
360 | Understanding Services Programming Guide ____________________________Page 1

 
 
 

 

360 | Understanding Services Programming Guide and Examples

 

 

 



360 | Understanding Services Programming Guide ____________________________Page 2

Copyright

2013. 360 | Understanding Services.

This material may not include some last-minute technical changes and/or revisions to the software. Changes are periodically made to the information provided here. 

Future versions of this material will incorporate these changes. 

Nuance Communications, Inc. has patents or pending patent applications covering the subject matter contained in this document. The furnishing of this document does 

not give you any license to such patents. 

No part of this manual or software may be reproduced in any form or by any means, including, without limitation, electronic or mechanical, such as photocopying or 

recording, or by any information storage and retrieval systems, without the express written consent of Nuance Communications, Inc. Specifications are subject to 

change without notice.   

Copyright © 1999-2013 Nuance Communications, Inc. All rights reserved. 

Nuance, ScanSoft, the Nuance logo, the Dragon logo, Dragon, DragonBar, NaturallySpeaking, NaturallyMobile, RealSpeak, Nothing But Speech (NBS), Natural Lan-

guage Technology, Select-and-Say, MouseGrid, and Vocabulary Editor are registered trademarks or trademarks of Nuance Communications, Inc. in the United States 

or other countries.  All other names and trademarks referenced herein are trademarks of Nuance Communications or their respective owners. Designations used by 

third-party manufacturers and sellers to distinguish their products may be claimed as trademarks by those third-parties.

Disclaimer
Nuance makes no warranty, express or implied, with respect to the quality, reliability, currentness, accuracy, or freedom from error of this document or the product or 

products referred to herein and specifically disclaims any implied warranties, including, without limitation, any implied warranty of merchantability, fitness for any par-

ticular purpose, or noninfringement.

Nuance disclaims all liability for any direct, indirect, incidental, consequential, special, or exemplary damages resulting from the use of the information in this document. 

Mention of any product not manufactured by Nuance does not constitute an endorsement by Nuance of that product.

Notice
Nuance Communications, Inc. is strongly committed to creating high quality voice and data management products that, when used in conjunction with your own com-

pany’s security policies and practices, deliver an efficient and secure means of managing confidential information.

Nuance believes that data security is best maintained by limiting access to various types of information to authorized users only. Although no software product can com-

pletely guarantee against security failure, 360 | Understanding Servicessoftware contains configurable password features that, when used properly, provide a high 

degree of protection.

We strongly urge current owners of Nuance products that include optional system password features to verify that these features are enabled! You can call our support line if you need assist-

ance in setting up passwords correctly or in verifying your existing security settings.

Published by Nuance Communications, Inc., Burlington, Massachusetts, USA

Visit Nuance Communications, Inc. on the Web at www.nuance.com.

Visit Nuance Healthcare on the Web at www.nuance.com/healthcare.

 ____________________________________________________

http://www.nuance.com/
http://www.nuance.com/healthcare


360 | Understanding Services Programming Guide ____________________________Page 3

Contents

 

 

Contents 3
What is the 360 | Understanding Services SDK? 7

What Does the SDK Include? 7
Environment Requirements 8
Security 8

The 360 | Understanding Services API 9
Connecting to Nuance Healthcare Services 10

Accessing the 360 | Understanding Services Application 10
Sessions 12
Session Class 14
SessionFactory() 15

Description 15
Syntax 15
Parameters 15
Returns 15
Example 15

INusSession Open(string userID, ILicense license) 16
Description 16
Syntax 16
Parameters 16
Returns 16
Example 16

GetService<TService>() 18
Description 18
Syntax 18
Parameters 18
Example 18

IsAvailable<TService>() 19
Description 19
Syntax 19
Parameters 19
Returns 19
Example 19

Configuration 20
Configuration Class 22



360 | Understanding Services Programming Guide ____________________________Page 4

List<ConnectionConfig> Connections { get; set; } 23
Description 23
Syntax 23
Example 23

ConnectionConfig SelectedConnection { get; set; } 24
Description 24
Syntax 24

int SelectedConnectionIndex { get; set; } 25
Description 25
Syntax 25
Parameter 25

LogConfig Logging { get; set; } 26
Description 26
Syntax 26
Parameter 26

void Write( string filePath ); 27
Description 27
Syntax 27
Parameters 27

Static Configuration Read( string filePath ); 28
Description 28
Syntax 28
Parameters 28

ConnectionConfig Class 29
ConnectionType Type { get; set; } 30

Description 30
Syntax 30
Parameters 30
Example 30

string Name { get; set; } 32
Description 32
Syntax 32
Parameter 32
Example 32

string Description { get; set; } 33
Description 33
Syntax 33
Parameter 33
Example 33

string Url { get; set; } 34



360 | Understanding Services Programming Guide ____________________________Page 5

Description 34
Syntax 34
Parameter 34
Example 34

int MaxRetries { get; set; } 35
Description 35
Syntax 35
Parameter 35
Example 35

TimeSpan Timeout { get; set; } 36
Description 36
Syntax 36
Parameters 36
Example 36

LogConfig Class 37
LogLevel Level { get; set; } 38

Description 38
Syntax 38
Parameters 38

string File { get; set; } 39
Description 39
Syntax 39
Parameters 39
Example 39

int SizeKb { get; set; } 40
Description 40
Syntax 40
Parameters 40

Exception Handling Overview 41
Exception Handling Class Hierarchy 42
How the SDK Handles Exceptions 42
CommunicationException Group 43
System/Application Exceptions Group 43

Exception Handling Guidelines 45
Handling Exceptions Programmatically 45

360 | Understanding Services Workflows 47
Synchronous Fact Extraction 47
Synchronous Fact Extraction Example 48
Asynchronous Fact Extraction 50
Asynchronous Fact Extraction Example 50



360 | Understanding Services Programming Guide ____________________________Page 6

Document Management 52
The CLU Service Interface 54
ExtractDocument() 60

Description 60
Syntax 60
Parameters 60
Returns 60
Example 60

ImportDocument() 62
Description 62
Syntax 62
Parameters 62
Returns 62
Example 62

GetDocumentListStatus() 64
Description 64
Syntax 64
Parameters 64
Returns 64
Example 64

GetExtractedDocument() 66
Description 66
Syntax 66
Arguments 66
Returns 66
Example 66

About the XML Output 67
About the CDA Standard 67
Guidelines for Using XPath in .NET 69



360 | Understanding Services Programming Guide ____________________________Page 7

What is the 360 | Understanding 
Services SDK?

 

Nuance supports various clinical language understanding (CLU) features, including the ability to dictate 

and transcribe patient reports, process those reports, and extract pertinent data from them. 

The 360 | Understanding Services SDK is a set of software components that allows you to integrate a 

wide range of client applications in the EHR domain, including transcription, dictation and document 

signing, with a variety of Nuance Healthcare services, supporting workflows in a Meaningful Use con-

text.

The SDK offers simple, powerful programming interfaces to engage state of the art technology in med-

ical document fact extraction. It is designed with extensibility in mind, accommodating the expansion 

of service offerings by Nuance Healthcare while providing familiar concepts and integration interfaces.

As Nuance Healthcare research and development progresses, client systems that consume services via 

the SDK can take advantage of improved service implementations without requiring major system 

updates.

What Does the SDK Include?
. The SDK consists of two parts:

 n An API that allows you to connect to Nuance services and control the flow of documents through 

the document processing workflows. See 360 | Understanding Services Workflows on page 47 for more 

information about the document processing workflows, and The 360 | Understanding Services API on 

page 9 for more information about the API.

 n A set of XML templates that define the structure for various types of electronic medical records 

(EMRs). The structure of the templates is based on the Health Level 7 International (HL7) Clinical 

Document Architecture (CDA) v2 standard. See About the XML Output on page 67 for more 

information about the CDA XML output.

The software and documentation components included in the SDK are:

 n Binaries:

 l Nuance.NUS.Sdk.dll – Core implementations of NUS services.

 l Nuance.NUS.Sdk.Clu.dll – CLU service implementation.

 n Configuration and Licensing:



360 | Understanding Services Programming Guide ____________________________Page 8

 l CluSdk.config – Contains the initial connection configuration for the partner organization.

 l License.lic – Contains licensing information for the partner organization.

 n Documentation:

 l 360 | Understanding Services Programming Guide and Examples – This book; an overview of the 

SDK and a guide to common programming tasks.

 l Nuance.NUS.Sdk.xml – IntelliSense support for Visual Studio.

 l Nuance.Nus.Sdk.Clu.xml – IntelliSense support for Visual Studio.

 l One or more sample projects demonstrating CLU SDK use scenarios.

Environment Requirements
The SDK supports integration/programming environments based on .NET framework version 3.5 and 

higher, running on Microsoft Windows XP SP3 and later. 

Security
Secure Session and Authentication

By default, connecting to Nuance Healthcare services requires SSL (https://...)  security protocol, and 

all communication between the client application and Nuance services via SDK is conducted using 

SSL encryption.

Upon successful authentication, the server establishes a secure session and provides the security 

tokens necessary to verify every call to the service and maintain session lifecycle.

Session’s duration is controlled either by explicit closing and disposal, or by exceeding maximum idle 

time. You can configure the maximum idle time via a server side setting. When the session is closed, no 

further API invocations are accepted. 

The CLU SDK provides capabilities to validate the organization license for CLU SDK. To simplify the 

integration the CLU SDK creates users automatically if they do not already exist in the system. The 

APIs require minimum user information to complete this operation. 

Authorization and License Verification

Each integration partner will receive separate licensing information, containing a unique license iden-

tifier, partner identifier and name.



360 | Understanding Services Programming Guide ____________________________Page 9

The 360 | Understanding Services API
The 360 | Understanding Services API consists of several interfaces:

 n Session, which allows you to create and control sessions.

 n Configuration, which allows you to configure connection and logging settings.

 n The CLU Service Interface, which supports the document processing workflows described in 360 | 

Understanding Services Workflows on page 47.

The following sections describe these interfaces in greater detail.



360 | Understanding Services Programming Guide ____________________________Page 10

Connecting to Nuance Healthcare 
Services

360 | Understanding Services supports the following mechanisms of establishing a connection to the 

Nuance Healthcare services:

 n Explicit Host – A connection method to a static, well-known entry point URL. 

With this method, service location resolution is defined up front with each Nuance partner, and the 

partner receives the service entry point URL as  part of SDK configuration.

 n InfoServer – A connection method where standard eScription InfoServers dynamically determine 

the service entry point for each customer/partner account. This connection method allows 

integration partners to access high-availability, high-performance servers maintained by Nuance.

With the InfoServer connection method, partner specific SDK configuration information contains 

references to pre-defined realm URLs as arguments to an InfoServer resolution of service entry 

point location.

360 | Understanding Services also  supports a ServiceEmulator connection option, where service beha-

vior is emulated within SDK implementation, but no actual connection occurs. This feature is par-

ticularly useful in the early stages of integration development, such as evaluation and preliminary 

testing of the SDK. 

Accessing the 360 | Understanding Services 
Application
Complete the following steps to access the 360 | Understanding Services application:

Step One: Open Your Welcome Kit

After you purchase the 360 | Understanding Services SDK, Nuance will send you a welcome kit con-

taining the following information:

 n A partner GUID

 n A license GUID

 n Your institution name

 n Your institution's URL

 n The expiration date of your access to the application.



360 | Understanding Services Programming Guide ____________________________Page 11

Make a note of the GUIDs, the institution name, and your institution's URL; you will need them to 

access the application.

You can access the 360 | Understanding Services application approximately 24 hours after you receive 

the welcome kit.

Step Two: Use the API to Create a Connection to the Application

Complete the following steps to use the API to connect to the 360 | Understanding Services applic-

ation:

 1. Create a Configuration object, supplying the URL from your welcome kit:

See Configuration on page 20 for more information about the Configuration object.

 2. Create a License object, supplying the Partner GUID, License GUID, and Institution Name from 

your welcome kit:

See Sessions on page 12 for an example that includes creating a License object.

 3. Create a SessionFactory object:

See Sessions on page 12 for an example that includes creating a SessionFactory object, and Ses-

sionFactory() on page 15

 4. Create an instance of the CLU service:

See Sessions on page 12 and Session Class on page 14

Note: 360 | Understanding Services application uses a licensing model, and auto-provisions user IDs 

like the one used in the preceding example. There is a limitation of 8 distinct logins.

 



360 | Understanding Services Programming Guide ____________________________Page 12

Sessions
A session is an essential SDK concept. Its responsibilities are:

 n To maintain a secure session connection.

 n To support authentication and authorization in SDK interactions.

 n To provide access to Nuance service(s).

 n To create and maintain a secure operational context for each API call within the accessed service.

SDK client code must maintain the scope of a session for any services accessed. Without a session con-

text, you cannot use the service and its APIs.

To gain access to CLU services, you get a handle to a service object:

 1. Create  SessionFactory(), with the Configuration object as an argument.

 2. Create a session using the factory.Open() method, providing user credentials and license 

information.

 3. Create a CLU service instance via Session’s GetService() method.

The following sample code illustrates this procedure:



360 | Understanding Services Programming Guide ____________________________Page 13

 

Note: 360 | Understanding Services application uses a licensing model, and auto-provisions user IDs 

like the one used in the preceding example. There is a limitation of 8 distinct logins.

 

The preceding example demonstrates the relationship between the session and service, as a service can 

be utilized only within a scope of a secure session.

Depending on specific use scenarios, session/service access can be maintained in number of variations 

to fit the needs of the integrating application. For example: a simple Windows form can create session 

and service instances as member variables during instantiation and/or loading, and upon closing, prop-

erly dispose service and session member variables.

Note: If any subsequent API throws an AuthenticationException, use the Session API  to 

re-establish a session.



360 | Understanding Services Programming Guide ____________________________Page 14

Session Class
 

The following table describes the Sessionclass's properties and methods. See Sessions on page 12

Property/Method Description

SessionFactory() Establishes  an authorized session with the CLU middle tier.

INusSession Open(string userId, 
ILicense license)

Opens a session with user ID and license.

INusSession Open(string userId, 
string password, ILicense 
license)

Opens a session with user ID, password, and license.

GetService<ICluService>() Creates an instance of the NUS service.

IsAvailable<ICluService>() Returns True or False, indicating whether the ICluService is 
available.



360 | Understanding Services Programming Guide ____________________________Page 15

SessionFactory()

Description
Establishes  an authorized session with the CLU middle tier.

Syntax
public SessionFactory( Configuration config )

Parameters
Parameter Required? Description

config Y A configuration object. See Configuration on page 20 for more information.

Returns
An instance of SessionFactory.

Example
var factory = new SessionFactory( config );
 
  using( var session = factory.Open( "userId", license )) // create session
  {
   // create service
   using( var service = session.GetService<ICluService>() ) 
   {
    using( var docStream = GetDocStream() ) // open doc as stream
    {
     // execute extraction
     var response = service.ExtractDocument( docStream, 
      _docMetaData, _patient, _visit ); 
  
     // verify results
     Assert.IsTrue( response.DocumentId != -1, 
      "Document id should be non-negative." ); 
     Assert.IsTrue( response.ExtractedDocument.Length > 0, 
      "Extracted document length should be
       greater than 0" );
    }
   }
  }   



360 | Understanding Services Programming Guide ____________________________Page 16

INusSession Open(string userID, 
ILicense license)

Description
Opens a session with user ID and license.

Note: 360 | Understanding Services application uses a licensing model to authenticate users, and auto-

provisions user IDs like the one used in the following example. There is a limitation of 8 distinct user 

IDs for a single license.

 

Syntax
INusSession Open(string userId, ILicense license);

Parameters
Parameter Required? Description

userID Y Login name identifying the user/application on the customer system. 

license Y GUID used to identify the customer's licensing entity.

Returns
Returns a session instance.

Example
var factory = new SessionFactory( config );
 
  using( var session = factory.Open( "userId", license )) // create session
  {
   // create service
   using( var service = session.GetService<ICluService>() ) 
   {
    using( var docStream = GetDocStream() ) // open doc as stream
    {
     // execute extraction
     var response = service.ExtractDocument( docStream, 
      _docMetaData, _patient, _visit ); 
  
     // verify results
     Assert.IsTrue( response.DocumentId != -1, 
      "Document id should be non-negative." ); 
     Assert.IsTrue( response.ExtractedDocument.Length > 0, 



360 | Understanding Services Programming Guide ____________________________Page 17

      "Extracted document length should be
       greater than 0" );
    }
   }
  }   



360 | Understanding Services Programming Guide ____________________________Page 18

GetService<TService>()

Description
Creates an instance of an NUS service.

Syntax
TService GetService<TService>() where TService : INusService;

Parameters
Parameter Description

TService The service type to create.

Example
// create session factory
 var factory = new SessionFactory( config );
 
  // create session
  using( var session = factory.Open( "userId", license ))
  {
   // create service
   using( var service = session.GetService<ICluService>())
    {
     // utilize service
     Assert.DoesNotThrow( () => service.IsAvailable() );
 
    } // disposal of service
  } // disposal of session 



360 | Understanding Services Programming Guide ____________________________Page 19

IsAvailable<TService>()

Description
Returns True or False, indicating whether an instance of the specified service type is available.

Syntax
bool IsAvailable<TService>() where TService : INusService;

Parameters
Parameter Description

TService The service type to check for.

Returns
True or False, indicating whether an instance of the specified service type is available.

Example
// create session factory
 var factory = new SessionFactory( config );
 
  // create session
  using( var session = factory.Open( "userId", license ))
  {
   // create service
   using( var service = session.GetService<ICluService>())
   {
    // utilize service
    Assert.DoesNotThrow( () => service.IsAvailable() );
 
   } // disposal of service
  } // disposal of session 



360 | Understanding Services Programming Guide ____________________________Page 20

Configuration
System wide settings are contained within Configuration type. The Configuration type has two 

purposes:

 n It specifies the connection details for the SDK, as described in Connecting to Nuance Healthcare Services 

on page 10. 

 n It allows the client application to configure various settings, including: 

 l Maximum number of connection retries.

 l Maximum number of call retries.

 l Maximum connection idle time. 

 l Log file location.

 l Log file size. 

 l Logging thresholds.

The Configuration type allows multiple connection definitions. This  allows you to specify con-

nection details without having to recompile.

Figure 2 shows a class diagram of the Configuration type:



360 | Understanding Services Programming Guide ____________________________Page 21

Figure 2: The Configuration Type

Each SDK ships with default configuration settings: a simple XML serialization of Con-

figuration. Integrators can use the default XML serialization, or set the values programmatically, 

as in the following example:



360 | Understanding Services Programming Guide ____________________________Page 22

Configuration Class
 

The following table describes the Configuration class's properties and methods. See Con-

figuration on page 20

Property/Method Description

SelectedConnectionIndex() Gets/sets the selected connection index.

LogConfig Logging { get; set; } Gets/sets a logging configuration object.

List<ConnectionConfig> Con-
nections { get; set; }

Gets/sets a list of configured connections.

ConnectionConfig Selec-
tedConnection { get; set; }

Gets/sets the selected connection.

void Write(string filePath); Serializes a Configuration object to the specified file.

Static Configuration Read( 
string filePath );

De-serializes a Configuration object.



360 | Understanding Services Programming Guide ____________________________Page 23

List<ConnectionConfig> Connections { 
get; set; }

Description
Sets or gets a list of configured connections. See Connecting to Nuance Healthcare Services on page 10 for 

additional information about connections.

Syntax
List<ConnectionConfig> Connections { get; set; }

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 24

ConnectionConfig SelectedConnection { 
get; set; }

 

Description
Sets or gets information about the selected connection. See Connecting to Nuance Healthcare Services on 

page 10 for additional information.

Syntax
ConnectionConfig SelectedConnection { get; set; }



360 | Understanding Services Programming Guide ____________________________Page 25

int SelectedConnectionIndex { get; set; 
}

 

Description
Sets or gets the selected connection index. See Connecting to Nuance Healthcare Services on page 10 for addi-

tional information about connections.

Syntax
int SelectedConnectionIndex { get; set; }

Parameter
If setting the property, the index for the connection.



360 | Understanding Services Programming Guide ____________________________Page 26

LogConfig Logging { get; set; }

Description
Sets or gets the logging configuration object.

Syntax
LogConfig Logging { get; set; }

Parameter
If setting the property, a LogConfig object. See LogConfig Class on page 37 for more information.



360 | Understanding Services Programming Guide ____________________________Page 27

void Write( string filePath );

Description
Serialization of the connection object to file.

Syntax
void Write( string filePath );

Parameters
Value Description

filePath Path to the file that you are serializing to.



360 | Understanding Services Programming Guide ____________________________Page 28

Static Configuration Read( string 
filePath );

Description
De-serialization of the connection object.

Syntax
Static Configuration Read( string filePath );

Parameters
Value Description

filePath Path to the serialized object.



360 | Understanding Services Programming Guide ____________________________Page 29

ConnectionConfig Class
 

The following table describes the ConnectionConfig class's properties and methods. See Con-

figuration on page 20

Property/Method Description

ConnectionType Type { get; set; 
}

Gets/sets the connection type.

string Url { get; set; } Gets/sets the connection entry point URL.

TimeSpan Timeout { get; set; } Gets/sets the API call timeout. 

int MaxRetries { get; set; } Gets/sets maximum number of API call tries.

string Name { get; set; } Gets/sets the connection name.

string Description { get; set; } Gets/sets the connection description.



360 | Understanding Services Programming Guide ____________________________Page 30

ConnectionType Type { get; set; }
 

Description
Sets or gets the connection type. See Connecting to Nuance Healthcare Services on page 10 for additional 

information.

Syntax
ConnectionType Type { get; set; }

Parameters
If you are setting the connection type, a value from the ConnectionType enumeration:

Value Description

ExplicitHost A connection method to a static, well-known entry point URL. With this method, ser-
vice location resolution is defined up front with each Nuance partner, and the part-
ner receives the service entry point URL as  part of SDK configuration.

InfoServer A brokered connection via an eScription InfoServer, which dynamically determines 
the service entry point for each customer/partner account. This connection method 
allows integration partners to access high-availability, high-performance servers 
maintained by Nuance.

SessionEmulator A connection to emulated services without a connection to an external URL.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     



360 | Understanding Services Programming Guide ____________________________Page 31

     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 32

string Name { get; set; }
 

Description
Sets or gets the connection name. See Connecting to Nuance Healthcare Services on page 10 for additional 

information.

Syntax
string Name { get; set; }

Parameter
If setting the property, the connection name.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 33

string Description { get; set; }
 

Description
Sets or gets the connection description. See Connecting to Nuance Healthcare Services on page 10 for addi-

tional information about connections.

Syntax
string Description { get; set; }

Parameter
If setting the property, a string describing the connection.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 34

string Url { get; set; }
 

Description
Sets or gets the connection entry point URL. See Connecting to Nuance Healthcare Services on page 10 for 

additional information.

Syntax
string Url { get; set; }

Parameter
If setting the property, the connection entry point URL.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 35

int MaxRetries { get; set; }
 

Description
Sets or gets the maximum number of API call tries. See Connecting to Nuance Healthcare Services on page 

10 for additional information.

Syntax
int MaxRetries { get; set; }

Parameter
If setting the property, the number of API call tries.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 36

TimeSpan Timeout { get; set; }
 

Description
Sets or gets the API call timeout. See Connecting to Nuance Healthcare Services on page 10 for additional 

information.

Syntax
TimeSpan Timeout { get; set; }

Parameters
If setting the property, a TimeSpan object specifying the time out in seconds.

Example
var config = new Configuration();
    
  // Add connection configurations for specific purpose
  config.Connections.AddRange( new[]
   {
    new ConnectionConfig
     {
      Type = ConnectionType.ExplicitHost,
      Name = "ExplicitHostExample",
      Description = "Connection to an explicit host",
      Url = "https://[host]/[institution]",
      MaxRetries = 5,
      Timeout = TimeSpan.FromSeconds( 30 )
     },
    new ConnectionConfig
     {
      Type = ConnectionType.SessionEmulator,
      Name = "CLU session emulator",     
     } );
 
   }



360 | Understanding Services Programming Guide ____________________________Page 37

LogConfig Class
 

The following table describes the LogConfig class's properties and methods. See Configuration on 

page 20

Property/Method Description

LogLevel Level { get; set; } Gets/sets the type of information that gets logged.

string File { get; set; } Gets/sets the path to the log file.

int SizeKb { get; set; } Gets/sets the log size. 



360 | Understanding Services Programming Guide ____________________________Page 38

LogLevel Level { get; set; }
 

Description
Sets or gets the type of information written to the log. See Connecting to Nuance Healthcare Services on 

page 10 for additional information about connections and logging.

Syntax
LogLevel Level { get; set; }

Parameters
If you are setting the logging level, a value from the LogLevel enumeration:

Value Description

All All log statements.

Debug Debug log statements.

Info Info log statements.

Warn Warning log statements.

Error Error log statements.

Fatal Fatal log statements.

Off Disables logging.



360 | Understanding Services Programming Guide ____________________________Page 39

string File { get; set; }
 

Description
Sets or gets the path to the log file,

Syntax
string File{ get; set; }

Parameters
Path to the log file.

Example
  // or set any other property ...
   config.Logging.File = @"c:\Temp\MyLogFile.log";



360 | Understanding Services Programming Guide ____________________________Page 40

int SizeKb { get; set; }
 

Description
Sets or gets the log size. See Connecting to Nuance Healthcare Services on page 10 for additional information.

Syntax
int SizeKb { get; set; }

Parameters
If setting the log size, the desired log segment size, in Kbytes.



360 | Understanding Services Programming Guide ____________________________Page 41

Exception Handling Overview
The 360 | Understanding Services CLU SDK exception type hierarchy is designed to:

 n Distinguish communication and protocol exceptions from system / application exceptions.

 n Classify the origin of exceptions, for example, client and server side exceptions.

All CLU SDK exception types are derived from .NET framework's Application Exception 

class, where all CLU SDK specific data is contained within an existing interface. The only extension to 

the interface is the IsRetryable() method, applicable to Communications exceptions group. 

See Microsoft's .NET documentation for more information about the .NET framework and exception 

handling.

All exceptions are recorded in the CLU SDK log (call stack with complete exception data and a history 

of method call retries), unless the logging level has been set to LogLevel.Off (LogConfig 

class, LogLevel property).



360 | Understanding Services Programming Guide ____________________________Page 42

 

Exception Handling Class Hierarchy
The SDK uses the following hierarchy for exception handling:

 

The  exception hierarchy contains several types that are grouped as follows:

 n Communication Exceptions group:

 l NusCommunicationException

 l NusTimeoutException

 n System/Application Exceptions group:

 l NusException

 l NusSystemException

 l NusAuthorizationException

Each NusSystemException and its descendants contain Response property of type Sys-

temResponse, which encapsulates the specific failure code (RequestStatus enumeration) 

and a text description. The Response property will also carry the name of the API method (Meth-

odName) in which the exception occurred.

How the SDK Handles Exceptions
The SDK’s internal exception handling consists of several steps:

 n Based on the source exception type and other contextual information (workflow, session state, API 

call specific information), the SDK evaluates the exception state as retryable or non-retryable and 

classifies the exception type as either communication or timeout.

 l If the exception is non-retryable, the SDK throws appropriate communication exception type, 

where the InnerException property contains the source exception, and its IsRetry-

able() method returns False.

 l If the exception is retryable, the SDK attempts remedial action and retries the call in question 

(the number of retries is defined in the ConnectionConfig.MaxRetries property). If 

the retry is successful, the SDK will not throw an exception.

 l If retry is unsuccessful, the SDK throws the appropriate communication exception type, where 

the InnerException property contains the source exception, and its IsRetryable() 

method returns True.



360 | Understanding Services Programming Guide ____________________________Page 43

CommunicationException Group
CLU SDK Communication exceptions are primarily utility classes providing encapsulation for multiple 

possible sources of communication errors you may encounter while completing an API call. The initial 

(source) exception can come from a number of underlying .NET framework components such as the 

http(s) protocol, or other exceptions in the System.ServiceModel or System.Net 

namespaces.  See Microsoft's .NET documentation for more information about the .NET framework.

NusCommunicationException Type

NusCommunicationExceptions come from variety of sources, including exceptions from the Sys-

tem.ServiceModel and System.Net namespaces. The most common source type is the 

standard .Net type System.Net.WebException, where its Response and 

Response.Status properties contain critical information about the error state encountered.

As described in default retry strategy above, if the exception is classified as a communication type, the 

SDK will determine whether it is retryable, and if so, retry the offending call. If unsuccessful, the SDK 

throws a NusCommunicationException, where the InnerException property contains 

the source exception.

NusTimeoutException Type

Timeout exceptions are a kind of communication exception where the trigger exception is either Sys-

tem.TimeoutException or System.Net.WebException. The exception's 

Response.StatusCode property is set to WebExceptionStatus.Timeout.

Once the SDK classifies the source exception as a Timeout type, the system employs the default retry 

strategy. If the retry is unsuccessful, it throws a NusTimeoutException where the Inner-

Exception property contains the source exception.

System/Application Exceptions Group
NusSystemException Type

This exception type encapsulates errors returned by the NUS server per session or service API call as a 

result of violation of business and/or data integrity rules. The exception data contains details on a spe-

cific request status and its details. By default, for exceptions in application group, the IsRetryable

() method returns False.

This is the most frequent type of exception to encounter during integration development.

http://msdn.microsoft.com/en-us/library/system.applicationexception.aspx


360 | Understanding Services Programming Guide ____________________________Page 44

GetExtractedDocument() Example

Executing GetExtractedDocument() for a non-existing document ID throws an exception 

with the following message:

Nuance.NUS.Sdk.NusSystemException: web service call GetExtractedDocument failed:

response code: REQUEST_ERROR

response description: CLU Document does not exist

SessionFactory.Open() Example

Supplying invalid credentials to SessionFactory.Open() throws an exception with the fol-

lowing message:

Nuance.NUS.Sdk.NusSystemException: web service call OpenSession failed: response 
code: AUTHENTICATION_ERROR

response description: Generic application error. Please contact system administrator

NusException Type

These exceptions are generated by the CLU SDK client side code, and are specific to internals of cre-

ating session and service instances and service type resolution. Typically, such exceptions are rare and 

likely an indicator of SDK deployment issues, such as missing service specific dll files and/or 

resources.

NusSystemException Type

These exceptions cover errors returned by the NUS server related to internal message exchange pro-

tocol and data formats. The Exception.Message property contains a complete description of 

error encountered, and any additional data if available. Typically, such exceptions are rare and an indic-

ation of internal CLU SDK messaging problems.

NusAuthorizationException Type

These exceptions occur as a consequence of compromised authorization data and/or process, such as 

corrupt security context data, or prolonged inactivity of the client system resulting in exceeding the 

server idle timeout limitation.



360 | Understanding Services Programming Guide ____________________________Page 45

Exception Handling Guidelines
The try/catch/finally pattern is the safest approach for handling processing errors and allow-

ing your client application to either maintain its valid state or exit in an orderly fashion while preserving 

all information about the erroneous state.

While handling NusSystemException cases (violations of business and/or data rules), you 

might choose to inform the user about possible remedial action. For example, if a user tries to retrieve 

a non-existing document ID, you might want to prompt for correction of input data. 

In case of NusTimeoutExceptions , you should increase the setting for maximum timeout per 

API call (as defined in ConnectionConfig.Timeout property) before examining other influ-

encing factors such as network latency and the size and number of documents processed via SDK.

Handling Exceptions Programmatically
You can handle some of exceptions programmatically, attempting remedial action in your application 

code. For example, programmatic exception handling is a good choice for dealing with NusAuthor-

izationExceptions, when an instance of session went through a long period of inactivity and 

exceeded the NUS server idle timeout.

Exceeding the timeout causes every subsequent API call to throw a NusAuthor-

izationException. Its Response.Code property will always be 

RequestStatus.AuthorizationError, while Response.Description and 

Response.MethodName vary depending on the source invocation context.

To handle such exceptions, use a three step strategy:

 1. Detect the NusAuthorizationException during an API call.

 2. Recreate the session and respective service instance.

 3. Retry the original API call.



360 | Understanding Services Programming Guide ____________________________Page 46

 

The following example shows this strategy:



360 | Understanding Services Programming Guide ____________________________Page 47

360 | Understanding Services 
Workflows

The 360 | Understanding Services SDK supports the following workflows:

 n Synchronous fact extraction, where you submit a document to Nuance's fact extraction engine via a 

single API call, and must wait for that processing to complete before you can continue. 

 n Asynchronous fact extraction, where you can better control latency in the system by using different 

API calls to submit, check, and retrieve documents from the fact extraction engine.

Synchronous Fact Extraction
Synchronous fact extraction is the simplest workflow. At its core, it is a single API call executing mul-

tiple operations; it:

 n Submits a single document ( in text form)  and its  metadata to the engine.

 n Waits for the extraction process to complete.

 n Receives the extraction results in CDA XML format. The data returned from this call contains a 

unique document identifier within the processing queue. This identifier is an integral part of the 

Document Management functionality. See Document Management on page 52 for more information.

Depending on size and complexity of the document in process, response times vary. 

The client application is responsible for handling the latency of sending the file, and processing and 

receiving the extraction results.

The extraction results are returned as a document stream in CDA format, so it is responsibility of the 

client application to parse and reconcile resulting CDA document into their specific representation of 

the updated document.

See About the XML Output on page 67  

When to use the Synchronous Fact Extraction Workflow

This workflow is primarily geared towards integration scenarios where a separate process executes syn-

chronous extraction calls, isolating the client application UI (if any) from potential adverse effects. An 

example would be processing documents in batch fashion, either sequentially, or as concurrent tasks1.

1Concurrent processing refers to client application’s ability to launch and manage execution of either 

multiple threads or multiple processes.



360 | Understanding Services Programming Guide ____________________________Page 48

Synchronous Fact Extraction Example
The following sample shows how to implement the Synchronous Fact Extraction workflow:



360 | Understanding Services Programming Guide ____________________________Page 49



360 | Understanding Services Programming Guide ____________________________Page 50

Asynchronous Fact Extraction
The asynchronous fact extraction workflowoffers more flexibility in managing latency, but  is more com-

plex than the synchronous workflow.With low execution overhead per API call, it is easier to manage 

timeliness and responsiveness of client application UI.

Asynchronous fact extraction requires  three distinct operations and corresponding API calls to comple 

the fact extraction sequence for a document:

 n Submit–Places the document and its metadata into a service processing queue, and immediately 

returns control to the calling process. The data returned from this call contains a unique document 

identifier within the processing queue. This identifier is an integral part of the Document 

Management functionality. See Document Management on page 52 for more information.

 n Check Status –Using the document identifier from the submission method as an argument, the API 

returns the status of the specified document.

 n Retrieve –Upon receiving a status of completion in previous step, the API call returns the extraction 

results.

As in the synchronous workflow, the extracted document results are delivered as a document stream in 

CDA format. The client application is responsible for parsing and reconciling the resulting CDA doc-

ument into their specific representation of the updated document.

See About the XML Output on page 67

Asynchronous Fact Extraction Example
The following sample code shows how to implement the Asynchronous Fact Extraction workflow:



360 | Understanding Services Programming Guide ____________________________Page 51

 



360 | Understanding Services Programming Guide ____________________________Page 52

Document Management
Document management (DM) functionality is an integral part of every document sub-

mission/extraction cycle. It applies to both the synchronous and the asynchronous fact extraction 

workflows.

DM facilitates document lifecycle management by tracking document versions, and by tracking the rela-

tionships between documents that are processed at various stages of client application workflow. 

The DM identifies and treats documents according to their type:



360 | Understanding Services Programming Guide ____________________________Page 53

 n Source Document– The initial version of medical document entering the system.

 n Amendment – Update(s) to a Source Document that has not been signed yet. An amended 

document replaces its previous version.

 n Addendum – A distinct document that is related to a previously submitted document, but 

which does not replace the previous document.

The document lifecycle sequence requires that a Source Document exist before before any  Amend-

ment or Addendum documents can be submitted.  The client application logic is responsible for adher-

ing to this sequence.

The sequence is also important in maintaining the relationship between subsequent document sub-

missions. Each time you use the APIs to submit a document, the CDA output contains a unique doc-

ument identifier. The client application is then responsible for specifying a related/predecessor 

document identifier for each subsequent submission of amendments or addendums to the source doc-

ument.

 



360 | Understanding Services Programming Guide ____________________________Page 54

The CLU Service Interface
The CLU Service interface is a collection of API methods that support the workflows described in 360 

| Understanding Services Workflows on page 47. Figure 2 shows a class diagram for this interface, and Fig-

ure 3 shows a diagram of the interface's arguments:

Figure 2: The CLU Service Interface



360 | Understanding Services Programming Guide ____________________________Page 55

Figure 3: CLU Service Interface Arguments

The following tables describe the CLU  Service Interface's methods and arguments:

Workflow Type Method Description

Synchronous ExtractDocument() Performs document extraction 

in a single call. This includes 

submitting a document, await-

ing processing, and returning 

extracted document results.

Asynchronous ImportDocument() Submits a document into ser-

vice processing queue and 

returns the submitted doc-

ument identifier.

Asynchronous GetDocumentListStatus
()

Checks the document status 



360 | Understanding Services Programming Guide ____________________________Page 56

Workflow Type Method Description

in the service processing 

queue and returns an indic-

ation of whether the doc-

ument is processed or not.

Asynchronous GetExtractedDocument() Retrieves the extracted doc-

ument.

Patient Attibutes

Attribute Type
Character 
Constraint Optional Description

MedicalRecordNumber string  N Medical record number in the EHR.

ExportCode string  Y Patient code for the EHR alternate 
system.

EnterpriseNumber string  Y Identifier used by the EHR to ref-
erence the patient regardless of 
facility.

BillingNumber string  Y The patient's billing account num-
ber.

LastName string  Y The patient's last name.

MiddleInitial string  Y The patient's middle initial.

Suffix string  Y Patient's title. For example, Jr. or 
M.D.

PatientGender enumeration  Y The patient's gender. Valid values 
are Male and Female, or Unknown 
if the value is not set.

BirthDate dateTime  Y The patient's birth date.

Address Address  Y The patient's address. 

DeceasedDate dateTime  Y The patient's death date.

Address Attibutes

Attribute Type Optional

street1 string Y

street2 string Y

city string Y

state string Y

zip string Y

country string Y

phone string Y



360 | Understanding Services Programming Guide ____________________________Page 57

Physician Attibutes

Attribute Type Optional Description

code string Y Unique physician identifier in CLU system.

lastName string Y Physician's last name.

firstName string Y Physician's first name.

middleName string Y Phisician's middle name.

Visit Attributes

Attribute Type
Character 
Constraint Optional Description

PatientClass string  Y The EHR code for describing classes of 
patients. For example, inpatient, 
emergency, pre-admit.

PatientType string  Y The EHR code for describing types of 
patients.

ExportCode string  Y The EHR visit code for an alternate 
system.

VisitCode string  Y The EHR identifier for this patient 
visit.

VisitStart dateTime  Y The date and time of the start of the 
visit.

VisitEnd dateTime  Y The date and time of the end of the 
visit.

VisitStatusId string  Y Current status of patient visit.

Location string  Y For in-patient stays, nursing station 
or other location of patient.

Facility string  Y For multi-facility institutions, the facil-
ity is where the patient is located.

Room string  Y For in-patient stays, patient room 
number.

Bed string  Y For in-patient stays, patient bed iden-
tifier.

ReasonForCancel string  Y Reason for canceling.

DischargeDate dateTime  Y The date and time that the patient 
was discharged.

AdmittingPhysician physician  Y The admitting physician.

AttendingPhysician physician  Y The attending physician.

ReferringPhysician physician  Y The referring physician.

ConsultingPhysician physician  Y The consulting physician.

PrimaryCarePhysician physician  Y The primary care physician.



360 | Understanding Services Programming Guide ____________________________Page 58

Attribute Type
Character 
Constraint Optional Description

CanceledByPhysician physician  Y  

CopyPhysician physician  Y  

OtherPhysician physician  Y  

Document Metadata Attributes

Name Type Optional
Character 
Constraint Description

externalDocumentId String N 255 The calling application’s doc-
ument ID.

documentCorrelationId String Y 255 Identifies the extern-
alDocumentId of the pre-
vious/latest version of the 
document required for amend-
ments or addendums.

documentType Enumeration N   Specifies if the document is a 
source, amendment, or 
addendum with a document’s 
version trail.

createDate dateTime Y   The report creation date in the 
document management sys-
tem.

businessEntityShortname String N 25 The business entity name 
within the institution, import-
ant for audit trail reconciliation.  
This is a provisioned value 
dependency.

WorktypeCode String N 4 The institution worktype cor-
responding to the imported doc-
ument that will map to a MUSE 
worktype within the CLU middle 
tier.1Note if this value is not 
known ‘Unknown’ may be spe-
cified.

authorUsername String N 30 The author of the document.  
This username will be auto-pro-
visioned if it does not exist.

authorSpecialty String Y   The author’s specialty. The val-
ues are defined in the CLU 
middle tier and must be an exist-
ing valid value as such.  They 
rarely change and are 
exchanged manually with doc-
ument management systems, 

1The source worktype may be a CLU worktype with a 1-1 mapping in the middle-tier.



360 | Understanding Services Programming Guide ____________________________Page 59

Name Type Optional
Character 
Constraint Description

such as is the case with work-
types.

 

The following sections describe the methods in greater detail.



360 | Understanding Services Programming Guide ____________________________Page 60

ExtractDocument()

Description
Supports the Synchronous Document Extraction workflow. Performs document extraction in a single 

call. This includes submitting a document, awaiting processing, and returning extracted document res-

ults.

Syntax
ExtractDocument(Stream docStream, DocumentMetaDataDetail 
docMetaData, Patient patient,Visit visit):ExtractedJobResponse

Parameters
Parameter Description

docStream Stream of the document that you want to process.

docMetaData A DocumentMetadataDetail object containing metadata for the document that you 
want to process. See The CLU Service Interface on page 54 for more information about 
the DocumentMetadataDetail  class and its arguments. 

patient A patientobject containing information about the patient associated with the document 
that you are processing. See The CLU Service Interface on page 54 for more information 
about the patient class and its arguments.

visit A visitobject containing information about the visit associated with the document that 
you are processing.  See The CLU Service Interface on page 54 for more information 
about the visit class and its arguments.

Returns
ExtractedJobResponse, which includes:

 n documentId - A unique identifier for this document.

 n The CDA XML stream of ExtractedDocument. See About the XML Output on page 67

Example
The ExtractDocument() method is shown in yellow:

var factory = new SessionFactory( config );
 
  using( var session = factory.Open( "userId", license )) // create session
  {
   // create service
   using( var service = session.GetService<ICluService>() ) 
   {



360 | Understanding Services Programming Guide ____________________________Page 61

    using( var docStream = GetDocStream() ) // open doc as stream
    {
     // execute extraction
     var response = service.ExtractDocument( docStream,  
      _docMetaData, _patient, _visit ); 
  
     // verify results
     Assert.IsTrue( response.DocumentId != -1, 
      "Document id should be non-negative." ); 
     Assert.IsTrue( response.ExtractedDocument.Length > 0, 
      "Extracted document length should be
       greater than 0" );
    }
   }
  }  
  



360 | Understanding Services Programming Guide ____________________________Page 62

ImportDocument()

Description
Submits a document into service processing queue. When processing is complete, returns a document 

identifier.

Syntax
ImportDocument(Stream docStream, DocumentMetaDataDetail doc-
umentMetaData, Patient patient, Visit visit, [int pri-
ority=100]): JobResponse

Parameters
Parameter Description

docStream Stream of the document that you want to process.

docMetaData A DocumentMetadataDetail object containing metadata for the document that you 
want to process. See The CLU Service Interface on page 54 for more information about 
the DocumentMetadataDetail  class and its arguments. 

patient A patientobject containing information about the patient associated with the document 
that you are processing. See The CLU Service Interface on page 54 for more information 
about the patient class and its arguments.

visit A visitobject containing information about the visit associated with the document that 
you are processing.  See The CLU Service Interface on page 54 for more information 
about the visit class and its arguments.

priority Sets the document processing priority. An integer from 1 to 100. 100 is the lowest pri-
ority, 1 the highest. The default value is 100.

Returns
A JobResponse object containing the following information:

 n documentId - A unique identifier for this document.

 n ExtractedDocument - The CDA XML stream of ExtractedDocument. See About the 

XML Output on page 67

Example
[Test(Description = "Step1: Submit document")]
  public void AStep1()
  {
   using( var docStream = GetDocStream() )
   {



360 | Understanding Services Programming Guide ____________________________Page 63

    var response = _service.ImportDocument( docStream,  
        _docMetaData, _patient, _visit );
 
    Console.WriteLine("jobResponse: {0}", response );
    Assert.IsTrue( response.DocumentId != -1 );
     
    _docId = response.DocumentId; // record document id returned
   }
  } 



360 | Understanding Services Programming Guide ____________________________Page 64

GetDocumentListStatus()

Description
Retrieves the status of the specified document.

Syntax
GetDocumentListStatus(IEnumerable<int> doc-
umentIds):IEnumerable<DocumentExtractStatus>

Parameters
Parameter Description

documentIDs An enumeration of document identifiers. Document identifiers are returned by 
ImportDocument() on page 62.

Returns
An enumeration containing the status of the specified documents. Valid values are:

Value Description

Unknown The document's status is unknown.

UnknownDocument The document ID does not correspond to a known document.

Unprocessed The document is unprocessed.

Incomplete The document processing is incomplete.

Reprocessing The document is being reprocessed.

Complete Document processing is complete.

Example
[Test( Description = "Step2: Check status of the document")]
   public void BStep2()
   {
    var status = JobStatus.Unknown;
 
    while (status != JobStatus.Complete )
    {
     var statusArr = _service.GetDocumentListStatus(  
      new[] {_docId} ); // retrieve status array
     status = statusArr.First().JobStatus;
 
     Console.WriteLine( "Status check: {0}", 
      statusArr.First() );
     



360 | Understanding Services Programming Guide ____________________________Page 65

     Thread.Sleep( 300 ); // pause before another poll
    }
    
    CStep3(); // continue to step 3
   }



360 | Understanding Services Programming Guide ____________________________Page 66

GetExtractedDocument()

Description
Retrieves the document extraction results in CDA XML format. 

Before calling GetExtractedDocument(), you must first check the document status with 

GetDocumentListStatus() on page 64

Syntax
ExtractedDocumentResponse GetExtractedDocument( int documentId );

Arguments
Parameter Description

documentID The documentId returned by ImportDocument() on page 62.

Returns
The ExtractedDocumentResponse enumeration, which includes:

 n documentId - A unique identifier for this document.

 n JobStatus - The status of this document's processing. See GetDocumentListStatus() on page 64 for 

a table of valid statuses.

 n ExtractionTime - Date and timestamp when the document completed processing.

 n ExtractedDocument - The CDA XML stream of ExtractedDocument. See About the 

XML Output on page 67

Example
[Test( Description = "Step 3: Retrieve extracted document"), Ignore]
  public void CStep3()
  {
   // retrieve workflow document
   var response = _service.GetExtractedDocument( _docId ); 
     
   // verify results
   Assert.IsTrue( response.DocumentId != -1, 
    "Document id should be non-negative." ); 
   Assert.IsTrue( response.ExtractedDocument.Length > 0, 
    "Extracted document length should be greater than 0" );
  }



360 | Understanding Services Programming Guide ____________________________Page 67

About the XML Output
The  data extraction platform contains a number of components that can be assembled in a pipeline to 

perform a specific extraction task. The actual execution of that task is performed by a workflow engine 

that takes this pipeline as a configuration parameter.

When a document is processed by the engine, the result is captured in an XML structure. The struc-

ture of the engine's XML output conforms to the Clinical Document Architecture (CDA) v2 standard. 

You use this XML output in conjunction with a set of XML templates that define the structure for vari-

ous types of electronic medical records (EMRs).

The 360 | Understanding Services is a software development kit that supports eScription's data extrac-

tion capability

This document describes the XML templates, including:

 n The general structure of the XML document.

 n The standards used to create that structure.

 n The information that the document contains.

 n The standards by which this information is structured.

 n Where this structure differs from the standards.

 n How to retrieve this information using XPath.

The eScription CLU SDK API Reference document, included with the SDK, describes the CLU SDK 

API.

About the CDA Standard
The CDA standard is maintained by HL7's Structured Documents Technical committee. They define 

the CDA as:

“A document markup standard that specifies the structure and semantics of "clinical documents" for 

the purpose of exchange.”

CDA documents are expressed in XML.

Not all features of CDA are used in the CLU framework output format, so we will focus on those parts 

that are used. See the HL7 website at http://www.hl7.org/ for the full specifications.

http://www.hl7.org/


360 | Understanding Services Programming Guide ____________________________Page 68

About CDA Levels

CDA documents can be one of three levels. The CDA level of a document indicates the amount of 

structure in that document:

 n Level 1: A document containing a structured header and a body part. The header contains 

information about the document itself (metadata), and the body describes the content of the 

document (the clinical report).

 n Level 2: A Level 1 document in which the body part is subdivided into standardized sections. 

 n Level 3: A Level 2 document in which all clinical statements found in the report are added to the 

correct section.

The CLU engine outputs CDA level 3 documents, with sections and structured information. 

It is important to note that all structured facts (level 3) CDA output, regardless of the document type 

used, is structured according to the HITSP/C32 standards. For example, a discharge summary will also 

contain structured facts according to the C32 standards.

About the Structured Header

The header of the Level 1 document contains the metadata of the document required for document dis-

covery, management, and retrieval.

The metadata describes the document, and includes information like:

 n Data about the document itself (unique ID, document type classification, version).

 n Data about people and groups who are related to the record (providers, authors, patients).

 n Data about document relationships (other documents, external images).

About the Body

The body structure contains the content of the clinical document itself. It consists of a sequence of 

sections that represent the sections in the clinical document.

Each section in the body structure contains a required textual part, composed of the free text as given 

in the original input document, and an optional structured part, composed of any information  extracted 

from the textual part during processing of that document.

This structured part represents the information retrieved from the textual part in a consistent way, rely-

ing on standard coding systems such as SNOMED, LOINC, ICD-9, etc. It can also reference exactly 

which part of the textual block it represents by means of token/content annotations used in the textual 

part.

The textual part may contain content annotations used for reference in the structured part, as well as 

layout tags such as paragraphs, lists, items, emphasis, etc.



360 | Understanding Services Programming Guide ____________________________Page 69

Data Extracted by the CLU Pipeline

The CLU pipeline can extract many types of data, including:

 n problems (findings)

 n procedures

 n vital signs

 n laboratory results

 n social history

 n allergies

 n medications

Guidelines for Using XPath in .NET
The .NET framework offers a convenient way to parse XML documents via its XPath implementation's 

key classes: XPathDocument, XPathNavigator, and XPathNodeIterator.

When parsing a document with multiple namespaces declared, such as CDA document, namespace 

name (alias) must to be used in XPath queries to correctly resolve XML node traversals.

For example, namespace “urn:hl7-org:v3” is a default namespace, but it does not have an alias 

declared per se:

To ensure proper node traversal and query execution in that namespace, an alias has to be declared 

prior to query execution by using the XmlNamespaceManager class facility, and then used as an 

argument in XPathNavigator.Select() method.

The following example demonstrates a query of all “component” elements contained in CDA’s 

“structuredBody” element:


	Contents
	What is the 360 | Understanding Services SDK?
	What Does the SDK Include?
	Environment Requirements
	Security

	The 360 | Understanding Services API
	Connecting to Nuance Healthcare Services
	Accessing the 360 | Understanding Services Application

	Sessions
	Session Class
	SessionFactory()
	Description
	Syntax
	Parameters
	Returns
	Example

	INusSession Open(string userID, ILicense license)
	Description
	Syntax
	Parameters
	Returns
	Example

	GetService<TService>()
	Description
	Syntax
	Parameters
	Example

	IsAvailable<TService>()
	Description
	Syntax
	Parameters
	Returns
	Example

	Configuration
	Configuration Class
	List<ConnectionConfig> Connections { get; set; }
	Description
	Syntax
	Example

	ConnectionConfig SelectedConnection { get; set; }
	Description
	Syntax

	int SelectedConnectionIndex { get; set; }
	Description
	Syntax
	Parameter

	LogConfig Logging { get; set; }
	Description
	Syntax
	Parameter

	void Write( string filePath );
	Description
	Syntax
	Parameters

	Static Configuration Read( string filePath );
	Description
	Syntax
	Parameters

	ConnectionConfig Class
	ConnectionType Type { get; set; }
	Description
	Syntax
	Parameters
	Example

	string Name { get; set; }
	Description
	Syntax
	Parameter
	Example

	string Description { get; set; }
	Description
	Syntax
	Parameter
	Example

	string Url { get; set; }
	Description
	Syntax
	Parameter
	Example

	int MaxRetries { get; set; }
	Description
	Syntax
	Parameter
	Example

	TimeSpan Timeout { get; set; }
	Description
	Syntax
	Parameters
	Example

	LogConfig Class
	LogLevel Level { get; set; }
	Description
	Syntax
	Parameters

	string File { get; set; }
	Description
	Syntax
	Parameters
	Example

	int SizeKb { get; set; }
	Description
	Syntax
	Parameters

	Exception Handling Overview
	Exception Handling Class Hierarchy
	How the SDK Handles Exceptions
	CommunicationException Group
	System/Application Exceptions Group

	Exception Handling Guidelines
	Handling Exceptions Programmatically

	360 | Understanding Services Workflows
	Synchronous Fact Extraction
	Synchronous Fact Extraction Example
	Asynchronous Fact Extraction
	Asynchronous Fact Extraction Example
	Document Management

	The CLU Service Interface
	ExtractDocument()
	Description
	Syntax
	Parameters
	Returns
	Example

	ImportDocument()
	Description
	Syntax
	Parameters
	Returns
	Example

	GetDocumentListStatus()
	Description
	Syntax
	Parameters
	Returns
	Example

	GetExtractedDocument()
	Description
	Syntax
	Arguments
	Returns
	Example

	About the XML Output
	About the CDA Standard
	Guidelines for Using XPath in .NET

	Bookmarks
	Document


