setContent(requestContent);

// update the Content-Length

HttpHeader contentlLengthHeader =
request.getHeader (CONTENTLENGTH_HEADER_NAME) ;
if (contentLengthHeader != null) {

contentLengthHeader.setValue("" + requestContent.length);

}

else {
// The server did not send the Content-Length.
// No update 1is needed.

}

// update the Content-Type

HttpHeader contentTypeHeader =

request.getHeader (CONTENTTYPE_HEADER_NAME) ;

if (contentTypeHeader != null) {
contentTypeHeader.setValue(OUTPUT_TYPE) ;

}

else {
// add the Content Type here if the server does not specify one
request.putHeader(new HttpHeader(
CONTENTTYPE_HEADER_NAME, OUTPUT_TYPE));

}

} catch (Throwable t) {

throw new HttpContentTranscoderException(t.toString());

Define server response processing

Implement transcodeServer(HttpResponse response) to define any processing on a server
response that includes content from the server before the Mobile Data Service forwards it to the
handheld. If no content is attached to the response, the Mobile Data Service forwards the response to
the handheld without any changes.

public void transcodeServer(HttpResponse response) throws
HttpContentTranscoderException {
try {

// retrieve the response content, which in this case is in HTML
byte[] responseContent = response.getContent();
if (responseContent != null) {

159

BlackBerry Application Developer Guide

// convert the content to String object
String responseContentAsString = new
String(responseContent) .toUpperCase();
// convert the responseContentAsString to bytes again
responseContent = responseContentAsString.getBytes();
}
else {
// no response is received from the server
StringBuffer sb = new StringBuffer();
sb.append("<HTML>\n") ;
sb.append("<HEAD>\n") ;
sb.append("<TITLE> UPPERCASEHTML TRANSCODER </title>\n");
sb.append("</HEAD>\n") ;
sb.append("<BODY>\n");
sb.append("SERVER IS NOT RESPONDING\n");
sb.append("</BODY\n");
sb.append("</HTML>\n") ;
responseContent = sb.toString().getBytes();
}
response.setContent(responseContent);
// update the Content-Length
HttpHeader contentlLengthHeader =
response.getHeader (CONTENTLENGTH_HEADER_NAME) ;
if (contentLengthHeader != null) {

contentlLengthHeader.setValue("" + responseContent.length);

}
else {

// server did not send Content-Length so no update is required
}

// update the Content-Type

HttpHeader contentTypeHeader =

response.getHeader (CONTENTTYPE_HEADER_NAME) ;

if (contentTypeHeader != null) {
contentTypeHeader.setValue(OUTPUT_TYPE) ;

}
else {
// add the Content Type here
response.putHeader(new
HttpHeader (CONTENTTYPE_HEADER_NAME, OUTPUT_TYPE));
}

} catch (Throwable t) {

throw new HttpContentTranscoderException(t.toString());
}

}

Compile and install transcoders

1. Compile the transcoder class files, including bmds.jar in the class path.
javac -classpath ".;MDS_home\samples\bmds.jar" Transcoder.java

2. Create a .jar file for the transcoder.

3. Install the transcoder .jar file in one of the following ways:

160

13: Appendix B: Mobile Data Service reference

 BlackBerry Enterprise Server: Add the transcoder jar file into the lib\ext folder of the JRE. The
Jar file must be accessible to the VM.

e Simulator: Add the transcoder .jar file to the MDS_home\c1asspath folder in the BlackBerry JDE.
Open the MDS_home\ config\ httpcontenttranscoderslist.property file.

Add one or more entries to specify when the transcoder should be used. For example, to specify that
the uppercasehtml transcoder should be used to map HTML content to uppercase HTML, add this

entry:
text/html -> text/UPPERCASEHTML : uppercasehtml

Save the property file.
Restart the Mobile Data Service.

161

Glossary

A

ALX
Application Loader XML

API

application programming interface

APN
Access Point Name

C

CA
Certificate Authority

CDMA
Code Division Multiple Access

CHAP
Challenge Handshake Authentication Protocol

cHTML
Compact Hypertext Markup Language
CLDC

Connected Limited Device Configuration

CPU
central processing unit

D

DES
Data Encryption Standard

DNS
Domain Name System

G

GIF
Graphics Interchange Format

GPRS
General Packet Radio Service

GUI
graphical user interface

GUID
globally unique identifier

H

HTML
Hypertext Markup Language

HTTP
Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol over Secure Socket
Layer

I
i18n
internationalization
IDE
integrated development environment
iDEN
Integrated Digital Enhanced Network

IMEI
International Mobile Equipment Identity

IMSI
International Mobile Subscriber Identity

170
input/output
IP

Internet Protocol

IPPP
IP Proxy Protocol

ISDN
Integrated Services Digital Network

J
J2ME

Java 2 Platform, Micro Edition
J2SE

Java 2 Platform, Standard Edition
JAD

Java Application Descriptor
JAR

Java Archive
JDE

Java Development Environment
JPEG

Joint Photographic Experts Group
JRE

Java Runtime Environment
K
KB

kilobytes
KVM

Kilobyte virtual machine
L
LAN

local area network
LDAP

Lightweight Directory Access Protocol
LTPA

Lightweight Third-Party Authentication
M
MB

megabyte
MHz

megahertz
MIDlet

MIDP application

Glossary

MIDP
Mobile Information Device Profile

MIME
Multipurpose Internet Mail Extensions

MSISDN
Mobile Station ISDN

o

0CSP
Online Certificate Status Protocol

P

PAP
Password Authentication Protocol

PDA
personal digital assistant
PIM

personal information management

PIN
personal identification number

PNG
Portable Network Graphics

R

RAM
random access memory

RRC
Radio Resource Control

RTC
real-time clock

S

SDK
software development kit

SIM
Subscriber Identity Module

SMS
Short Message Service

163

BlackBerry Application Developer Guide

SRAM
static random access memory

SRP
Service Relay Protocol

SSL
Secure Sockets Layer

T

TCP
Transmission Control Protocol

TCP/IP
Transmission Control Protocol/Internet Protocol
TIFF

Tag Image File Format

TLS
Transport Layer Security

U

UDP
User Datagram Protocol

ul
user interface

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

164

uTc
Universal Time Coordinate

\'

VM
virtual machine

w

WAP
Wireless Application Protocol

WBMP
wireless bitmap

WML
Wireless Markup Language
WMLC
Wireless Markup Language Compiled

WTLS
Wireless Transport Layer Security

X

XHTML
Extensible Hypertext Markup Language

XML
Extensible Markup Language

Index

Numerics

32-bit processor
efficient programming, 21

A

acknowledgement
application-level, 122
transport-level, 122
adding
transcoders, 160
alerts, 11
alpha values
pixel transparency, 63
raster operations, 63
alx files
examples, 145
format, 148
optional components, 146
using, 133
APIs
about, 5
Bluetooth, 90
CLDC, 7
collections, 9
compression, 9
hash tables, 10
lists, 10
MIDP, 7
network communication, 9
persistent storage, 8
streams, 9
system, 11
transcoding, 153
user interface, 29
utilities, 12
vectors, 10
application control
about, 12
IT policies, 119
application development
APIs, 5
building, 19
compiling, 19
creating source files, 19
IDE, 18
Java support, 8
loading, 138

optimizing, 142

system times, 26
application loader

about, 145

deploying applications, 133

application suites, resource files, 116
application-level acknowledgement

about, 122

HTTP headers, 122
applications

application manager, 14

compiling, 19

creating application loader files, 133

deleting, 138

hot keys, 111

loading, 133

optional components, 146

reusing code, 16

testing, 136

testing on handhelds, 138
attributes

alx files, 148
PAP DTD

autotext fields
about, 36
filters, 35

B

BBDevMgr.exe, 138

bitmap fields, 32
BitmapField class
getPredefinedBitmap(), 32

STAMP_MONOCHROME, 64

BlackBerry APIs
overview, 5
ul, 29
BlackBerry applications
main(), 14
properties, 135
BlackBerry Enterprise Server

troubleshooting push applications, 132
Bluetooth serial port connections

about, 90

closing, 90

opening, 90
BluetoothSerialPort class

about, 90

getSerialPortInfo(), 90

165

Index

BlackBerry Application Developer Guide

Boolean conditions, 21
browser

certificates, 151

push applications, 121
btspp protocol, 90
building projects, 19
button fields, 33

C

cancelling PAP push requests, 124

casting, 23

certificates, trusted servers, 151

choice fields, 33

CLDC APIs
about, 5
overview, 7

CLDC limitations, 8

code coverage, analyzing, 141

code examples
BaseApp.java, 16
BluetoothSerialPortDemo.java, 91
ContextMenuSample.java, 50
Countrylnfo.java, 111
Countrylnfo.java (with localization support), 114
CustomButtonField.java, 45
CustomPMEConnector.java, 80
DiagonalManager.java, 54
DrawDemo.java, 65
HelloWorld.java, 15
HTTPFetch.java, 83
HTTPPushDemo.java, 126
ImageDemo.java, 61
[TPolicyDemo.java, 119
MediaSample.java, 72
MediaSample2.java, 76
MobitexDemo.java, 99
ReceiveSms.java, 107
SamplelListFieldCallback.java, 57
SendSms.java, 105

code libraries, programming guidelines, 21

code, reusing, 16

collections
about, 9
hash tables, 10
lists, 10
vectors, 10

color handhelds
drawing, 63
getARGB(), 59

comments, javadoc, 20

compiling, applications, 19

components, See fields

166

compression formats
GZip, 9
ZLib, 9
connection types, overview, 9
context menus
about, 30
creating, 49
createMedia(), MediaManager class, 71
creating
context menus, 49
custom fields, 42
custom layout managers, 52
lists, 56
projects, 19
workspaces, 19
custom fields
appearance, 44
creating, 42
preferred field size, 43
using set and get methods, 45
custom managers
handling focus, 54
implementing subpaint(), 54
preferred field height, 53
preferred field width, 52

D

datagram connections
about, 96
opening, 96
Datagram interface
about, 96
setData(), 97
DatagramConnection interface
about, 96
newDatagram(), 97
date fields, 34
.debug files, installing, 138
debugging
attaching to handheld, 138
memory statistics, 143
objects in memory, 143
printing stack trace, 27
viewing objects in memory, 143
debugging tools
about, 141
code coverage, 141
dependencies, nested modules, 146
deploying applications
application loader files, 133
desktop software, 133
obfuscation, 19

using .cod files, 134

using .jar files, 134
desktop software

connecting to handheld simulator, 137

version, 138
dialog boxes

about, 31

displaying, 31
downloading

.cod files, 134

Jarfiles, 134
drawing

about, 59

color handhelds, 63
drawing styles, 64
drawlListRow(), ListFieldCallback class, 56
drawShadedFilledPath()

example, 64

Graphics class, 64
DrawsStyle class

using drawing styles, 64
DrawStyle interface

custom fields, 63

E

edit fields, 35
editor macros, javadoc, 20
email address
mapping to PIN, 141
PIN mapping, 132
email service simulator
about, 136
modes, 136
enterEventDispatcher()
event handling, 14
UiApplication class, 14
Enumeration class, hiding data, 23
event dispatch thread
running applications, 40
event dispatch threads
event locks, 39
events
about, 10
focus, 45
keyboard, 10
logging, 12
trackwheel, 10
user interface, 67
examples
BaseApp.java, 16
BluetoothSerialPortDemo.java, 91
ContextMenuSample.java, 50

Index

CountrylInfo.java, 111
Countrylnfo.java (with localization support), 114
CustomButtonField.java, 45
CustomPMEConnector.java, 80
DiagonalManager.java, 54
DrawDemo.java, 65
HelloWorld.java, 15
HTTPFetch.java, 83
HTTPPushDemo.java, 126
ImageDemo.java, 61
[TPolicyDemo.java, 119
MediaSample.java, 72
MediaSample2.java, 76
MobitexDemo.java, 99
ReceiveSms.java, 107
SamplelListFieldCallback.java, 57
SendSms.java, 105

Exceptions

F

ClassCastException, 23
MediaException class, 70

Field class

constructors, 42
custom fields, 42
extending, 42
layout(), 42
paint(), 44

fields

file

autotext, 36
bitmap, 32
button, 33

check box, 34
choice, 33
creating custom, 42
date, 34

edit, 35

gauge, 36

label, 36

list, 37

numeric choice, 33
object choice, 34
option, 34
password, 36
radio button, 34
separator, 36
text, 35
extensions

alx, 133

.cod, 19

jad, 133

167

BlackBerry Application Developer Guide

.rre, 110

arh, 110
final classes, programming guidelines, 21
focus events, 45
foreground events, managing, 40

G

garbage collection, efficient programming, 21
gauge fields, 36
get(), ListFieldCallback class, 56
getBoolean(), ITPolicy class, 118
getClass(), Object class, 21
getInputStream(), InputStream class, 129
getinteger(), ITPolicy class, 118
getOutputStream(), OutputStream class, 129
getPredefinedBitmap()

BitmapField class, 32
getPreferredHeight()

Field class, 43

Manager class, 53
getPreferredWidth()

Field class, 43

ListFieldCallback class, 56

Manager class, 52
getSerialPortInfo(), BluetoothSerialPort class, 90
getState(), MediaPlayer class, 70
getString(), ITPolicy class, 118
getUI(), MediaPlayer class, 71
GlobalEventListener interface, IT policy listeners, 118
Graphics class

drawing on the graphics context, 57

drawShadedFilledPath(), 64

getGlobalAlpha(), 63

implementing drawing styles, 63

inverting an area, 41

isColor(), 63

isDrawingStyleSet(), 64

numColors(), 63

setDrawingStyle(), 64

setGlobalAlpha(), 63

translating an area, 41
Graphics class, isRopSupported(), 63
GZip compression formats, 9

H

handheld
memory usage, 11
notification, 11
persistent storage, 8
radio information, 11
system resources, 11
system times, 26

168

handheld management, 12
handheld simulator
connecting to desktop software, 137
starting, 136
handheld software, versions, 5
hash tables, 10
headers
HTTP request, 150
HTTP response, 150
hot keys, 111
HTTP
requests, 150
responses, 150
HTTPS
about, 151
certificates, 151

IDE
creating projects, 19
creating source files, 19
creating workspaces, 18
memory statistics tool, 143
objects tool, 143
profiler tool, 142
resources, 109
simulator, 136
using, 18
initialization files, creating, 117
instanceof
evaluating casts, 23
evaluating conditions, 24
isColor(), Graphics class, 63
isDrawingStyleSet(), Graphics class, 64
isROPSupported()
Graphics class, 63
IT policies
about, 118
examples, 119
listening for changes, 118
retrieving, 118
[TPolicy class
getBoolean(), 118
getinteger(), 118
getString(), 118

J

Jad files, format, 133

Java
BlackBerry environment, 8
CLDC APIs, 7
CLDC limitations, 8

MIDP APIs, 7
multithreading, 8
javadocs, generating, 20

Javaloader, 138

K

KeyboardListener interface, implemented by Screen, 15
keyboards

events, 10

hot keys, 111
keytool

installing certificates, 151

L

label fields, 36
languages, See resources
layout
custom, 52
managers, 38
list fields, 37
listeners
keyboard, 10
overview, 10
trackwheel, 10
user interface events, 67
ListFieldCallback class
drawListRow(), 56
get(), 56
getPreferredWidth(), 56
lists
collection APIs, 10
creating, 56
drop-down, 33
list fields, 37
loading applications using Javaloader, 138
localization
about, 109
resource header files, 110
logging events, 12
loops, optimizing, 22

M

main screens, 15
main(), BlackBerry applications, 14
MainScreen class
about, 15
constructor, 15
makeMenu(), Screen class, 30
Manager class
getPreferredHeight(), 53
getPreferredWidth(), 52
nextFocus(), 54

Index

sublayout(), 53
managers

about, 38

flow layout, 39

horizontal layout, 39

See also custom managers
MDS, See Mobile Data Service
media content

PME, 69

supported protocols, 69
MediaException class

about, 69

HTTP response codes, 70
MediaListener interface, events, 70
MediaManager class

about, 69

createMedia(), 71
MediaPlayer class

about, 69

getState(), 70

getUl(), 71

setMedia(), 71

start(), 71
memory

leaks, 143

viewing objects, 143

viewing statistics, 143
menu items

adding, 30

localized strings, 114
Menultem class

about, 30

constructor, 30
menus

context, 49

context menus, 30, 49
messaging

simulating, 136
MIDlet applications

properties, 134
MIDP APIs

about, 5

overview, 7

persistent storage, 8

ul, 29
MIME encoding

reading streams, 9

writing streams, 9
Mobile Data Service

configuring, 141

managing certificates, 151

simulator, 139

169

BlackBerry Application Developer Guide

transcoders, 152
Mobile Data Service simulator
configuring, 140
push support, 141
testing, 139
multithreading
about, 8
recommended practices, 26

N

network
configuring the simulator, 141
serial connections, 89
socket connections, 87
transcoders, 152
newDatagram(), DatagramConnection interface, 97
nextFocus(), Manager class, 54
notification, using alerts, 11
numColors(), Graphics class, 63

(0]

obfuscation, default, 19
objects tool, about, 143
onClose(), MainScreen class, 15
optimizing

casting, 23

conditions, 24

division, 22

Enumeration, 23

expressions, 22

garbage collection, 21

loops, 22

memory, 26, 143

null parameters, 27

null return values, 27

objects, 143

performance, 20

profiler tool, 142

strings, 21
option fields, about, 34
optional components, .alx files, 146

P

paint(), Field class, 44
PAP push, See push access protocol
password fields, 36
peripherals
Bluetooth serial port connections, 90
serial port connections, 89
USB connections, 89
PIN

170

email mapping, 132
mapping to email address, 141
pixel transparency, alpha values, 63
processor, programming guidelines, 21
profiler tool, about, 142
programming
adding text fields, 114
avoiding Object.getClass(), 21
avoiding String(String), 22
Boolean conditions, 21
event dispatch thread, 40
event lock, 39
guidelines, 20
identifiers, 27
inner classes, 24
static strings, 21
UiApplication class, 14
using interfaces, 24
project properties, titles, 111
projects
building, 19
creating, 19
setting properties, 111
protocols
btspp (Bluetooth serial port), 90
media loading, 69
udp, 96
push access protocol, 121
push applications
about, 121
cancellation requests, 124
client/server, 126
client-side, 125
push access protocol, 123
query requests, 125
server-side, 128
simulator options, 141
troubleshooting, 132
types, 121
push requests
client/server, 121
sending, 122
pushScreen(), UiApplication class, 15

Q
querying, PAP push requests, 125

R

radio buttons, 34
radio, retrieving information, 11
raster operations, support, 63

receiving, SMS messages, 106
reliable push, 122
requests, HTTP, 150
resource bundles, retrieving, 114
resource files

managing, 116

retrieving strings, 113
resource interfaces, implementing, 113
ResourceBundle class

about, 109
ResourceBundleFamily class, 109
resources

adding, 110

application title, 111

inheritance, 110
responses

HTTP, 150

HTTP headers, 150
reusing code, 16
.rrc files, 110
.rrh files, 110

S

Screen class, makeMenu(), 30
screens

about, 15, 29

dialog boxes, 31

layout, 30

menus, 30

navigation, 30
security, certificates, 151
sending, SMS messages, 105
separator fields, 36
serial connections, using, 89
server connections

reading, 129

writing, 129
setData(), Datagram interface, 97
setDrawingStyle, Graphics class, 64
setMedia(), MediaPlayer class, 71
shift right, optimizing division, 22
short cuts, See hot keys
simulating email, 136
simulator

null modem cable, 137

using, 136
SMS

receiving, 106

sending, 105
sockets

about, 87

opening connections, 88
source files, creating in IDE, 19

Index

SSL, See HTTPS
stack trace, printing, 27
STAMP_MONOCHROME, BitmapField class, 64
start(), MediaPlayer class, 71
storing data, 8
streams
overview, 9
String class
avoiding String(String), 22
static variables, 21
sublayout(), Manager class, 53
synchronization, testing, 137
system times, application development, 26

T

testing
applications, 136
backup and restore, 137
handheld simulator, 136
HTTP network connections, 139
Mobile Data Service simulator, 139
using handhelds, 138
text fields, 35
threads
event dispatch thread, 40
event lock, 39
multithreading, 8, 26
Throwable, avoiding, 27
titles, localized, 110
trackwheel, events, 10
TrackwheelListener interface, implemented by Screen
class, 15
transcoding
about, 152
APls, 153
installing, 160
mapping transcoders, 156
programming, 153
selecting, 153
writing, 157
translation, See resources
transport-level acknowldegement
about, 122
transport-level acknowledgement
HTTP headers, 122

U

UDP connections, opening, 96

UDP, See User Datagram Protocol

Ul components
AutoTextEditField, 36
BasicEditField, 35

171

BlackBerry Application Developer Guide

BitmapField class, 32 fields, 32
ButtonField, 33 focus, 45
CheckboxField, 34 labels, 36
code example, 15 layout, 38
DateField, 34 listeners, 67
GaugeField, 36 lists, 37
ListField, 37 managers, 38
NumericChoiceField, 33 menus, 30
ObjectChoiceField, 34 radio buttons, 34
PasswordEditField, 36 screens, 29
RadioButtonField, 34 text fields, 35
RadioButtonGroup, 34 text filters, 35
RichTextField, 35 UiApplication class, 14
TreeField, 37 utilities, APIs, 12
UiApplication class
about, 14 \'
enterEventDispatcher(), 14 verification, bytecode, 19
extending, 14 versions, handheld software, 5
pushScreen(), 15 viewing, objects, 143
USB connections, using, 89
User Datagram Protocol, connections, 96 w
usexglt:r;ces workspaces, creating, 18
check boxes, 34 X
components, 32)
customizing, 42 XYPoint class, about, 40
dialog boxes, 31 XYRetc)t class
drawing, 59 about, 40
edit field filters, 35 -

event listeners, 67) .
ZLib compression formats, 9

172

	BlackBerry APIs
	Using BlackBerry APIs
	BlackBerry APIs
	CLDC APIs
	MIDP APIs
	PDAP APIs

	Using Java on BlackBerry handhelds
	Restrictions
	Multithreading
	Persistent storage
	Network communication
	Streams
	Collections
	Event listeners
	System capabilities
	Utilities

	Application control
	APIs with limited access

	Writing BlackBerry Java applications
	Application management
	Writing a sample application
	Extend the UiApplication base class
	Define main()
	Define a constructor
	Define the main screen
	Code example

	Reusing common code
	Code example

	Using the IDE
	Writing applications
	Create a workspace
	Building projects
	Generate javadocs

	Programming guidelines
	Writing efficient code
	Reducing code size
	Using time on BlackBerry handhelds
	Recommended practices

	Creating user interfaces
	User interface APIs
	Displaying UI components
	Displaying screens
	Displaying dialog boxes
	Displaying fields

	Managing UI components
	Managing layout
	Managing UI interactions
	Managing foreground events
	Managing drawing areas

	Creating custom UI components
	Creating custom fields
	Creating custom context menus
	Creating custom layout managers
	Creating lists

	Working with images
	Using raw image data
	Using encoded images

	Drawing using graphics objects
	Use the graphics context
	Implementing the DrawStyle interface
	Drawing in color
	Code example

	Listening for changes to UI objects
	Listen for field property changes
	Listen for focus changes
	Listen for scroll events

	Supporting media content
	PME content
	Overview of PME APIs
	Media loading

	Playing media content
	Download content
	Play PME content
	Code example

	Listening for media engine events
	Implement the listener
	Register the listener
	Load content in the background
	Track download progress
	Code example

	Creating custom connections
	Implement a custom connector
	Register a custom connector
	Code example

	Connecting to networks
	HTTP and socket connections
	Using HTTP connections
	Open an HTTP connection
	Set the HTTP request method
	Set or retrieve header fields
	Send and receive data over HTTP
	Code example

	Using HTTPS connections
	Open an HTTPS connection
	Specify proxy or end-to-end mode

	Using socket connections
	Specifying TCP settings
	Open a socket connection
	Send and receive data on a socket connection
	Close the connection

	Using port connections
	Open a port connection
	Send data on a port connection
	Receive data on a port connection
	Close a port connection

	Using Bluetooth serial port connections
	Open a Bluetooth serial port connection
	Send and receive data
	Close a port connection
	Code example

	Using datagram connections
	Datagram connections
	Using UDP connections
	Open a UDP connection

	Using Mobitex networks
	Open a Mobitex datagram connection
	Listening for datagram status events
	Obtain datagram information
	Obtain radio and network information
	Code example

	Sending and receiving SMS messages
	Sending SMS messages
	Receiving SMS message

	Localizing applications
	Resource files
	Resource inheritance

	Adding localization support to applications
	Add resource header files
	Add resource content files
	Add resources
	Set an application title
	Code example

	Retrieving strings from a resource file
	Implement the resource interface
	Retrieve the resource bundle
	Create menu items using resources
	Replace text strings with the appropriate resources
	Code example

	Managing resource files for application suites
	Create resource projects
	Specify output file names
	Create an initialization file
	Add files to appropriate resource projects

	Using IT policies
	IT policies
	Retrieving IT policy items
	Retrieve custom policies

	Listening for policy changes
	Controlling application downloads
	Code example

	Creating client/server push applications
	Push applications
	Client/server push requests
	Transcoding
	Transport-level acknowledgement
	Application-level acknowledgement
	Send a RIM push request
	Send a PAP push request
	Send a PAP push cancellation request
	Send a PAP push query request

	Writing a client-side push application
	Create a listening thread
	Open an input stream
	Close the stream connection notifier
	Code example

	Writing a server-side push application
	Construct the push URL
	Connect to the BlackBerry Enterprise Server
	Set properties for the HTTP POST request
	Write data to the server connection
	Read the server response
	Disconnect the connection
	Code example

	Troubleshooting push applications

	Packaging and deployment
	Deploying applications using the BlackBerry Desktop Software
	Create application loader files

	Deploying applications wirelessly
	Deploy .jar files
	Deploy .cod files

	Testing and debugging
	Test applications
	Testing applications using the simulator
	Testing applications using a connected handheld
	Testing HTTP network connections
	Configure the Mobile Data Service simulator

	Using the debugging tools
	Analyze code coverage
	Using the profiler
	Finding memory leaks

	Appendix A: format of .alx files
	.alx files
	Nesting modules
	Specifying a handheld version

	Elements in .alx files

	Appendix B: Mobile Data Service reference
	HTTP requests
	HTTP responses
	HTTPS support
	Certificate management for HTTPS

	Transcoders
	Transcoder API
	Selecting transcoders
	Mapping transcoders

	Creating transcoders
	Convert HTML tags and content to uppercase

	Compile and install transcoders

	Glossary
	A
	C
	D
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

