BlackBerry Java

Development Environment
Version 4.0

BlackBerry Application Developer Guide

Volume 2: Advanced Topics

BlackBerry Java Development Environment Version 4.0 BlackBerry Application Developer Guide Volume 2: Advanced Topics
Last modified: 26 November 2004

Part number: SWD_X_JDE(EN)-002.000

At the time of publication, this documentation complies with BlackBerry JDE Version 4.0.

2004 Research In Motion Limited. All rights reserved. The BlackBerry and RIM families of related marks, images and symbols are the exclusive
properties of Research In Motion Limited. RIM, Research In Motion, BlackBerry and ' Always On, Always Connected' are registered with the U.S.
Patent and Trademark Office and may be pending or registered in other countries.

Microsoft, Windows, and Outlook are registered trademarks of Microsoft Corporation in the United States and/or other countries. Java is a
trademark of Sun Microsystems, Inc. in the U.S. and other countries. IBM, Lotus, and Domino are trademarks of International Business Machines
Corporation in the United States, other countries or both. All other brands, product names, company names, trademarks, and service marks are the
properties of their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various patents, including one or more of the
following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470; 6,073,318; D,445,428; D,433,460; D,416,256. Other patents are registered or
pending in various countries around the world. Please visit www.rim.net/patents.shtml for a current listing of applicable patents.

This document is provided “as is" and Research In Motion Limited (RIM) assumes no responsibility for any typographical, technical, or other
inaccuracies in this document. RIM reserves the right to periodically change information that is contained in this document; however, RIM makes no
commitment to provide any such changes, updates, enhancements, or other additions to this document to you in a timely manner or at all. RIM
MAKES NO REPRESENTATIONS, WARRANTIES, CONDITIONS, OR COVENANTS, EITHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION,
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OF FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, MERCHANTABILITY,
DURABILITY, TITLE, OR RELATED TO THE PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE REFERENCED HEREIN, OR PERFORMANCE
OF ANY SERVICES REFERENCED HEREIN). IN CONNECTION WITH YOUR USE OF THIS DOCUMENTATION, NEITHER RIM NOR ITS AFFILIATED
COMPANIES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, OR CONSULTANTS SHALL BE LIABLE TO YOU FOR ANY DAMAGES
WHATSOEVER BE THEY DIRECT, ECONOMIC, COMMERCIAL, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY, OR INDIRECT DAMAGES,
EVEN IF RIM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS OF BUSINESS REVENUE OR
EARNINGS, LOST DATA, DAMAGES CAUSED BY DELAYS, LOST PROFITS, OR A FAILURE TO REALIZE EXPECTED SAVINGS.

This document might contain references to third-party sources of information and/or third-party web sites (“Third-Party Information”). RIM does not
control, and is not responsible for, any Third-Party Information, including, without limitation, the content, accuracy, copyright compliance, legality,
decency, links, or any other aspect of Third-Party Information. The inclusion of Third-Party Information in this document does not imply endorsement
by RIM of the third party in any way. Any dealings with third parties, including, without limitation, compliance with applicable licenses, and terms
and conditions are solely between you and the third party. RIM shall not be responsible or liable for any part of such dealings.

Research In Motion Limited Research In Motion UK Limited
295 Phillip Street Centrum House, 36 Station Road
Waterloo, ON N2L 3W8 Egham, Surrey TW20 9LF
Canada United Kingdom

Published in Canada

Contents

Using controlled APIs 5
BIaCKBEITY CONEIONEA APIS.....rreeeeereeseessseesssssss s ssssssssss e 5
COUE SIGNALUIES ... eeeeeeeessssssssssssssss s R R 6

Integrating email 11
BIACKBEITY MAIT AP ...ooooooeee et 11
WOTKING WILN MESSAGESooovurereeeeeiseeeesceeessssseeeeessessss s ssssss s ssssss s s 13
MANAGING FOITS ..o eeeeeeeeseeessss e 18
Managing attaChMENTS........ccoccvvvvvvvvvevveemmmememmmmmss s sessssssssssssssssssssssssss s et 19

Integrating PIM functions 23
PIM APIS .ttt sttt b e
Using the address book.....

Using tasks.......cccoooreereeeeeeennnns
USING thE CIENAAT c.oovvveveeevvirii s eesesssssessssss st

Adding handheld options 43
OPLIONS APl sssssss s sssssss s s 43
AAAING OPLION TEEMS coovvovreeeeeseees s sssssss s sssssss e s 43

BlackBerry Browser 47
BIOWSEI APLS ... esse et 47
DiSPlaying WED CONMEENT ...t eeeeass s sesssss st 47
Supporting additioNal MIME £YPES.......uumrrrererrrereesessssssssssssssssssss s sses 58
REGISLENNG @S @ HTTP FIERI .ooovrii e eeeeeiesessss s ssssssssssssss s 64

Accessing the phone application 69
USING ThE PRONE AP ..oooii ettt essss s 69
LiStENiNG fOr PRONE BVENTSoceoee ettt eeeeeesis e seessst s 70
Accessing and managing phone 10gscccooeveeeeenn. OO RTS 70

Communicating with BlackBerry applications 75
Starting BlaCKBEITY @PPIICALIONS ... seessssessssssssssssss s sssssssssssssssssssssss s 75
Adding menu items to BlackBermy @appliCations................coomrrrvvvveciieneersevvsessesessesssssssssssss s sssssssnnos 76

Storing persistent data
STOTAGE OPEIONS. ...eevvtreeeeeeeeesssss e eeeessssss e sessss s R
Managing persistent data
Managing custom objects

Backing up and restoring persistent data 93
SYNCRIONIZATION APloooooooeeeeee e 93
Adding support for backing UP data........oooeececeeeeeeeereeieiiseeeceeesssssseeseesesss s sssssss s sssssss s sssssssssen 94

Accessing setup and configuration information 103

SErVICE DOOK API....ooorrieeeeeeeeeeeeceiiseeesseeeess s OSSOSO 103
Managing notifications 105
NOLIFICALION APl OSSOSO 105
AddiNg EVENTS ..covvevveeeeeeeee v s 105
RESPONAING 1O BVENTSooovvreereeeevees s ssssssss s ssssss s sssssss s ssssss s ssssssse s sssssssss s 110
Customizing SYStEM NOLIFICALIONSc.uuerrceeeeees e sesssss s ssssss s 112
Managing applications 119
APPIICALION MANAGET coovvttirtriseeeeee e eeseeesssssesesssss s 119
Managing CoOAe MOTUIES..............vvvvvveeeeveememmmmmisss s sssssssssssssssssssssssssssss s S 121
Sharing runtime objects between applications 125
Sharing runtime 0bJeCtS.....oovvvvvvveecieeeeeee s s 125
Glossary 128

Index 131

Using controlled APIs

BlackBerry controlled APIs
Code signatures

BlackBerry controlled APIs

The BlackBerry® APIs described in this guide have controlled access. Applications that use controlled
APIs can be run in the simulator; however, you must obtain code signatures from Research In Motion
(RIM) before you can load these applications onto BlackBerry Wireless Handhelds. See " Code
signatures" on page 6 for more information.

Package
net.rim.blackberry.api.browser

net

.rim.blackberry.

api.invoke

Description

This package enables applications to invoke the BlackBerry Browser. See

" Displaying web content" on page 47 for more information.

This package enables applications to invoke BlackBerry applications, such as
tasks, messages, MemoPad and phone. See " Starting BlackBerry applications"
on page 75 for more information.

net.

net.

net.

net.

net.

net.

net.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

rim.blackberry.

api.mail

api.mail.event

api.menuitem

api.options

api.pdap

api.phone

api.phone.phonelogs

This package enables applications to interact with the BlackBerry messages
application to send, receive, and open email messages. See " Working with
messages" on page 13 for more information.

This package defines messaging events and listener interfaces to manage mail
events. See " Mail events" on page 13 for more information.

This package enables you to add custom menu items to BlackBerry applications,
such as the address book, calendar, and messages. See " Adding menu items to
BlackBerry applications" on page 76 for more information.

This package enables you to add items to the handheld options. See " Adding
option items" on page 43 for more information.

This package enables applications to interact with BlackBerry personal
information management (PIM) applications, including address book, tasks,
and calendar. Most of the same functionality is provided by the MIDP package
javax.microedition.pim. See" PIM APIs" on page 23 for more information.

This package provides access to advanced features of the phone application.
See " Using the phone API" on page 69 for more information.

This package provides access to the phone call history. See " Accessing and
managing phone logs" on page 70 for more information.

net.

net.

net.

net.

rim.device.api

rim.device.api

rim.device.api

rim.device.api

.browser.field

.browser.plugin

.crypto.®

.io.http

This package enables applications to display a browser field within their user
interface. See " Displaying web content in a browser field" on page 48 for more
information.

This package enables you to add support for additional MIME types to the
BlackBerry Browser. See " Supporting additional MIME types" on page 58 for
more information.

These packages provide data security capabilities, including data encryption
and decryption, digital signatures, data authentication, and certificate
management. See the AP/ Reference for more information.

This package enables applications to register with the BlackBerry Browser as
provider for one or more URLs. See " Registering as a HTTP filter" on page 64
for more information.

BlackBerry Application Developer Guide

Package Description

net.rim.device.api.notification This package provides methods to trigger event notifications and respond to
system-wide and application-specific events. See " Notification API" on page
105 for more information.

net.rim.device.api.servicebook This package enables applications to add, delete, and access service book
entries. See " Accessing setup and configuration information" on page 103 for
more information.

net.rim.device.api.synchronization This package enables applications to perform backup and restore operations on
custom data. See " Adding support for backing up data" on page 94 for more
information.

net.rim.device.api.system This package provides classes that enable functionality such as persistent data

storage, interprocess communication (IPC), SMS, network communication using
datagrams, and application management. See the following locations for more
information:

® "Application manager” on page 119
® “Using datagram connections” on page 96
® “Storing persistent data” on page 79

Code signatures

RIM tracks the use of some sensitive APIs in the BlackBerry JDE for security and export reasons. In the
AP/ Refference, a lock icon or the text "signed” indicates sensitive classes or methods. In the
documentation for a class that contains signed methods, select or clear the SHOW Signed option at the
top of the page to view or hide signed methods.

If you use signed classes or methods in your applications, the .cod files must be digitally signed by RIM
before you can load them onto handhelds.
Note: To test and debug your code before receiving code signatures, use the simulator. Code must be signed only for
deployment to handhelds.
Use the Signature Tool, which is installed with the BlackBerry JDE, to request the appropriate signatures
for your .cod files.

0 Note: You never send your actual code to RIM. The Signature Tool sends an SHA-1 hash of your code file so that the signing
authority system can generate the necessary signature.

Code signature verification

There are two types of code signature verification:

* Linktime verification: When you load a signed .cod file onto the handheld, the virtual machine (VM)
links the .cod file with the API libraries and verifies that the .cod file includes the required
signatures. If a signature is missing, the VM stops linking and does not load the application.

< Runtime verification: When the user uses the application on the handheld, if the application invokes
a method that requires a signature, the VM verifies that the application contains the necessary
signature. If the signature is not present, a ControlledAccessException is thrown and the
requested operation is not performed.

See " Registering for code signing" on page 8 for more information on .csi files. See " Requesting code
signatures" on page 9 for more information on .csl and .cso files.

1: Using controlled APIs

Code signing request process

1. The Signature Tool opens an HTTP connection to the signing authority system and sends a request.
The request includes a hash of your code in the .csl and .cso files. Your actual code is not sent to
RIM.

2. The signing authority system verifies that the request is valid and applies a RIM private key to the
hash of each .cod file to create the signatures.

3. The signing authority system returns the signatures to the Signature Tool and closes the HTTP
connection.

4. The Signature Tool appends the signatures to each .cod file.
When the files are signed, the Status column for the .cod file displays Signed.
If any problems occur with the signature request, the Status column displays Failed - See Details.

When your .cod files are signed, you can load them onto the BlackBerry Wireless Handheld. See
"Packaging and deploying applications" on page 32 of the BlackBerry Application Developer Guide
Volume 1 - Fundamentals for more information.

Optional signatures

You can load applications onto handhelds without optional .cso signatures. These signatures are only
required if their corresponding methods are invoked during runtime.

When the application calls a method that requires a signature, the VM verifies that the application has
this authorization. If the VM does not find these optional signatures, the application stops.

Signing limitations

There are several situations in which the code signing process does not proceed.

Client parameters

The signing authority administrator can limit your access to signatures by specifying a limit using both
time and frequency parameters. These parameters are defined in your .csi file. Be aware of these possible
limitations when applying for signatures.

Parameter Definition

of Requests This parameter sets the number of requests you can make using a particular .csi file. After you make
the maximum number of requests, the .csi file is invalid and you can no longer make signature requests
using this file. Contact your signing authority administrator to apply for another .csi file.

Requests are limited for security reasons; however, the signing authority administrator can allow you
to make an infinite number.

Expiry Date This parameter sets the expiry date for your .csi file. After your .csi file expires, you can no longer make
signature requests using this file. Contact your signing authority administrator and apply for another
.csi file.

To request a change in these .csi parameters, contact your signing authority administrator.

Lost data

You cannot perform any code signing requests without your .csi file. Your registration key is stored within
your .csi file — none of your signature requests can be sent to the signing authority system if the
Signature Tool cannot find this key and sign your requests with it.

BlackBerry Application Developer Guide

If your system stops responding, and you lose data or even entire file structures, you might discover that
you have also lost the ability to perform signing requests. If you lose your .csi file, the Signature Tool
cannot communicate with the signing authority system on your behalf.

If you lose your .csi file, contact your signing authority administrator and request a new one.

Registering for code signing

You require a separate set of code signing keys for each computer that requests keys. Once keys are
installed on a computer, they cannot be reinstalled or moved to another computer.

Register for code signatures

You must have HTTP access to the Internet to register for code signing.

1. To activate your account, complete the registration form on the BlackBerry Developer Zone at
http://www.blackberry.com/developers.

In this form, you provide a 10-digit personal information number (PIN).
2. When you receive .csi files in an email message from RIM, save them to your computer.
3. Double-click a .csi file.

If a dialog box appears that states that a private key cannot be found, perform the following actions
before you continue:

e Click Yes to create a new key pair file.

* Type a password for your private key, and retype to confirm.

* ClickOK

* Move your mouse to generate data for a new private key.
4. In the Registration PIN field, type the PIN that RIM provided.

In the Private Key Password field, type a password of at least eight characters. This is your private
key password, which protects your private key.

6 Note: Protect your private key password. If you lose this password, you must register with RIM again. If this password is
stolen, contact RIM immediately to revoke your key to prevent others from requesting code signatures using your identity.

6. Click Register.
7. Click Exit.

Change your private key password

You must have HTTP access to the Internet to change your private key password.

1. In the BlackBerry JDE bin folder, double-click SignatureTool jar.

2. Click Change Password.

3. Inthe Old Password field, type your current private key password.
4. Click Verify.

5. Type and confirm a new password.

6. Click OK.

1: Using controlled APIs

Requesting code signatures

Request a code signature from the IDE
1. Build your projects.

In the IDE, on the Build menu, click Build All. The IDE creates the following three files, located in the
same folder as the project .jdp file, for each project:

File extension Description

.cod file the compiled project that is loaded on the handheld

sl file a list of required linktime signatures

.cso file a list of signatures that might be required at runtime if the application invokes

controlled methods

2. On the Build menu, click Request signatures.

a Warning: If you have already registered for code signing with a previous version of the SDK, back up the following files,
which are located in the BlackBerry JDE bin folder, before you install a new version of the BlackBerry JDE:

® Sigtool.db
® Sigtool.csk

If these files are lost, you must register again with RIM.
Click Add.
In the Look In drop-down list, click the folder in which the .cod file is located.
Click a .cod file.
Click Open.
Click Request.
Type your private key password.
Click OK.

© ©® N VAW

Request signatures at a command prompt
1. At the command prompt, move to the folder containing the Signature Tool software.
2. Type the following command line:
java -jar SignatureTool.jar [-a] [-c] [-C] <file>
where:
[-a] is used when you want the program to automatically request signatures.
[-c] is used when you want the program to close after requesting signatures if no errors occur.
[-C] is used when you want the program to close regardless of its success.
<file> can be the name of only one .csi file or one or more .cod files.

» .csi: The .csi file contains client registration information and a list of the signatures that the
client is allowed to apply for. You can only pass in one .csi at a time.

» .cod: The .cod file is the compiled application that can be loaded onto handhelds after all
required signatures are in place. You can pass in as many .cod files as you want.

BlackBerry Application Developer Guide

10

Integrating email

e BlackBerry mail API

e Working with messages
e Managing folders

e Managing attachments

BlackBerry mail API

The BlackBerry mail API, in the net.rim.blackberry.api.mail and
net.rim.blackberry.mail.event packages, enables applications to send, receive, and access email
messages using the messages application.

0 Notes: The BlackBerry mail API provides access to email messages in the handheld messages list, but not to other message

types, such as SMS messages, PIN messages, or phone call logs. For access to phone call logs, use the Phone Log API
(net.rim.blackberry.api.phonelogs). See " Accessing and managing phone logs" on page 70 for more information.

Check for a ControlledAccessException when your application first accesses the Mail API. This runtime exception is
thrown if the system administrator restricts access to the Mail APl using application control. See "Application control” on
page 12 of the BlackBerry Application Developer Guide Volume 1. Fundamentals for more information.

Mail API classes

Class name Description

Session This class, which represents an abstract model for email operations, provides access to email service, storage, and
transport. Applications retrieve a new Session object to send or receive email messages.
To retrieve a session with the default mail service on the handheld, invoke
Session.waitForDefaultSession() and wait until the service is available.
To retrieve a session with a different email service, create a ServiceConfiguration object for the email service
and invoke Session.getDefaultInstance(ServiceConfiguration).

Store This class models the underlying message storage on the handheld. To retrieve a Store instance, invoke the
Session instance.

Transport This class represents the email transport protocol.

Messages

The Message class represents an email message. A Message object consists of a set of attributes, such as
subject, sender, and recipients, and a message body (its contents). See " Multipart messages" on page 12
for more information.

The following classes and interfaces define supported message attributes:

Class or interface name Description

Address This class represents an email, ftp, http, or wap address that is used in the from, reply-to, and
recipient attributes, and in the message body. The Address class contains fields to store the fully
qualified address string, such as scott.tooke@rim.com, and the display name.

Header This class defines supported header fields, such as TO, FROM, and DATE.
Message.Flag This interface defines message flags, such as MOVED, OPENED, or SAVED.

BlackBerry Application Developer Guide

12

Class or interface name Description

Message.Icons This interface defines the character representations of the various message status icons, such as
a check mark for a sent message.

Message.RecipientType This interface defines supported recipient types, such as T0, CC, or BCC.

Message.Status This interface defines status options for sending and receiving messages, such as RX_RECEIVED,
RX_ERROR, TX_SENT, and TX_READ.

Multipart messages

The mail API supports multipart messages. The Multipart abstract class provides a container for
multiple BodyPart objects. Multipart provides methods to retrieve and set its subparts.

Each BodyPart consists of header fields (attributes) and contents (body). The mail API provides four
implementations of BodyPart.

Class name Description

ContactAttachmentPart This class represents an address card attachment part, using the
javax.microedition.pim.Contact interface. See " Using the address book" on page 25 for
more information.

TextBodyPart This class represents a body part with content that is text/plain type. You use this class to create
a multipart message that includes a text/plain part.

UnsupportedAttachmentPart This class represents an unsupported attachment part. You cannot instantiate this class. The
content type is always application/octet-stream.

SupportedAttachmentPart This class represents a supported attachment part, for which there is a registered attachment
handler on the handheld.

Message storage

The Folder class represents a local mailbox folder. Several folder types are defined, including INBOX,
OUTBOX, SENT, and OTHER. You can use these folder types to retrieve folders for retrieving or saving
messages.

The Store class models the underlying message storage and provides methods for finding and retrieving
folders. Folders exist in a hierarchy, as the following example demonstrates:
Mailbox - Ming Li
Inbox
Projects
In Progress
Complete
Personal

A standard delimiter character separates each folder in the hierarchy, which you can retrieve using

getSeparator (). You can list all the folders in a Store object, list the subfolders in a folder, or find a
folder based on a search string.

The Folder class defines methods for retrieving messages or subfolders, saving messages, and deleting
messages.

o Note: Multiple Folder instances can refer to the same folder on the handheld. As a result, you should always invoke
addFolderListener() and removeFolderListener() on the same Folder object. Use Folder.equals() to
determine whether two Folder objects refer to the same folder.

2: Integrating email

Mail events

The BlackBerry mail event package (net.rim.blackberry.api.mail.event) defines the following
messaging events, and listeners for each event:

Event Description
FolderEvent This event triggers when a message in a folder is added or removed.
MessageEvent This event triggers when a message changes (body, header, or flags).

StoreEvent This event triggers when a message is added to, or removed from, the message store in a batch operation
(for example, when the handheld is synchronized with the desktop).

The MailEvent class is the base class for these mail event classes. The Mai1Event class defines an
abstract dispatch() method to invoke the appropriate listener method for each event.

The EventListener interface provides a common interface for the FolderListener and
Messagelistener interfaces.

The following table lists the objects to which each listener type can be added:

Listener Applicable objects
FolderListener Folder or Store object
Messagelistener Message object
StoreListener Store object

Working with messages

Receive message notification

To receive message notification, implement the FolderListener and StoreListener interfaces.

public class MailTest implements FolderListener, StoreListener { ... }

Add a listener to the message store

To listen for message store events, such handheld synchronization, retrieve the Store object and add a
StorelListener instance to it.

try {
Store store = Session.waitForDefaultSession().getStore();

} catch (NoSuchServiceException e) {
System.out.println(e.toString());
}

store.addStoreListener(this);

To define application behavior when messages are added to or removed from the message store in batch
operations, implement StoreListener.batchOperation(). For example, your application could check
if any messages to which it has references were removed.

void batchOperation(StoreEvent e) {
//perform action when messages added or removed in batch operation

}

BlackBerry Application Developer Guide

14

Add a listener to a folder

To listen for folder events, such as the addition of a message to a particular folder, retrieve the Folder
object for which you want to receive notifications of new messages. Add the FolderListener instance
to the folder.

Folder[] folders = store.list(Folder.INBOX);
Folder inbox = folders[0];
inbox.addFolderListener(this);

To perform actions when folder events occur, implement FolderListener.messagesAdded() and
FolderListener.messagesRemoved (). For example, you could implement these methods to maintain
the consistency of any references in your application to specific mail folders.

void messagesAdded(FolderEvent e) {
//perform processing on added messages

}
void messagesRemoved(FolderEvent e) {
//perform processing on removed messages

}

Receive more of a message

By default, the first section of a message (typically about 2 KB) is sent to the handheld. Invoke
hasMore () on a body part to determine if more data is available on the server. Invoke
moreRequestSent () to determine if a request for more data has already been sent. Invoke more () to
request more of a message.

if ((bp.hasMore()) && (! bp.moreRequestSent()) {
Transport.more(bp, true);

}

The second parameter of more () is a Boolean value that specifies whether to retrieve only the next
section of the body part (false) or all remaining sections of the body part (true).

Open a message
Retrieve the message store and the folder that contains the message.

Store store = Session.waitForDefaultSession.getStore();
Folder folder = Store.getFolder("SampleFolder™);

Retrieve the message objects from the folder. Iterate through the array and retrieve information, such as
the sender and subject, to display to the user.

Message[] msgs = folder.getMessages();

When a user selects a message from the list, invoke methods on the Message object to retrieve the
appropriate fields and body contents to display to the user.

Message msg = msgs[0]; // retrieve the first message

Address[] recipients = msg.getRecipients(Message.RecipientType.TO)
Date sent = msg.getSentDate();

Address from = msg.getFrom();

String subject = msg.getSubject();

2: Integrating email

Object o = msg.getContent();
//verify that the message is not multipart
if (o instanceof String) {
String body = (String)o;
}

Tip: Invoke getBodyText () on a message to retrieve the plain text contents as a String. If the message does not contain
plain text, the method returns null.

Send a message

To send messages, use a Transport object, which represents the email transport protocol.

Create a message
Create a Message object, and specify a folder in which to save a copy of the sent message.

Store store = Session.getDefaultInstance().getStore();
Folder[] folders = store.list(Folder.SENT);

Folder sentfolder = folders[0];

Message msg = new Message(sentfolder);

Specify recipients
Create an array of Address objects and add each address to the array. You should catch an
AddressException, which is thrown if an address is invalid.

Address tolList[] = new Address[1];
try {
toList[0]= new Address("scott.tooke@rim.com", "Scott Tooke");
} catch(AddressException e) {
System.out.printin(e.toString());
}

Add recipients

Invoke Message . addRecipients (). As parameters to this method, provide the type of recipient (T0, CC,
or BCC) and the array of addresses to add. If your message has multiple types of recipients, invoke
addRecipients() once each.

msg.addRecipients(Message.RecipientType.TO, tolList);

Specify the name and email address of a sender

Invoke setFrom().

Address from = new Address("scott.mcpherson@bTlackberry.com", "Scott McPherson");
msg.setFrom(from);

Add a subject line
Invoke setSubject().

msg.setSubject("Test Message");

BlackBerry Application Developer Guide

16

Specify the message contents
Invoke setContent(). Typically, you retrieve content from text that a user types in a field.

try {
msg.setContent("This is a test message.");
} catch(MessagingException e) {
System.out.printin(e.getMessage());

}

Send the message

Invoke Transport.send().

try {
Transport.send(msg);

} catch(MessagingException e) {
System.out.printin(e.getMessage());

}

Reply to a message

To create a message as a reply to an existing message, invoke Message. reply(). As a parameter to this
method, specify true to reply to all message recipients or false to reply only to the sender.

Store store = Session.waitForDefaultSession().getStore();
Folder[] folders = store.1ist(INBOX);
Folder inbox = folders[0];
Message[] messages = folder.getMessages();
if(messages.length > 0) {
Message msg = messages[0];
}
Message reply = msg.reply(true);
Transport.send(reply);

Forward a message

Invoke forward() on an existing Message object.

ﬂ Note: The subject line of a forwarded message is set automatically to FW: <original_subject>.

Message fwdmsg = msg.forward();

Add recipients

Create an array of addresses and invoke addRecipients().

Address tolList[] = new Address[1];
toList[0]= new Address("katie.laird@rim.com", "Katie Laird");
fwdmsg.addRecipients(Message.RecipientType.TO, tolList);

Specify message contents
Invoke setContent().

0 Note: You cannot edit the text of the forwarded message. The setContent() method adds text before the forwarded
message.

try {
fwdmsg.setContent("This is a forwarded message.");
} catch(MessagingException e) {
System.out.println(e.getMessage());
}

Send the message
Invoke send() .

try {
Transport.send(fwdmsg);
} catch(MessagingException e) {
System.out.println(e.getMessage());
}

Code example

Example: BasicMail.java
/7': ¥

* BasicMail.java
* Copyright (C) 2001-2004 Research In Motion Limited.
*/

package com.rim.samples.docs.basicmail;

import net.rim.blackberry.api.mail.*;
import net.rim.blackberry.api.mail.event.*;
import net.rim.device.api.system.*;

public class BasicMail extends Application {
private Store store;
static void main (String args[]) {
BasicMail app = new BasicMail();
app.enterEventDispatcher();
}
BasicMail() {
Store store = Session.getDefaultInstance().getStore();
Folder[] folders = store.list(Folder.SENT);
Folder sentfolder = folders[0];
// Create message.
Message msg = new Message(sentfolder);
// Add TO Recipients.
Address tolList[] = new Address[1];
try {

2: Integrating email

toList[0]= new Address("scott.tooke@rim.com", "Scott Tooke");

} catch(AddressException e) {
System.out.println(e.toString();

}

try {

msg.addRecipients(Message.RecipientType.TO, tolList);

} catch (MessagingException e) {
System.out.printin(e.toString());

17

BlackBerry Application Developer Guide

}
// Add CC Recipients.
Address ccList[] = new Address[1];
try {
ccList[0]= new Address("katie.laird@rim.com", "Katie Laird");
} catch(AddressException e) {
System.out.println(e.toString();
}
try {
msg.addRecipients(Message.RecipientType.CC, cclList);
} catch (MessagingException e) {
System.out.println(e.toString();
}
// Add the subject.
msg.setSubject("A Test Email™);
// Add the message body.
try {
msg.setContent("This is a test message.");
} catch(MessagingException e) {
// Handle messaging exceptions.

}
// Send the message.
try {

Transport.send(msg);
} catch(MessagingException e) {
System.out.println(e.getMessage());

}
System.out.println("Email sent successfully.");
System.exit(0);

Managing folders

To list, retrieve, and search for folders, retrieve a Store object by invoking getStore() on the default
session.

Store store = Session.waitForDefaultSession().getStore();

List folders

To list the folders in a mailbox store, invoke Store.Tist().

Folder[] folders = store.list();

Retrieve an array of folders by type
Invoke 1ist (). Provide the folder type as a parameter to this method.

Folder[] folders = store.1ist(INBOX);
Folder inbox = folders[0];

18

2: Integrating email

Retrieve an array of folders by searching
To retrieve all the folders in the hierarchy that match a specified search string, invoke findFolder().
Folder[] folders = store.findFolder("Inbox");

The findFolder() method returns an array of folders that match the specified string, or an empty array
if a matching folder is not found.

Retrieve a folder by name

Invoke getFolder(). Provide as parameter the absolute path to the folder. A
FolderNotFoundException exception is thrown if the folder is not found.

Folder folder = store.getFolder("Mailbox - Scott Tooke/Inbox/Projects");

Retrieve a folder by ID

Invoke getID() to retrieve the folder ID, and then invoke getFolder () with the ID as a parameter.

Folder[] folders = store.list();
Tong id = folders[0].getId();
Folder f2 = store.getFolder(id);

File a message
Invoke appendMessage () on a Folder object.

Message msg = new Message();

Folder folder = store.getFolder("Inbox");
folder.appendMessage(msg);

Managing attachments

The mail API enables you to open incoming email attachments and to create outgoing attachments on
the handheld. A message attachment is represented as a separate BodyPart on a Multipart message.

Create a custom attachment handler

Implement the AttachmentHandler interface.

Register accepted MIME types

To register the MIME type of attachments that your attachment handler accepts, implement
supports (). This method is invoked when the handheld receives an attachment.

public boolean supports(String contentType) {

BlackBerry Application Developer Guide

20

return (contentType.toLowerCase().index0f("contenttype") != -1 ? true : false);

}

Define the associated menu item string

Implement menuString() to return the menu item string to display in the messages list when the user
selects an attachment.

public String menuString() {
return "Custom Attachment Viewer";

}

Define attachment processing

Implement run() to perform the appropriate processing on the attachment data and display it to the
user.

public void run(Message m, SupportedAttachmentPart p) {

//perform processing on data

Screen view = new Screen();

view.setTitle(new LabelField("Attachment Viewer™));

view.add(new RichTextField(new String((byte[])p.getContent())));
}

o Note: The run() method is invoked when the corresponding menu item is selected in the messages list.

Register an attachment handler

The AttachmentHandlerManager class controls how attachments are processed on the handheld. To
enable the message application to invoke your custom attachment when the user opens an attachment
of the associated type, register your attachment handler by invoking addAttachmentHandler().

o Note: The BlackBerry Enterprise Server Attachment Service has first priority in receiving attachments. Third-party
attachment handlers cannot override default handheld behavior. See the BlackBerry Enterprise Server Maintenance and
Troubleshooting Guide for more information.

AttachmentHandlerManager m = AttachmentHandlerManager.getInstance();
CustomAttachmentHandler ah = new CustomAttachmentHandler();
m.addAttachmentHandler(ah);

Retrieve attachments

The SupportedAttachmentPart class represents an attachment with a corresponding viewer on the
handheld. An attachment that does not have a viewer on the handheld is represented as an
UnsupportedAttachmentPart

Retrieve attachment contents
Invoke getContent ().

String s = new String((byte[])p.getContent());

Retrieve attachment information

The SupportedAttachmentPart class provides several methods on a to retrieve attachment
information. The following example invokes getName () and getSize() to retrieve the attachment
name and size.

2: Integrating email

public void run(Message m, SupportedAttachmentPart p) {

String name = p.getName();
int size = p.getSize();

Send an attachment

To send an email message with an attachment, create a multipart message by creating a new
Multipart object. To create each attachment component, create a SupportedAttachmentPart object,
designating the Multipart as its parent. To add each SupportedAttachmentPart to the Multipart,
invoke addBodyPart() on that object.

When you invoke setContent() on the Message object, pass in the Multipart object as its parameter.

byte[] buf = new byte[256]; // the attachment

MuTltiPart multipart = new MultiPart(); // default type of multipart/mixed

SupportedAttachmentPart attach = new SupportedAttachmentPart(multipart,
"application/x-example", "filename", data);

multipart.addBodyPart(attach); // add the attachment to the multipart

msg.setContent(multipart);

Transport.send(msg); // send the message

21

BlackBerry Application Developer Guide

22

Integrating PIM functions

* PIM APIs

e Using the address book
e Using tasks

e Using the calendar

PIM APIs

The Java personal information management (PIM) APIs (javax.microedition.pim)and the BlackBerry
personal digital assistant profile (PDAP) APIs (net.rim.blackberry.api.pdap) enable you to access
the calendar, tasks, and address book on the handheld.

Note: As of version 4.0, the net.rim.blackberry.api.pim package is deprecated. The classes from this package are
now available in the javax.microedition.pimand net.rim.blackberry.api.pdap packages.

The PIM class is an abstract class that provides methods for accessing PIM databases on the handheld.
Invoke PIM.getInstance() to retrieve a PIM object.

Note: Check fora ControlledAccessException when your application first accesses the PIM API. This runtime exception
is thrown if the system administrator restricts access to the PIM API using application control. See "Application control” on
page 12 of the BlackBerry Application Developer Guide Volume 1. Fundamentals for more information.

PIM lists

The PIMList interface represents the common functionality of all contact, event, or task lists. A list
contains zero or more items, represented by subclasses of PIMItem. Use PIM lists to organize related
items and to retrieve some or all of the items in the list.

6 Note: On handhelds, each ContactList, ToDoList, or EventList instance refers to the native database on the handheld.
Third-party applications cannot create custom lists.

PIM items

The PIMItem interface represents the common functionality of an item in a list. The Contact, Event,
and ToDo interfaces extend PIMItem. A PIM item represents a collection of data for a single entry, such
as a calendar appointment or a contact.

When you create a PIM item in a particular PIM list, the item remains associated with that list as long as
it exists. You can also import or export data in PIM items using standard formats, such as iCal and vCard.

Fields

A PIM item stores data in fields.

Each PIMItem interface—Contact, Event, or ToDo—defines unique integer IDs for each field that it
supports. For example, the Contact interface defines fields to store an email address (EMAIL), name
(FORMATTED_NAME), and phone number (TEL).

BlackBerry Application Developer Guide

24

Each field has a data type ID, such as INT, BINARY, DATE, BOOLEAN, or STRING. To retrieve the data type
of a field, invoke PIMList.getFieldDataType(int field). The data type determines which method
you use to get or set field data. For example, if the data type for a field is STRING, invoke
PIMItem.addString() to add avalue, PIMItem.setString() to change an existing value, and
PIMItem.getString() to retrieve a value.

Before you attempt to set or retrieve a field value, verify that the method supports the field by invoking
PIMList.isSupportedField(int field).

A field can have an associated descriptive label to display to users. To retrieve a field label, invoke
PIMList.getFieldLabel(int field).

Listeners

An application can implement the PIMListListener interface to receive notification when an itemina
list changes. The PIMListListener interface provides three methods:

Method Description
itemAdded (PIMItem 1item) invoked when an item is added to a list
itemRemoved (PIMItem 1item) invoked when an item is removed from a list

itemUpdated(PIMItem oldItem, PIMItem newItem) invoked when an item changes

ContactList c1 = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.WRITE_ONLY);
((BlackBerryPIMList)cl1).addListener(new PIMListListener() {
public void itemAdded(PIMItem item) {
System.out.printin(" ITEM ADDED: " + ((Contact)item).getString(Contact.UID,
0));
}
public void itemUpdated(PIMItem oldItem, PIMItem newItem) {
System.out.printin(" ITEM UPDATED: " +
((Contact)oldItem).getString(Contact.UID, 0) + " to " +
((Contact)newItem).getString(Contact.UID, 0));
}
public void itemRemoved(PIMItem item) {
System.out.println(" ITEM REMOVED: " +
((Contact)item).getString(Contact.UID, 0));
}
b;

o Note: The listener remains associated with the handheld database even after the corresponding PIMList object has been
deleted. To remove the listener, invoke BlackBerryPIMList.removelistener()

Remote address lookup

To support remote address lookup, instantiate the BlackBerryContactList interface rather than the
the ContactList interface. BlackBerryContactList contains the same functionality as
ContactList, but provides additional methods to support remote address lookup.

The RemotelookupListener interface provides a single method, items (), which returns an
enumeration of the results of a remote address lookup.

3: Integrating PIM functions

Using the address book

Use an instance of ContactList to add or view contact information in the handheld address book.
Create Contact objects to store individual contacts with information such as name, phone number,
email address, and street address.

BlackBerry-specific address fields

The BlackBerryContact interface, which extends Contact, defines the following constants to provide
access to fields that are specific to BlackBerry contacts:

e BlackBerryContact.PIN: provides access to the PIN field

e BlackBerryContact.USERL through USER4: provide access to the USERT through USER4 fields

Invoke BlackBerryPIMList.setFieldLabel() to define labels for the USERT through USERA4 fields.
The change takes effect imnmediately; you do not need to commit the change.

o Note: Changing a label affects all contacts on the handheld.

Open a contact list

You must create a contact list before you can add contacts. Invoke PIM.openPIMList(). Provide as
parameters the type of list to open (PIM.CONTACT_LIST) and the access mode with which to open the
list (READ_WRITE, READ_ONLY, or WRITE_ONLY).

If you are writing an application specifically for BlackBerry handhelds, cast your contact list as a
BlackBerryContactList because this interface provides additional methods to support remote
address lookup. To make an application portable across multiple J2ME-compatible devices, use the
PDAP implementation.

ContactList contactList = null;

try {
contactlList = (ContactList)PIM.getInstance() .openPIMList(
PIM.CONTACT_LIST, PIM.READ_WRITE);

} catch (PimException e) {
return;

}

Create a contact
Invoke createContact() on a contact list.

Contact contact = contactList.createContact();

6 Note: The contact is not added to the database until you commit it. See " Save a contact" on page 27 for more information.

25

BlackBerry Application Developer Guide

26

Add contact information

The Contact class defines fields in which to store data, such as Contact.NAME, Contact.ADDR, and
Contact.TEL. Each field has a specific data type, which you can retrieve by invoking
PIMList.getFieldDataType(int field).Depending on the data type of the field, add a new value a
by invoking one of the following methods: addString(), addStringArray(), addDate(), addInt(),
addBooTlean(), or addBinary().

Before you set or retrieve a field, verify that the item supports the field by invoking
ContactList.isSupportedField(int field).

Some fields can store multiple values, using attributes to differentiate between values. For example, the
TEL field supports the ATTR_HOME, ATTR_WORK, ATTR_MOBILE, and ATTR_FAX attributes to store
numbers for work, home, mobile, and fax numbers. To determine how many values a field supports,
invoke PIMList.maxValues(int field). This method returns the number of values supported, or -1
to indicate that an arbitrary number of values can be added. To verify that a field supports a particular
attribute, invoke isSupportedAttribute(int field, int attribute).

//create string array for name
try {

ContactList contactList =
(ContactList)PIM.getInstance() .openPIMList(PIM.CONTACT_LIST,
PIM.WRITE_ONLY);

} catch (PIMException e) {

}

Contact contact = contactList.createContact();
String[] name = new String[5]; // 5 name elements
try {

name[Contact.NAME_PREFIX] "Mr.";

name[Contact.NAME_FAMILY] = "McPherson";

name[Contact.NAME_GIVEN] = "Scott";
} catch (I1legalArgumentException iae) {
// handle exception

}

//add name

if(contactList.isSupportedField(Contact.NAME)) {
contact.addStringArray(Contact.NAME, Contact.ATTR_NONE, name);

}

//create string array for address

String[] address = new String[7]; // 7 address elements

try {
address[Contact.ADDR_COUNTRY] = "United States";
address[Contact.ADDR_LOCALITY] = "Los Angeles";
address[Contact.ADDR_POSTALCODE] = "632300";
address[Contact.ADDR_REGION] = "California";
address[Contact.ADDR_STREET] = "323 Main Street";

} catch (I1legalArgumentException iae) {
// handle exception

}

//add address

contact.addStringArray(Contact.ADDR, Contact.ATTR_NONE, address);

//add home telephone number

if (contactList.isSupportedField(Contact.TEL) &&
contactlList.isSupportedAttribute(Contact.TEL, Contact.ATTR_HOME)) {
contact.addString(Contact.TEL, Contact.ATTR_HOME, "555-1234");

3: Integrating PIM functions

//add work telephone number

if (contactList.isSupportedField(Contact.TEL)) {
contact.addString(Contact.TEL, Contact.ATTR_HOME, "555-5555");

}

//add work email address

if (contactList.isSupportedField(Contact.EMAIL)) {
contact.addString(Contact.EMAIL, Contact.ATTR_WORK,
"scott.mcpherson@blackberry.com");

Modify contact information

For fields that support only one value, invoke the appropriate set method to replace an existing value
with a new value.

o Note: If you invoke an add method, such as addString(), for a field that already has a value, a FieldFulTException is
thrown. Use the corresponding set method, such as setString(), to change an existing value.

For the name and address fields, which contain a string array value, retrieve the array and then modify

one or more indexes in the array before adding it back in.

if (contact.countValues(Contact.NAME) > 0) {

String[] newname = contact.getStringArray(Contact.NAME, 0);
}
// Change the prefix to Dr. and add the suffix, Jr.
newname[Contact.NAME_PREFIX] = "Dr.";
newname[Contact.NAME_SUFFIX] = "Jr.";
contact.setStringArray(Contact.NAME, 0, Contact.ATTR_NONE, newname);

For fields that support multiple values, verify that the maximum number of values is not exceeded before
adding another value.

if (contact.countValues(Contact.EMAIL) < contactList.maxValues(Contact.EMAIL)) {
contact.addString(Contact.EMAIL, Contact.ATTR_NONE,
"scott.mcpherson@blackberry.com");

Save a contact

Invoke commit (). Before you commit the change, invoke isModified() to determine whether any
contact fields have changed since the contact was last saved.

if(contact.isModified()) {
contact.commit();

}

Retrieve contact information

Invoke PIMList.items().

Note: When you invoke PIMList.items() to retrieve an enumeration of items in a list, the order of items is undefined.
Your application must sort items as necessary.

27

BlackBerry Application Developer Guide

28

For a particular contact, invoke PIMItem.getFields() to retrieve an array of IDs for fields that have
data. Invoke PIMItem.getString() to retrieve the field values.

ContactList contactList = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.READ_WRITE);
Enumeration enum = contactList.items();
while (enum.hasMoreElements()) {
Contact ¢ = (Contact)enum.nextElement();
int[] fieldIds = c.getFields(Q);
int id;
for(int index = 0; index < fieldIds.length; ++index) {
id = fieldIds[index];
if(c.getPIMList() .getFieldDataType(id) == Contact.STRING) {
for(int j=0; j < c.countValues(id); ++j) {
String value = c.getString(id, j);
System.out.println(c.getPIMList().getFieldLabel(id) + "=" + value);

Convert a contact to a serial format

To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported formats, invoke PIM. supportedSerialFormats() and specify
the list type (PIM.Contact_LIST).

To write an item to a supported serial format, invoke toSerialFormat().

o Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE." This parameter cannot be null.

ContactList contactList = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.READ_ONLY);

String[] dataFormats = PIM.getInstance().supportedSerialFormats(
PIM.CONTACT_LIST);

ByteArrayOutputStream byteStream = new ByteArrayOutputStream();

Enumeration e = contactList.items();

while (e.hasMoreElements()) {
Contact c¢ = (Contact)e.nextETlement();
PIM.getInstance() .toSerialFormat(c, byteStream, "UTF8", dataFormats[0]);

Import a contact

Invoke fromSerialFormat(), which returns an array of PIM items. To create a new contact using the
PIM item, invoke ContactList.importContact()

o Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE." This parameter cannot be null.

//import contact from vCard
ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());

3: Integrating PIM functions

PIMItem[] pi = PIM.getInstance().fromSerialFormat(istream, "UTF8");
ContactList contactList =
(ContactList)PIM.getInstance() .openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);
Contact contact2 = contactList.importContact((Contact)pil[0]);
contact2.commit();

Delete a contact
Invoke removeContact() on a contact list.

contactList.removeContact(contact);

Close a contact list

Invoke close().

try {
contactList.close();

} catch(PIMException e) {
Dialog.alert(e.toString());

}

Code example

The following example demonstrates how to display a screen that enables users to add new contacts to
the handheld address book. After you save a contact, open the address book to verify that the contact
was saved.

Example: ContactsDemo.java

/ *ik
* ContactsDemo.java
* Copyright (C) 2002-2004 Research In Motion Limited.
7':/

package com.rim.samples.docs.contactsdemo;

import java.io.*;

import java.util.*;

import javax.microedition.pim.*;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.il8n.*;

import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

import com.rim.samples.docs.baseapp.*;
import net.rim.blackberry.api.pdap.*;

public final class ContactsDemo extends BaseApp {

private ContactScreen _contactScreen;
public static void main(String[] args) {

29

BlackBerry Application Developer Guide

new ContactsDemo().enterEventDispatcher();
B
public ContactsDemo() {
_contactScreen = new ContactScreen();
pushScreen(_contactScreen);
}
protected void onExit() {
B
// Inner class. Creates a Screen to add a contact.
public static final class ContactScreen extends MainScreen {
private EditField _first, _last, _email, _phone, _pin;
private SaveMenultem _saveMenuIltem;
private class SaveMenuIltem extends MenuItem {
private SaveMenultem() {
super(null, 0, 100000, 5);
3
public String toString() {
return "Save";

3

public void run() {
onSave();

}

}
public ContactScreen() {
_saveMenuItem = new SaveMenuItem();
setTitle(new LabelField("Contacts Demo", LabelField.ELLIPSIS |
LabeTField.USE_ALL_WIDTH));

_first = new EditField("First Name: ", "");
add(_first);

_last = new EditField("Last Name: ", "");
add(_last);

_email = new EditField("Email Address: ", ,

BasicEditField.DEFAULT_MAXCHARS, BasicEditField.FILTER_EMAIL);

add(_email);

_phone = new EditField("Work Phone: ", "",

BasicEditField.DEFAULT_MAXCHARS, BasicEditField.FILTER_PHONE);

add(_phone);

_pin = new EditField("PIN:", "", 8, BasicEditField.FILTER_HEXADECIMAL);
add(_pin);
}
protected boolean onSave() {

String firstName = _first.getText();

String lastName = _last.getText();

String email = _email.getText();

String phone = _phone.getText();

String pin = _pin.getText(Q);

// Verify that a first or last name and email has been entered.

if ((firstName.equals("") && TastName.equals("")) || email.equals("")) {

Dialog.inform("You must enter a name and an email address!™);
return false;

} else {
try {

ContactlList contactList =
(ContactList)PIM.getInstance() .openPIMList(PIM.CONTACT_LIST, PIM.WRITE_ONLY);
Contact contact = contactList.createContact();

30

3: Integrating PIM functions

String[] name = new
String[contactList.stringArraySize(Contact.NAME)];
// Add values to PIM 1item.
if (!firstName.equals("")) {
name[Contact.NAME_GIVEN] = firstName;
}
if (!lastName.equals("")) {
name[Contact.NAME_FAMILY] = TastName;
}
contact.addStringArray(Contact.NAME, Contact.ATTR_NONE, name);
contact.addString(Contact.EMAIL, Contact.ATTR_HOME, email);
contact.addString(Contact.TEL, Contact.ATTR_WORK, phone);
if (contactList.isSupportedField(BTackBerryContact.PIN)) {
contact.addString(BlackBerryContact.PIN, Contact.ATTR_NONE,

pin);
}
// Save data to address book.
contact.commit();
// Reset UI fields.
_first.setText("");
_last.setText("");
_email.setText("");
_phone.setText("");
_pin.setText("");
return true;
} catch (PIMException e) {
return false;
}
}
}

protected void makeMenu(Menu menu, int instance) {
menu.add(_saveMenuItem);
super.makeMenu(menu, instance);

Using tasks

Use an instance of the ToDoL1ist class to store a list of tasks, or to do items. Create one or more ToDo
objects to store data for each task, such as summary, priority, due date, and status.

Open a task list

Invoke PIM.openPIMList (). Provide as parameters the type of list to open (PIM.TODO_LIST) and the
access mode with which to open the list (READ_WRITE, READ_ONLY, or WRITE_ONLY).

ToDolList todoList = null;
try {
todoList = (ToDoList)PIM.getInstance().openPIMList(
PIM.TODO_LIST, PIM.READ_WRITE);
} catch (PimException e) {

31

BlackBerry Application Developer Guide

//an error occurred
return;

Create a task

Invoke createToDo () on a task list.
ToDo task = todolList.createToDo();

o Note: The task is not added to the database until you commit it. See " Save a task" on page 33 for more information.

Add task information

The ToDo class defines fields in which to store data, such as SUMMARY, PRIORITY, and DUE. Each field has
a specific data type, which you can retrieve by invoking PIMList.getFieldDataType(int field).
Depending on the data type of the field, set the field data by invoking one of the following methods:
addString(), addDate(), addInt(), addBoolean(), or addBinary().

See " PIM APIs" on page 23 for more information on fields.

Before you set or retrieve a field, verify that the item supports the field by invoking i sSupportedField(
int field).

if (task.isSupportedField(ToDo.SUMMARY)) {
task.addString(ToDo.SUMMARY, ToDo.ATTR_NONE, "Create project plan™);

if (task.isSupportedField(ToDo.DUE)) {
Date date = new Date();
task.addDate(ToDo.DUE, ToDo.ATTR_NONE, (date + 17280000));

if (task.isSupportedField(ToDo.NOTE)) {
task.addString(ToDo.NOTE, ToDo.ATTR_NONE, "Required for meeting");

if (task.isSupportedField(ToDo.PRIORITY)) {
task.addInt(Todo.PRICORITY, ToDo.ATTR_NONE, 2);

Set the status of a task

Use the PIM extended field ToDo.EXTENDED_FIELD_MIN_VALUE + 9.

Constant Value
STATUS_NOT_STARTED
STATUS_IN_PROGRESS 2
STATUS_COMPLETED 3
STATUS_WAITING 4
STATUS_DEFERRED 5

task.addInt(ToDo.EXTENDED_FIELD_MIN_VALUE + 9, ToDo.ATTR_NONE, 2);

32

3: Integrating PIM functions

Modify task information

Invoke the appropriate set method, such as setString(), to replace an existing value with a new
value. Invoke countValues() to determine if a value is already set for the field.

Note: If you invoke an add method, such as addString(), when a value already exists, a FieTdFul1Exception is thrown.
6 Use the corresponding set method, such as setString(), to change an existing value.

if (task.countValues(ToDo.SUMMARY) > 0) {
task.setString(ToDo.SUMMARY, O, ToDo.ATTR_NONE, "Review notes");
}

Save a task

Invoke commit (). Before you save, invoke isModified() to determine whether any task fields have
changed since the task was last saved.

if(task.isModified()) {
task.commit();

}

Retrieve task information

Retrieve an enumeration

Invoke PIMList.items() on the task list.

ToDolList todoList = (ToDoList)PIM.getInstance().openToDoList(
PIM.TODO_LIST, PIM.READ_ONLY);
Enumeration enum = todoList.items();

Retrieve field IDs and values for a task

To retrieve an array of IDs for fields that have data for a particular ToDo item, invoke
PIMItem.getFields(). To retrieve the field values, invoke PIMItem.getString().

while (enum.hasMoreElements()) {
ToDo task = (ToDo)enum.nextETlement();
int[] fieldIds = task.getFields(Q);
int id;
for(int index = 0; index < fieldIds.length; ++index) {
id = fieldIds[index];
if(task.getPIMList().getFieldDataType(id) == STRING) {
for(int j=0; j < task.countValues(id); ++j) {
String value = task.getString(id, j);
System.out.printin(task.getFieldLable(id) + "=" + value);

33

BlackBerry Application Developer Guide

34

Convert a task to a to serial format

To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported serial formats, invoke PIM. supportedSerialFormats() and
specify the list type (PIM.TODO_List).

To write an item to a serial format, invoke toSerialFormat().

6 Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE." This parameter cannot be null.

ToDoList todoList = (ToDoList)PIM.getInstance().openPIMList(
PIM.TODO_LIST, PIM.READ_ONLY);
ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
String[] dataFormats = PIM.getInstance().supportedSerialFormats(PIM.TODO_LIST);
Enumeration e = todoList.items();
while (e.hasMoreElements()) {
ToDo task = (ToDo)e.nextElement();
PIM.getInstance().toSerialFormat(task, byteStream, "UTF8", dataFormats[0]);

Import a task

Invoke fromSerialFormat (), which returns an array of PIMItem objects. To create a new task using the
PIM items, invoke ToDoList.importToDo().

0 Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE." This parameter cannot be null.

String[] dataFormats = PIM.toDoSerialFormats();
//write task to vCard
ByteArrayOutputStream os = new ByteArrayOutputStream();
PIM.getInstance().toSerialFormat(task, os, "UTF8", dataFormats[0]);
//import task from vCard
ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());
PIMItem[] pi = PIM.getInstance().fromSerialFormat(is, "UTF8");
ToDoList todoList = (ToDoList)PIM.getInstance().openPIMList(
PIM.TODO_LIST, PIM.READ_WRITE);
ToDo task2 = todoList.importToDo((ToDo)pi[0]);

O Tip: The importToDo() method saves the task, so you do not have to invoke commit().

Delete a task
Invoke removeToDo () on a task list.

todoList.removeToDo(task);

Close a task list

Invoke todoList.close(). Make sure you catch applicable exceptions.

try {

3: Integrating PIM functions

todoList.close();
} catch (PimException e) {
// handle exception

}

Code example

Example: TaskDemo.java

/%%

* TaskDemo.java
* Copyright (C) 2002-2004 Research In Motion Limited.
*/
package com.rim.samples.docs.taskdemo;
import java.io.*;
import java.util.¥*;
import javax.microedition.pim.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.il8n.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import com.rim.samples.docs.baseapp.*;

public final class TaskDemo extends BaseApp {
private TaskScreen _taskScreen;
public static void main(String[] args) {
new TaskDemo().enterEventDispatcher();
}
private TaskDemo() {
_taskScreen = new TaskScreen();
pushScreen(_taskScreen);
}
protected void onExit() {
}
public final static class TaskScreen extends MainScreen {
// Members.
private EditField _summary, _note;
private DateField _due;
private ObjectChoiceField _priority, _status;
private SaveMenultem _saveMenultem;
private class SaveMenultem extends Menultem {
private SaveMenultem() {
super(null, 0, 100000, 5);
3
public String toString() {
return "Save";

3

public void run() {
onSave();

3

35

BlackBerry Application Developer Guide

36

public TaskScreen() {

ToDo.

}

_saveMenuItem = new SaveMenuItem();

setTitle(new LabelField("Tasks Demo",

LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH));

_summary = new EditField("Task Summary: ", "");
add(_summary) ;

// In TODO.Priority, O to 9 is highest to lowest priority.
String[] choices = {"High", "Normal", "Low"};
_priority = new ObjectChoiceField("Priority:
add(_priority);

String[] status = { "Not Started", "In Progress", "Completed",

, choices, 1);

"Waiting on someone else", "Deferred" };

_status = new ObjectChoiceField("Status: ", status, 0);
add(_status);

_due = new DateField("Due: ", System.currentTimeMillis() + 3600000,
DateField.DATE_TIME);

add(_due);

_note = new EditField("Extra Notes: ", "");

add(_note);

protected boolean onSave() {

}

try {
ToDolList todoList = (ToDoList)PIM.getInstance().
openPIMList(PIM.TODO_LIST, PIM.WRITE_ONLY);
ToDo task = todoList.createToDo();
task.addDate(ToDo.DUE, ToDo.ATTR_NONE, _due.getDate());
task.addString(ToDo.SUMMARY, ToDo.ATTR_NONE, _summary.getText());
task.addString(ToDo.NOTE, ToDo.ATTR_NONE, _note.getText());
task.addInt(ToDo.PRIORITY, ToDo.ATTR_NONE,
_priority.getSelectedIndex());
// ToDo.EXTENDED_FIELD_MIN_VALUE + 9 represents status.
// Add 1 to selected index so that values are correct.
// See the RIM Implementation Notes in the API docmentation for

task.addInt(ToDo.EXTENDED_FIELD_MIN_VALUE + 9, ToDo.ATTR_NONE,
_status.getSelectedIndex() + 1);
// Save task to handheld tasks.
task.commit();
_summary.setText("");
_note.setText("");
_due.setDate(null);
_priority.setSelectedIndex(1l); // Reset to iNormali priority.
_status.setSelectedIndex(0); // Reset to iNot Startedi status.
return true;
} catch (PIMException e) {
return false;

}

protected void makeMenu(Menu menu, int instance) {

menu.add(_saveMenuItem);
super.makeMenu(menu, instance);

3: Integrating PIM functions

Using the calendar

Use an instance of the EventList class to access the handheld calendar. Create one or more Event
objects to store information for specific appointments. For each event, you can store data such as the
summary, location, start and end time, and reminder notification.

Open an event list

You must create an EventList before you can add events. Invoke PIM.openPIMList (). Provide as
parameters the type of list to open (PIM.EVENT_LIST) and the mode in which to open the list
(READ_WRITE, READ_ONLY, or WRITE_ONLY).

EventList eventList = null;

try {
eventList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_WRITE);

} catch (PimException e) {
// handle exception

}

Create an appointment

Invoke createEvent() on an event list.
Event event = eventlList.createEvent();

Note: The appointment is not added to the database until you commit the change. See " Save an appointment" on page
38 for more information.

Add appointment information

The Event class defines fields in which to store data, such as SUMMARY, LOCATION, START, END, and
ALARM. Each field has a specific data type, which you can retrieve by invoking
PIMList.getFieldDataType(int field). Depending on the data type of the field, set the field data
by invoking one of the following methods: addString(), addDate (), addInt(), addBoolean(), or
addBinary().

Before you set or retrieve a field, verify that the item supports the field by invoking i sSupportedField(
int field).

if (event.isSupportedField(Event.SUMMARY)) {
event.addString(Event.SUMMARY, Event.ATTR_NONE, "Meet with customer");
}
if (event.isSupportedField(Event.LOCATION)) {
event.addString(Event.LOCATION, Event.ATTR_NONE, "Conference Center");
}
Date start = new Date(System.currentTimeMillis() + 8640000);
if (event.isSupportedField(Event.START)) {
event.addDate(Event.START, Event.ATTR_NONE, start);
}
if (event.isSupportedField(Event.END)) {
event.addDate(Event.END, Event.ATTR_NONE, start + 72000000);
}

37

BlackBerry Application Developer Guide

38

if (event.isSupportedField(Event.ALARM)) {
if (event.countValues(Event.ALARM) > 0) {
eventValue(Event.ALARM,0);
event.setInt(Event.ALARM, 0, Event.ATTR_NONE, 396000);

O Tip: If the Event.ALARM field is not set, the appointment reminder is automatically set to 15 minutes before the start of
the event

Create a recurring appointment

To define a recurrence pattern for an appointment, use a RepeatRule object. The RepeatRule class
defines fields for the properties and values that you can set, such as COUNT, FREQUENCY, and INTERVAL.
To retrieve an array of supported fields, invoke RepeatRule.getFields().

Define a recurrence pattern
Invoke setInt() or setDate() on a new RepeatRule object.

RepeatRule recurring = new RepeatRule();
recurring.setInt(RepeatRule.FREQUENCY, RepeatRule.MONTHLY);
recurring.setInt(RepeatRule.DAY_IN_MONTH, 14);

Assign a recurrence pattern to an appointment
Invoke setRepeat() on an event.

EventList eventlList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_WRITE);

Event event = eventlList.createEvent();
event.setRepeat(recurring);

Modify appointment information

To replace an existing value with a new one, invoke the appropriate set method, such as setString(Q).
To determine if a value is already set for the field, invoke countvalues() .

o Note: If you invoke an add method, such as addString(), when a value already exists, a FieldFul1Exception is thrown.
Use the corresponding set method, such as setString(), to change an existing value.

if (event.countValues(Event.LOCATION) > 0) {
event.setString(Event.LOCATION, 0, Event.ATTR_NONE, "Board Room");
}

Save an appointment

9 Tip: The importEvent() method saves the appointment, so you do not have to invoke commit().
Invoke commit (). Before you save the appointment, invoke isModified() to determine whether any of
the appointment fields have changed since the appointment was last saved.

if(event.isModified()) {
event.commit();

3: Integrating PIM functions

Retrieve appointment information

Retrieve an enumeration of appointments

Invoke PIMList.items().

EventList eventlList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_ONLY);
Enumeration e = eventList.items();

Retrieve field IDs and values

To retrieve an array of IDs of fields that have data for a particular task, invoke PIMItem.getFieldsQ).
To retrieve the field values, invoke PIMItem.getString().

while (e.hasMoreElements()) {
Event event = (Event)e.nextElement();
int[] fieldIds = event.getFields();
int id;
for(int index = 0; index < fieldIds.length; ++index) {
id = fieldIds[index];
if(e.getPIMList().getFieldDataType(id) == STRING) {
for(int j=0; j < event.countValues(id); ++j) {
String value = event.getString(id, j);
System.out.printin(event.getFieldLable(id) +

+ value);

Convert an appointment to a serial format

To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported serial formats, invoke PIM. supportedSerialFormats() and
specify the list type (PIM.EVENT_List).

To write an item to a serial format, invoke toSerialFormat().

EventList eventlList = (EventList)PIM.getInstance().openPIMList(PIM.EVENT_LIST,
PIM.READ_ONLY);
ByteArrayOutputStream bytestream = new ByteArrayOutputStream();

To write an item to a serial format, invoke toSerialFormat().

ﬂ Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE" . This parameter cannot be null.

Enumeration e = eventList.items();

while (e.hasMoreElements()) {
Event event = (Event)e.nextElement();
PIM.getInstance().toSerialFormat(event, byteStream, "UTF8", dataFormats[0]);

39

BlackBerry Application Developer Guide

40

Import an appointment

Invoke fromSerialFormat(java.io.InputStream is, java.lang.String enc), which returns an
array of PIMItem objects. Invoke EventList.importEvent() to add a new appointment.

6 Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include " UTF8," "1S0-8859-1," and " UTF-16BE." This parameter cannot be null.

// Convert an existing appointment into a vCard and then import the vCard as a new
// appointment

String[] dataFormats = PIM.eventSerialFormats(Q);

//write appointment to vCard

ByteArrayOutputStream os = new ByteArrayOutputStream();

PIM.getInstance() .toSerialFormat(event, os, "UTF8", dataFormats[0]);

//import appointment from vCard

ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());
PIMItem[] pi = PIM.getInstance().fromSerialFormat(is, "UTF8");

EventList eventlList = (EventList)PIM.getInstance().openPIMList(

PIM.EVENT_LIST, PIM.READ_WRITE);

Event event2 = eventlList.importEvent((Event)pi[0]);

Close an event list

Invoke close().

try {
eventList.close();

} catch (PimException e) {
// handle exception

}

Code example

The following example displays a screen that enables users to create new, recurring appointments in the
handheld calendar. You could combine this sample with ContactsDemo.java to allow the user to invite
attendees to the meeting. See “ContactsDemo.java” on page 29 for more information.

After you save an appointment, click the Calendar icon to verify that the appointment was saved.

Example: EventDemo.java
/7': ¥

* EventDemo.java
* Copyright (C) 2002-2004 Research In Motion Limited.

/

package com.rim.samples.docs.eventdemo;
import java.io.*;

import java.util.¥*;

import javax.microedition.pim.*;

import net.rim.device.api.ui.*;

import
import
import
import
import
import

public

3: Integrating PIM functions

net.rim.device.api.ui.component.¥*;
net.rim.device.api.ui.container.¥*;
net.rim.device.api.il8n.*;
net.rim.device.api.system.*;
net.rim.device.api.util.*;
com.rim.samples.docs.baseapp.*;

final class EventDemo extends BaseApp {

private EventScreen _eventScreen;
public static void main(String[] args) {

new EventDemo().enterEventDispatcher();

}

private EventDemo() {
_eventScreen = new EventScreen();
pushScreen(_eventScreen);

b

protected void onExit() {

}

public final static class EventScreen extends MainScreen {

private EditField _subject, _location;
private SaveMenultem _saveMenultem;
private DateField _startTime, _endTime;
private ObjectChoiceField _repeat;
private Event event;
private class SaveMenuIltem extends MenuItem {
public SaveMenultem() {
super(null, 0, 100000, 5);
3
public String toString() {
return "Save";

}

public void run() {
onSave();

}

}
public EventScreen() {
_saveMenuItem = new SaveMenuItem();
setTitle(new LabelField("Event Demo", LabelField.ELLIPSIS |
LabelField.USE_ALL_WIDTH));

_subject = new EditField("Subject: ", "");
add(_subject);
_location = new EditField("Location: ", "");

add(_location);

_startTime = new DateField("Start:
3600000, DateField.DATE_TIME);

_endTime = new DateField("End: ", System.currentTimeMillis() +
7200000, DateField.DATE_TIME);

add(new SeparatorField());

add(_startTime);

add(_endTime);

add(new SeparatorField());

String[] choices = {"None", "Daily", "Weekly", "Monthly", "Yearly"};

_repeat = new ObjectChoiceField("Recurrence: ", choices, 0);

add(_repeat);

, System.currentTimeMillis() +

4

BlackBerry Application Developer Guide

protected boolean onSave() {
try {
EventList eventlList = (EventList)PIM.getInstance().
openPIMList(PIM.EVENT_LIST, PIM.WRITE_ONLY);
event = eventList.createEvent();
event.addString(Event.SUMMARY, PIMItem.ATTR_NONE,
_subject.getText());
event.addString(Event.LOCATION, PIMItem.ATTR_NONE,
_Tocation.getText());
event.addDate(Event.END, PIMItem.ATTR_NONE, _endTime.getDate());
event.addDate(Event.START, PIMItem.ATTR_NONE,
_startTime.getDate());
if(_repeat.getSelectedIndex() != 0) {
event.setRepeat(setRule());
3
// Save the appointment to the Calendar.
event.commit();
//reset fields on screen
_subject.setText("");
_location.setText("");
_endTime.setDate(null);
_startTime.setDate(null);
_repeat.setSelectedIndex(0);
return true;
} catch (PIMException e) {
System.err.println(e);
}
return false;
}
private RepeatRule setRule() {
RepeatRule rule = new RepeatRule();
int index = _repeat.getSelectedIndex();
if (index == 0) {
rule.setInt(RepeatRule.FREQUENCY, RepeatRule.DAILY);
}
if (index == 1) {
rule.setInt(RepeatRule.FREQUENCY, RepeatRule.WEEKLY);
}
if (index == 2) {
rule.setInt(RepeatRule.FREQUENCY, RepeatRule.MONTHLY);
}
if (index == 3) {
rule.setInt(RepeatRule.FREQUENCY, RepeatRule.YEARLY);

}
return rule;
}
protected void makeMenu(Menu menu, int instance) {
menu.add(_saveMenuItem);
menu.addSeparator();
super.makeMenu(menu, instance);
}

42

Adding handheld options

e Options API
¢ Adding option items

Options API

The BlackBerry options AP, in the net.rim.blackberry.api.options package, enables you to add
items to the handheld options. Use this capability to add system-wide options to the handheld that
multiple applications can use.

When users click the Options icon on the handheld Home screen, a list of options, such as AutoText,
Date/Time, and Firewall, appears. The user can select one of these items to view a screen for that
particular option. The screen displays one or more fields. Typically, the user can change the value of each
field.

Adding option items

Registering to add options

Implement the OptionsProvider interface, including the getTitle(), save(), and
populateMainScreen() methods.

Create a library project

To add option items when the handheld starts, create a library project with a 1ibMain() method to
perform the required registration.

1. In the IDE, create a project.

2. Right-click the project and click Properties.

3. In the Properties window, click the Application tab.
4. In the Project type drop-down list, click Library.

5. Select the Auto-run on startup option.

6. Click OK.

Register as an options provider

Implement getInstance() to retrieve a static instance of your class. Only one instance should exist at a
time.

Invoke registerOptionsProvider() in 1ibMain(). Provide as parameter a static instance of your
class.

private static DemoOptionsProvider _instance;

public static DemoOptionsProvider getInstance() {

BlackBerry Application Developer Guide

44

if(_instance == null) {

_instance = new DemoOptionsProvider("Options Demo");
}
return _instance;

}

public static void 1ibMain(String[] args) {
OptionsManager.registerOptionsProvider(getInstance());

}

Store options

To store the option value that is currently selected, implement the Persistable interface. In your
implementation, define methods for setting the selected option value, and committing and retrieving an
option value in the persistent store.

0 Note: If you implement the Persistable interface as an inner class, make it—and its get (), set(), and commit()
methods—public so that other applications can access your options data.

See " Managing persistent data" on page 81 for more information on storing persistent data.

Provide access to option data

In your library class, add public methods to enable other applications to access your option data.

Code example

Example: DemoOptionsProvider.java
/**

* DemoOptionsProvider.java
* Copyright 2002-2004 Research In Motion Limited.
% /

package com.rim.samples.docs.demooptionsprovider;
import net.rim.blackberry.api.options.*;

import net.rim.device.api.ui.component.*;

import net.rim.device.api.ui.container.¥*;

import net.rim.device.api.il8n.*;

import net.rim.device.api.system.*;

import net.rim.device.api.util.*;

// A simple Tibrary class to demonstrate the use of the options facilities.
public final class DemoOptionsProvider implements OptionsProvider {

// members

private ObjectChoiceField _ocf;

private OptionsDemoData _data;

private String _title;

private static DemoOptionsProvider _instance;

// constructors

private DemoOptionsProvider() {

4: Adding handheld options

}

private DemoOptionsProvider(String title) {
_title = title;
_data = OptionsDemoData.load();

}

// Only allow one instance of this class.
public static DemoOptionsProvider getInstance() {

if (_instance == null) {

_instance = new DemoOptionsProvider("Options Demo");

}

return _instance;

}

// On startup, create the instance and register it.
public static void 1ibMain(String[] args) {
OptionsManager.registerOptionsProvider(getInstance());

}

// Get the title for the option item.

public String getTitle() {
return _title;

B

// Add fields to the screen.

public void populateMainScreen(MainScreen screen) {
int index = _data.getSelected();
String[] choices = {"High", "Low", "None"};

_ocf = new ObjectChoiceField("Security:

screen.add(_ocf);

, choices, index);

B

// Save the data.

public void save() {
_data.setSelected(_ocf.getSelectedIndex());
_data.commit(Q);

B

// Retrieve the data. Used by other applications to access options data.

public OptionsDemoData getData()
return _data;

}

{

// Inner class to store selected option values.
public static final class OptionsDemoData implements Persistable {
private static final long ID = Ox6afOb5eb44dc5164L;

private int _selectedOption;

private OptionsDemoData() {

}

public int getSelected() {
return _selectedOption;

}

public void setSelected(int index) {

_selectedOption = index;

}

public void commit() {

PersistentObject.commit(this);

}

private static OptionsDemoData Toad() {

PersistentObject persist
OptionsDemoData.ID);
OptionsDemoData contents

PersistentStore.getPersistentObject(

(OptionsDemoData)persist.getContents();

45

BlackBerry Application Developer Guide

synchronized(persist) {
if(contents == null) {
contents = new OptionsDemoData();
persist.setContents(contents);
persist.commit();

}

return contents;

46

BlackBerry Browser

* Browser APIs

e Displaying web content

e Supporting additional MIME types
e Registering as a HTTP filter

Browser APIs

APl name and package Description

Browser application API This APl enables applications to display web content, including supported image types, HTML and WML
pages, by invoking the BlackBerry Browser. It also enables applications to supply a referrer, HTTP headers

(net.rim.blackberry.api.browser) ‘
and post data in an HTTP request.

Browser field API This API enables an application to retrieve web content for display in a browser field, which is included

(net.rim.blackberry.api.browser. in the application UL. This APl also enables applications to configure the appearance of the browser field,

field) such as by eliminating the scroll bar or specifying displaying the browser field in only a portion of the
screen.

Browser page API This APl enables applications to add support for additional MIME types. By registering as rendering

provider for a MIME type when the handheld starts, all subsequent browser sessions will support the

(net.rim.blackberry.api.browser. "
additional MIME type.

plugin)
HTTP Filter API This API enables applications to register with the browser as provider for one or more URLs.

(net.rim.device.api.io.http)

Displaying web content

Displaying web content in the browser

To display web content in the BlackBerry Browser, use the browser application API
(net.rim.blackberry.api.browser).

Retrieve a browser session

To retrieve the default BrowserSession object, invoke the static method
Browser.getDefaultSession(). This object gives you access to the running browser on the handheld.

0 Note: Retrieving the default session overrides any open sessions on the handheld.

To retrieve a different session, invoke getSession(). This method retrieves a browser configuration
service record according to its unique ID (UID). See " Service book API" on page 103 for more
information.

BlackBerry Application Developer Guide

48

Request a web page

To request a web page, invoke BrowserSession.displayPage(). The example below uses the version
of displayPage () that accepts only a URL. To specify a referrer, HTTP headers, and post data, use the
version that accepts these additional parameters.

Code sample

The following excerpt from the Restaurants.java sample creates a menu item that displays a web page in
the browser.

private Menultem browserItem = new
MenuItem(_resources.getString(MENUITEM_BROWSER), 110, 12) {
public void run() {
synchronized(store) {
String websiteUr]l = websitefield.getText();
if (websiteUrl.length == 0) {
Dialog.alert(_resources.getString(ALERT_NO_WEBSITE));
} else {
BrowserSession visit = Browser.getDefaultSession();
visit.displayPage(websiteUrl);

Displaying web content in a browser field

To include a browser field within an application Ul, use the browser field API
(net.rim.device.api.browser.field). The browser rendering library handles the rendering of web
content for the field, and then returns a BrowserField, a field in which URL content is rendered, to your
application for display.

o Note: The browser session that is used to open a browser field is independent of the default browser session on the
handheld. Any open browser sessions are unaffected.

The RenderingApplication interface defines the callback functionality a rendering session requires to
assist with handling URL resources. To display web content in a browser field, implement the
RenderingApplication interface.

Create a separate thread for rendering

To prevent the application from hanging while the application retrieves and displays the browser field,
perform these actions on a separate thread.

class CreationThread extends Thread {

BrowserFieldHandlerApplication _callBackAppTication;

BasicRenderingApplication _renderingApplication;

public CreationThread(BrowserFieldHandlerApplication callBackApplication) {
_callBackApplication = callBackApplication;

}

public void run() {
_renderingApplication = new

BasicRenderingApplication(_callBackApplication);
BrowserField field = _renderingApplication.getBrowserField("www.rim.com");
_callBackApplication.displayBrowserField(field);

5: BlackBerry Browser

Set rendering options

Override getRenderingOptions (). If you do not override this method, default rendering options are
used. See RenderingOptions in the AP/ Reference for more information.

Handle events

To handle events, such as a URL request, implement eventOccurred().

public Object eventOccurred(Event event) {
int eventId = event.getUID(Q);
switch (eventId) {
case Event.EVENT_URL_REQUESTED : {
UrTRequestedEvent e = (Ur1RequestedEvent) event;
// this is a regular request
String absoluteUrl = e.getURL(Q);
HttpConnection conn = null;
OutputStream out = null;
try {
conn = (HttpConnection) Connector.open(absoluteUrl);
FormData postData = e.getPostData();
if (postData == null) {
conn.setRequestMethod(HttpConnection.GET);
} else {
conn.setRequestMethod(HttpConnection.POST);
byte[] postBytes = postData.getBytes();
conn.setRequestProperty(
HttpProtocolConstants.HEADER_CONTENT_LENGTH,
String.valueOf (postBytes.length));

if (conn.getRequestProperty(
HttpProtocolConstants.HEADER_CONTENT_TYPE) == null) {
conn.setRequestProperty(

HttpProtocolConstants.HEADER_CONTENT_TYPE,

postData.getContentType());

}

out = conn.openOutputStream();

out.write(postBytes);

}
HttpHeaders requestHeaders = e.getHeaders();
if (requestHeaders != null) {

/* From
http://www.w3.org/Protocols/rfc2616/rfc2616-
secl5.html#secl15.1.3

Clients SHOULD NOT include a Referer header field in a

(non-secure) HTTP request if the referring page was

transferred with a secure protocol.*/

String referer =
requestHeaders.getPropertyValue("referer");

boolean sendReferrer = true;

if (referer != null && referer.startsWith("https:") &&
labsoluteUrl.startsWith("https:")) {
sendReferrer = false;

49

BlackBerry Application Developer Guide

}
int size = requestHeaders.size();
for (int i = 0; 1 < size; i++) {
String header = requestHeaders.getPropertyKey(i);
// remove refer header if needed
if (!sendReferrer && header.equals("referer")) {
requestHeaders.removeProperty(i);
continue;
}
conn.setRequestProperty(header,
requestHeaders.getPropertyValue(i));
}
}
} catch (IOException el) {
} finally {
if (out != null) {
try {
out.close();
} catch (IOException e2) {
}
}
}
BrowserField browserField = getBrowserField(conn, e);
_callbackApplication.displayBrowserField(browserField);

break;
}
case Event.EVENT_BROWSER_FIELD_CHANGED : {
/%
* Browser field title might have changed. Update title.
*/
break;
}

case Event.EVENT_REDIRECT : {
RedirectEvent e = (RedirectEvent) event;
switch (e.getType()) {
case RedirectEvent.TYPE_SINGLE_FRAME_REDIRECT :
// show redirect message
Application.getApplication().invokeAndwWait(new Runnable() {
public void run() {
Status.show("");
}
b
break;
case RedirectEvent.TYPE_JAVASCRIPT :
case RedirectEvent.TYPE_META :
case RedirectEvent.TYPE_300_REDIRECT :
}
String absoluteUr]l = e.getlLocation();
HttpConnection conn = nulT;
try {
conn = (HttpConnection) Connector.open(absoluteUrl);
} catch (IOException el) {
}
BrowserField browserField = getBrowserField(conn,
e.getOriginalEvent());

50

5: BlackBerry Browser

_callbackApplication.displayBrowserField(browserField);
break;
}
case Event.EVENT_CLOSE :
// close the appication
break;
case Event.EVENT_TICK_CONTENT_READ : // no progress bar 1is supported
case Event.EVENT_SET_HEADER :// no cache support
case Event.EVENT_SET_HTTP_COOKIE : // no cookie support
case Event.EVENT_HISTORY : // no history support
case Event.EVENT_LOADING_IMAGES :// no progress bar is supported
case Event.EVENT_EXECUTING_SCRIPT : // no progress bar 1is supported

case Event.EVENT_FULL_WINDOW : // no full window support
case Event.EVENT_STOP : // no stop loading support
default :

}

return null;

Retrieve browser content for rendering

Implement getBrowserField() so that it retrieves the browser content for rendering. The
getBrowserField() method invokes RenderingSession.getBrowserField() to retrieve a browser
field; applications cannot instantiate BrowserField directly.

public BrowserField getBrowserField (String absoluteUrl) {
HttpConnection conn = null;
try {
conn = (HttpConnection) Connector.open(absoluteUrl);
// set transcode to true
conn.setRequestProperty("x-rim-transcode-content", "*/*");
} catch (IOException el) {
}
return getBrowserField(conn, null);
}
private BrowserField getBrowserField(HttpConnection conn, Event e) {
BrowserField field = null;
try {
field = _renderingSession.getBrowserField(conn, this, e);
} catch (RenderingException re) {
return null;
}
// add to the event queue a thread that invokes finishLoading()
Application.getApplication().invokeLater(new RenderingThread(field));
return field;

Render the browser field

Invoke BrowserField.finishLoading() . In the following code sample,

BrowserField.getBrowserField() runs finishLoading() by adding a new rendering thread to the

application event queue.

0 Notes: HTML files display a blank field until you invoke BrowserField.finishLoading(). WML files and images might
load before this method is invoked.

The finishLoading() method should be run on a separate thread so that the Ul does not lock.

51

BlackBerry Application Developer Guide

class RenderingThread implements Runnable {
BrowserField _browserField;
RenderingThread(BrowserField field) {
_browserField = field;

}
public void run() {
try {
_browserField.finishLoading();
} catch (RenderingException e) {
// handle exception
}
}

Display the browser field

Implement displayBrowserField() so it deletes the screen contents, and then adds the browser field
to the screen.

public void displayBrowserField(BrowserField browserField) {
synchronized (Application.getEventLock()) {
_vfm.deleteA11(Q);
_vfm.add(browserField);

}

Code example

The following example consists of three files: BasicRenderingApplication.java,
BrowserFieldHandlerApplication.java, and BrowserFieldSampleApp.java.

Example: Browser field sample

/**
* BasicRenderingApplication.java
* Copyright (C) 2002-2004 Research In Motion Limited.
:':/

package com.rim.samples.docs.browser;

import java.io.IOException;

import java.io.OutputStream;

import javax.microedition.io.Connector;

import javax.microedition.io.HttpConnection;

import net.rim.device.api.browser.field.¥*;

import net.rim.device.api.io.http.HttpHeaders;

import net.rim.device.api.io.http.HttpProtocolConstants;
import net.rim.device.api.system.Application;

import net.rim.device.api.ui.Graphics;

import net.rim.device.api.ui.component.Status;

import com.rim.samples.docs.browser.BrowserFieldHandlerApplication.*;

final public class BasicRenderingApplication implements RenderingApplication {
RenderingSession _renderingSession;

52

5: BlackBerry Browser

BrowserFieldHandlerApplication _callbackAppTication;
public BasicRenderingApplication(BrowserFieldHandlerApplication
callBackApplication) {
_renderingSession = RenderingSession.getNewInstance();
_callbackApplication = callBackAppTlication;
}
/7’: *
* Simple method to get a browser field by specifying the URL.
* This call blocks until the browser field is returned by
RenderingSession.getBrowserField().
* The browser field can continue to be rendered after the field is returned.

* @param absoluteUrl - absolute url of the page to render
* @return rendered browser field
*/
public BrowserContent getBrowserField (String absoluteUrl) {
HttpConnection conn = null;
try {
conn = (HttpConnection) Connector.open(absolutelrl);
// Set transcode to true.
conn.setRequestProperty("x-rim-transcode-content", "*/*");
} catch (IOException el) {
}
return getBrowserField(conn, null);
B
private BrowserContent getBrowserField(HttpConnection conn, Event e) {
BrowserContent field = null;
try {
field = _renderingSession.getBrowserContent(conn, this, e);
} catch (RenderingException re) {
return null;
}
Application.getApplication().invokeLater(new RenderingThread(field));
return field;

3
/7’: %

* Invoked when an event occurs.
*/
public Object eventOccurred(Event event) {
int eventld = event.getUID(Q);
switch (eventId) {
case Event.EVENT_URL_REQUESTED : {
Ur1RequestedEvent e = (UrTRequestedEvent) event;
// this is a regular request
String absoluteUrl = e.getURLQ);
HttpConnection conn = null;
OutputStream out = null;
try {
conn = (HttpConnection) Connector.open(absolutelrl);
byte[] postData = e.getPostData();
if (postData == null) {
conn.setRequestMethod(HttpConnection.GET);
} else {
conn.setRequestMethod(HttpConnection.POST);

53

BlackBerry Application Developer Guide

conn.setRequestProperty(
HttpProtocolConstants.HEADER_CONTENT_LENGTH,
String.valueOf(postData.length));
out = conn.openOutputStream();
out.write(postData);

}
HttpHeaders requestHeaders = e.getHeaders();
if (requestHeaders != null) {

/* From
http://www.w3.org/Protocols/rfc2616/rfc2616-
secl5.html#secl15.1.3

Clients SHOULD NOT include a Referer header field in a
(non-secure) HTTP request if the referring page was
transferred with a secure protocol.*/
String referer = requestHeaders.getPropertyValue("referer");
boolean sendReferrer = true;
if (referer != null && referer.startsWith("https:") &&
labsoluteUrl.startsWith("https:")) {
sendReferrer = false;
}
int size = requestHeaders.size();
for (int i = 0; i < size; i++) {
String header = requestHeaders.getPropertyKey(i);
// Remove refer header if needed.
if (!sendReferrer && header.equals("referrer")) {
requestHeaders.removeProperty(i);
continue;
}
conn.setRequestProperty(header,
requestHeaders.getPropertyValue(i));

}
}
} catch (IOException el) {
} finally {
if (out != null) {
try {
out.close();
} catch (IOException e2) {
}
}

}

BrowserContent browserField = getBrowserField(conn, e);
_callbackApplication.displayBrowserField(browserField);
break;
}
case Event.EVENT_BROWSER_CONTENT_CHANGED : {
// Browser field title might have changed. Update title.
break;

}
case Event.EVENT_REDIRECT : {
RedirectEvent e = (RedirectEvent) event;

switch (e.getType()) {
case RedirectEvent.TYPE_SINGLE_FRAME_REDIRECT :

// Show redirect message.
AppTlication.getApplication().invokeAndWait(new Runnable() {

54

public void run() {
Status.show("");
}
b

break;

5: BlackBerry Browser

case RedirectEvent.TYPE_JAVASCRIPT :

case RedirectEvent.TYPE_META :

case RedirectEvent.TYPE_300_REDIRECT :

}

String absoluteUrl = e.getLocation();

HttpConnection conn = null;
try {

conn = (HttpConnection) Connector.open(absolutelrl);

} catch (IOException el) {
3

BrowserContent browserField = getBrowserField(conn,

e.getOriginalEvent());

_calTlbackApplication.displayBrowserField(browserField);

break;

}
case Event.EVENT_CLOSE :
// Close the appication.

break;
case Event.EVENT_TICK_CONTENT_READ : //
case Event.EVENT_SET_HEADER : //
case Event.EVENT_SET_HTTP_COOKIE : //
case Event.EVENT_HISTORY : //
case Event.EVENT_LOADING_IMAGES : //
case Event.EVENT_EXECUTING_SCRIPT : //
case Event.EVENT_FULL_WINDOW : //
case Event.EVENT_STOP : //
default :
}
return null;

}

/7’: *

* Retrieves the pixels of height available

* @param browserField Content for which to
height.

* @return Height available.

*/

No
No
No
No
No
No
No
No

progress bar is supported.
cache support.

cookie support.

history support.

progress bar is supported.
progress bar is supported.
full window support.

stop loading support.

for provided browser content.
retrieve available pixels of

public int getAvailableHeight(BrowserContent browserField) {

// Field has full screen.

return Graphics.getScreenHeight();
}
/7’: %

* Retrieves the pixels of width available for provided browser content.

*/

public int getAvailableWidth(BrowserContent browserField) {

// Field has full screen.

return Graphics.getScreenWidth();
}
/7’: %*

* Retrieves the history position for provided browser content.

:':/

55

BlackBerry Application Developer Guide

public int getHistoryPosition(BrowserContent browserField) {
// No history support.
return 0O;
b
/7’:7’:
Retrieves cookies associated with a provided URL.
*/
public String getHTTPCookie(String url) {
// No cookie support.
return null;
}
/%
* Retrieves the specified resource.
*/
public HttpConnection getResource(RequestedResource resource, BrowserContent
referrer) {
if (resource == null) {
return null;
}
// Check if this is cache-only request.
if (resource.isCacheOnly()) {
// No cache support.
return null;
}
String url = resource.getUr1Q);
if (url == null) {
return null;
}
// If referrer is null, return the connection.
if (referrer == null) {
HttpConnection conn;
try {
return (HttpConnection) Connector.open(resource.getUrl1());
} catch (IOException e) {
return null;
}
} else {
// If referrer is provided, set up the connection on a
// separate thread.
AppTication.getApplication().invokelLater(
new RetrieveThread(resource, referrer));

}
return null;
}
/7’: *
* Invokes the provided runnable object.
% /

public void invokeRunnable(Runnable runnable) {
(new Thread(runnable)).run();
b
}
class RenderingThread implements Runnable {
BrowserContent _browserField;
RenderingThread(BrowserContent field) {
_browserField = field;

56

5: BlackBerry Browser

}
public void run() {
try {
_browserField.finishLoading(Q);
} catch (RenderingException e) {
}
}

class RetrieveThread implements Runnable {
BrowserContent _browserField;
RequestedResource _resource;
RetrieveThread(RequestedResource resource, BrowserContent referrer) {
_browserField = referrer;
_resource = resource;
b
public void run() {
HttpConnection conn;
try {
conn = (HttpConnection) Connector.open(_resource.getUr1());
} catch (IOException e) {
return;
}
_resource.setHttpConnection(conn);
_browserField.resourceReady(_resource);

}
}
/ *%
* BrowserFieldSampleApp.java
* Copyright (C) 2002-2004 Research In Motion Limited.
*/

package com.rim.samples.docs.browser;

import net.rim.device.api.browser.field.BrowserContent;
import net.rim.device.api.system.Application;

import net.rim.device.api.ui.Manager;

import net.rim.device.api.ui.UiApplication;

import net.rim.device.api.ui.container.MainScreen;

import net.rim.device.api.ui.container.VerticalFieldManager;

import com.rim.samples.docs.browser.BasicRenderingApplication;
import com.rim.samples.docs.browser.BrowserFieldHandlerApplication;

public final class BrowserFieldSampleApp extends UiApplication implements
BrowserFieldHandlerApplication {

VerticalFieldManager _vfm;

// Constructor.
BrowserFieldSampleApp() {

MainScreen mainScreen = new MainScreen();

_vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL |
Manager.VERTICAL_SCROLLBAR);

mainScreen.add(_vfm);

pushScreen(mainScreen);

57

BlackBerry Application Developer Guide

// get and display the browser field on a separate thread
this.invokeLater((new CreationThread(this)));

}

// Callback method for basic rendering application. Displays rendered browser
field.

// @param browserField - browser field to display
public void displayBrowserField(BrowserContent browserField) {
synchronized (Application.getEventLock()) {
_vfm.deleteA11Q);
_vfm.add(browserField.getDisplayableContent());

}

public static void main(String[] args) {
BrowserFieldSampleApp app = new BrowserFieldSampleApp(Q);
app.enterEventDispatcher();
}
}
class CreationThread extends Thread {
BrowserFieldHandlerApplication _callBackAppTication;
BasicRenderingApplication _renderingApplication;
public CreationThread(BrowserFieldHandlerApplication callBackApplication) {
_callBackApplication = callBackApplication;
}
public void run() {
_renderingApplication = new
BasicRenderingApplication(_callBackApplication);
BrowserContent field =
_renderingApplication.getBrowserField("www.rim.com");
_callBackApplication.displayBrowserField(field);
b

Supporting additional MIME types

The browser page AP, in the net.rim.device.api.browser.plugin package, enables third-party
applications to register themselves with the rendering library as rendering providers for specific MIME
types that are not currently supported by the BlackBerry Browser.

Note: The BrowserFieldProviderRegistry.register() method throws an exception if you try to register a MIME type

that is already supported by the BlackBerry Browser. For a list of supported MIME types, invoke
RenderingSession.getSupportedMimeType()

Register as rendering provider for a MIME type

To support additional MIME types, extend the BrowserContentProvider abstract class. To specify
display characteristics such as no scroll bar or full screen display, implement the BrowserPageContext
interface.

58

5: BlackBerry Browser

The rendering library invokes BrowserContentProvider.getAccept() and
BrowserContentProvider.getSupportedMimeTypes() to identify the MIME types the provider
renders.

List accepted MIME types

Implement getAccept () and getSupportedMimeTypes () to list the list of MIME types the provider
can accept given a set of rendering options. The getAccept () method considers the rendering options
that have been set; this example assumes that no rendering options are set. See RenderingOptions in
the AP/ Reference for more information.

public String[] getAccept(RenderingOptions context) {
// Return subset of getSupportedMimeTypes() if accept depends in rendering
// options. For example HTML can be disabled in the rendering options, and
// HTMLConverter would remove html mime types.
return ACCEPT;

}

public String[] getSupportedMimeTypes() {
return ACCEPT;

}

Specify display characteristics

Implement the BrowserPageContext interface. If you do not implement this interface, default values
are used.

In this example, the properties are all integers. An application with Boolean, String, and Object
properties would implement the corresponding methods.

public boolean getPropertyWithBooleanValue(int id, boolean defaultValue) {
// TODO Auto-generated method stub
return false;
}
public int getPropertyWithIntValue(int id, int defaultValue) {
if (id == BrowserPageContext.DISPLAY_STYLE) {
// Disable the scroll bar.
return BrowserPageContext.STYLE_NO_VERTICAL_SCROLLBAR;
}
return 0;
}
public Object getPropertyWithObjectValue(int id, Object defaultValue) {
// TODO Auto-generated method stub
return null;
}
public String getPropertyWithStringvValue(int id, String defaultValue) {
// TODO Auto-generated method stub
return null;

}

Retrieve a field to render the content

public BrowserContent getBrowserContent(BrowserContentProviderContext context)
throws RenderingException {

if (context == null) {
throw new RenderingException("No Context is passed into Provider™);

59

BlackBerry Application Developer Guide

}

BrowserContentBaseImpl browserContentBaseImpl = new
BrowserContentBaseImpl(context.getHttpConnection().getURL(), null,
context.getRenderingApplication(),
context.getRenderingSession().getRenderingOptions(), context.getFlags());

VerticalFieldManager vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL);

vfm.add(new LabelField("Mime type: "));

vfm.add(new LabelField(ACCEPT[0]));

vfm.add(new SeparatorField());

vfm.add(new LabelField("Content of the resource file: \n"));

vfm.add(new SeparatorField());

try {

HttpConnection conn = context.getHttpConnection();
InputStream in = conn.openInputStream();

byte[] data = IOUtilities.streamToBytes(in);
vfm.add(new LabelField(new String(data)));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
browserContentBaseImpl.setContent(vfm);
browserContentBaseImpl.setTitle(ACCEPT[0]);
// Set browser page context, this will tell the browser how to display this
// field.
browserContentBaseImpl.setBrowserPageContext(this);
return browserContentBaseImpl;

Register when the handheld starts

Create a library project and set its properties to auto-run on startup. In TibMain(), invoke
BrowserFieldProviderRegistry.getInstance() and then invoke register().

public static void 1ibMain(String[] args) {
BrowserContentProviderRegistry converterRegistry =
BrowserContentProviderRegistry.getInstance();
if (converterRegistry != null) {
converterRegistry.register(new BrowserPlugin());

}

Code example

Example: BrowserPlugin.java and LoaderApp.java

/7': ¥
* LoaderApp.java
* Copyright (C) 2004 Research In Motion Limited.
%/
package com.rim.samples.docs.browser;
import net.rim.device.api.browser.plugin.BrowserContentProviderRegistry;

60

5: BlackBerry Browser

final class LoaderApp {

public static void 1ibMain(String[] args) {
BrowserContentProviderRegistry converterRegistry =
BrowserContentProviderRegistry.getInstance();
if (converterRegistry != null) {
converterRegistry.register(new BrowserPlugin());

}

(o]

* BrowserPlugin.java
* Copyright (C) 2004 Research In Motion Limited.
*/

package com.rim.samples.docs.browser;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.io.HttpConnection;

import net.rim.device.api.browser.field.*;

import net.rim.device.api.browser.plugin.¥*;

import net.rim.device.api.ui.Manager;

import net.rim.device.api.ui.component.LabelField;

import net.rim.device.api.ui.component.SeparatorField;
import net.rim.device.api.ui.container.VerticalFieldManager;

/ ek
* Create a file with xxtest extension and associate that type with
* application/x-vnd.rim.xxxtest mime type on any server.
*/
public final class BrowserPlugin extends BrowserContentProvider implements
BrowserPageContext {

private static final String[] ACCEPT = {"application/x-vnd.rim.xxxtest"};

/:’: *
* Retrieves list of mime types this provider can accept given a set of rendering
options.
* @param context Rendering options in place this provider should consider.
* @return Array of mime types this provider will accept, given the provided
rendering options.
*/
public String[] getAccept(RenderingOptions context) {
// Return subset of getSupportedMimeTypes() if accept depends in rendering
options.
// For example HTML can be disabled in the rendering options, and
HTMLConverter would remove
// html MIME types.
return ACCEPT;
}
/7’: *
* Retrieves a browser content capable of rendering the mime content this
provider can handle.
* @param context Provider context object provided by rendering session.

61

BlackBerry Application Developer Guide

* @return Browser content to render specialized content.

*/

public BrowserContent getBrowserContent(BrowserContentProviderContext context)
throws RenderingException {

if (context == null) {
throw new RenderingException("No Context is passed into Provider™);

}

BrowserContentBaseImpl browserContentBaseImpl = new
BrowserContentBaseImpl(context.getHttpConnection().getURL(),
null, context.getRenderingApplication(),
context.getRenderingSession().getRenderingOptions(), context.getFlags());

VerticalFieldManager vfm = new
VerticalFieldManager(Manager.VERTICAL_SCROLL);

vfm.add(new LabelField("Mime type: "));

vfm.add(new LabelField(ACCEPT[0]));

vfm.add(new SeparatorField());

vfm.add(new LabelField("Content of the resource file: \n"));
vfm.add(new SeparatorField());

try {
HttpConnection conn = context.getHttpConnection();
InputStream in = conn.openInputStream();
int numBytes = in.available();
byte[] data = new byte[numBytes];
in.read(data, 0, numBytes);
vfm.add(new LabelField(new String(data)));

} catch (IOException e) {
e.printStackTrace();

}

browserContentBaseImpl.setContent(vfm);

browserContentBaseImpl.setTitle(ACCEPT[0]);

// Set browser page context. This tells the browser how to display this
field.

browserContentBaseImpl.setBrowserPageContext(this);

return browserContentBaseImpl;

—

* Retrieves all the mime content types supported by this provider.
* @return Mime types this converter supports.

7’:/
public String[] getSupportedMimeTypes() {

return ACCEPT;
B

/7’: *
* Retrieves value of specified property as a boolean value.

62

5: BlackBerry Browser

* @param id ID of property to query.
* @param defaultValue Expected default value of property.
* @return Current value of property.

:':/

public boolean getPropertyWithBooleanValue(int id, boolean defaultValue) {
return false;
}
/:’: *
* Retrieves value of specified property as an int.
* @param id ID of property to query.
* @param defaultValue Expected default value of property.
* @return Current value of property.
*/
public int getPropertyWithIntValue(int id, int defaultValue) {

if (id == BrowserPageContext.DISPLAY_STYLE) {

// Disable the scroll bar.

return BrowserPageContext.STYLE_NO_VERTICAL_SCROLLBAR;
}

return 0;
}
/‘.’: *
* Retrieves value of specified property as an object.
* @param id ID of property to query.
* @param defaultValue Expected default value of property.
* @return Current value of property.

7’:/

public Object getPropertyWithObjectValue(int id, Object defaultValue) {
return null;
}
/* Retrieves value of specified property as a String value.
* @param id - ID of property to query.
* @param defaultValue - Expected default value of property.
* @return Current value of property.
*/
public String getPropertyWithStringvValue(int id, String defaultValue) {
return null;

}

63

BlackBerry Application Developer Guide

Registering as a HTTP filter

64

The HTTP filter API (net.rim.device.api.io.http) enables an application to register with the
browser as provider for a specific URL. When users type in the specified URL, the connection stack is
rerouted to the specified application.
Note: Check for a ControlledAccessException when your application first accesses the HTTP filter API. This runtime
exception is thrown if the system administrator restricts access to the HTTP filter API using application control. See

"Application control” on page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more
information.

Register as an HTTP filter
Invoke HttpFilterRegistry.registerFilter(). Provide as parameters the URL to intercept and the
package name of the application that defines interception behaviour.

HttpFilterRegistry.registerFilter("content.blackberry.com",
"com.rim.samples.device.httpfilterdemo.precanned");

Perform registration at startup

Create a library project and set its properties to auto-run on startup. Invoke registerFilter() in
TibMain().

Code example

The following example consists of two files, PackageManager.java, which registers the filter on startup,
and Protocol.java, which defines the filter behavior.

Example: HTTP filter example
/**

* PackageManager.java
* Copyright (C) 2004 Research In Motion Limited. A1l rights reserved.
% /

package com.rim.samples.docs.httpfilterdemo;

import net.rim.device.api.io.http.HttpFilterRegistry;

/ ek
* This class runs on startup of the device and registers the necessary http
filters.
*/
final class PackageManager
{
public static void 1ibMain(String[] args) {
HttpFilterRegistry.registerFilter("www.blackberry.com",
"com.rim.samples.docs.httpfilterdemo.filter");
}
}
/ ek

* Protocol.java
* Copyright (C) 2004 Research In Motion Limited. Al1l rights reserved.
*/

package com.rim.samples.docs.httpfilterdemo.filter;

5: BlackBerry Browser

import net.rim.device.api.io.FilterBaseInterface;
import java.io.*;
import javax.microedition.io.*;

/7': ¥
* This class implements a simple pass through mechanism that writes out the http
response headers to System.out.
*/
public final class Protocol implements FilterBaseInterface, HttpConnection {
private HttpConnection _subConnection;

Vo
* Defined by FilterBaseInterface.
* This method opens a filtered Http Connection.
*/
public Connection openFilter(String name, int mode, boolean timeouts) throws
IOException {
_subConnection = (HttpConnection)Connector.open("http:" + name +
";usefilter=false", mode, timeouts);
if (_subConnection != null) {
return this;

// Filed to open the sub connection; so let us fail too.
return null;

// Return a string representation of the URL for this connection.
public String getURL(Q) {
return _subConnection.getURLQ);

}

// Returns the protocol name of the URL of this HttpConnection. e.g., http or
https.
public String getProtocol() {

return _subConnection.getProtocol();

}

// Returns the host information of the URL of this HttpConnection. e.g. host
name or IPv4 address.

public String getHost() {
return _subConnection.getHost();

}

// Returns the file portion of the URL of this HttpConnection.
public String getFile() {
return _subConnection.getFile(Q);

3
/7’: %

* Returns the ref portion of the URL of this HttpConnection.

* RFC2396 specifies the optional fragment identifier as the the text after the
crosshatch (#)

* character in the URL. This information may be used by the user agent as
additional

65

BlackBerry Application Developer Guide

66

* reference information after the resource is successfully retrieved. The
format and

o

* interpretation of the fragment identifier is dependent on the media
type[RFC2046] of
* the retrieved information.
7':/
public String getRef() {
return _subConnection.getRef();

}

// Returns the network port number of the URL for this HttpConnection.
public int getPort() {
return _subConnection.getPort();

}

// Returns the query portion of the URL of this HttpConnection.
// RFC2396 defines the query component as the text after the first
// question-mark (?) character in the URL.
public String getQuery() {
return _subConnection.getQuery(Q);

}

// Get the current request method. e.g. HEAD, GET, POST The default value is
GET.

public String getRequestMethod() {
return _subConnection.getRequestMethod();

}

// Set the method for the URL request, one of: GET, POST, HEAD, subject to

protocol restrictions. The default method is GET.

public void setRequestMethod(String method) throws IOException {
_subConnection.setRequestMethod(method) ;

}

// Returns the value of the named general request property for this connection.
public String getRequestProperty(String key) {
return _subConnection.getRequestProperty(key);

}

// Sets the general request property. If a property with the key already

exists, overwrite its value with the new value.

// Note: HTTP requires all request properties which can legally have multiple

instances with the

// same key to use a comma-separated Tist syntax which enables multiple

properties to be appended into a single property.

public void setRequestProperty(String key, String value) throws IOException {
System.out.println("Request property <key, value>: "
_subConnection.setRequestProperty(key, value);

+ key + ", " + value);
B

// Returns the HTTP response status code.
public int getResponseCode() throws IOException {
return _subConnection.getResponseCode();

}

5: BlackBerry Browser

// Gets the HTTP response message, if any, returned along with the response
code from a server.

public String getResponseMessage() throws IOException {
return _subConnection.getResponseMessage();

}

// Returns the value of the expires header field.
public Tong getExpiration() throws IOException {
return _subConnection.getExpiration();

}

// Returns the value of the date header field.
public Tong getDate() throws IOException {
return _subConnection.getDate();

}

// Returns the value of the last-modified header field. The result is the
number of milliseconds since January 1, 1970 GMT.
public Tong getLastModified() throws IOException {

return _subConnection.getLastModified();

}

// Returns the value of the named header field.
public String getHeaderField(String name) throws IOException

{

String value = _subConnection.getHeaderField(name);
System.out.println("Response property <key, value>: " + name + ", " + value
)
return value;
}

// Returns the value of the named field parsed as a number.
public int getHeaderFieldInt(String name, int def) throws IOException {
return _subConnection.getHeaderFieldInt(name, def);

}

// Returns the value of the named field parsed as date. The result is the

// number of milliseconds since January 1, 1970 GMT represented by the named

field.

public long getHeaderFieldDate(String name, long def) throws IOException {
return _subConnection.getHeaderFieldDate(name, def);

}

// Gets a header field value by index.
public String getHeaderField(int n) throws IOException {
return _subConnection.getHeaderField(n);

}

// Gets a header field key by index.
public String getHeaderFieldKey(int n) throws IOException {
return _subConnection.getHeaderFieldKey(n);

}

// Returns the type of content that the resource connected to is providing.
public String getType() {

67

BlackBerry Application Developer Guide

return _subConnection.getType();

// Returns a string describing the encoding of the content which the resource
connected to is providing.
public String getEncoding() {

return _subConnection.getEncoding();

}

// Returns the length of the content which is being provided.
public long getLength() {
return _subConnection.getlLength();

}

// Opens and returns an input stream for a connection.
public InputStream openInputStream() throws IOException {
return _subConnection.openInputStream();

}

// Opens and returns a data input stream for a connection.
public DatalnputStream openDataInputStream() throws IOException {
return _subConnection.openDataInputStream();

}

// Opens and returns an output stream for a connection.
public OutputStream openOutputStream() throws IOException {
return _subConnection.openQutputStream();

}

// Opens and returns a data output stream for a connection.
public DataOutputStream openDataOutputStream() throws IOException {
return _subConnection.openDataQutputStream();

}

// Closes the connection.
public void close() throws IOException {
_subConnection.close();

}

68

Accessing the phone
application

e Using the phone API
e Listening for phone events
e Accessing and managing phone logs

Using the phone API

The phone APl (net.rim.blackberry.api.phone) provides access to advanced features of the phone
application, such as enabling applications to inject DTMF tones into active calls.

g Tip: To simply invoke the phone application and place a phone call, use the invocation API
(net.rim.blackberry.api.invoke). See " Starting BlackBerry applications" on page 75 for more information.

o Note: Check for a ControlledAccessException when your application first accesses the phone API. This runtime
exception is thrown if the system administrator restricts access to the phone API using application control. See "Application
control" on page 12 of the BlackBerry Application Developer Guide Volume 1. Fundamentals for more information.

Retrieve a phone call

To retrieve the active phone call, invoke Phone.getActiveCall(). To retrieve a phone call by call ID,
invoke Phone.getCall().

PhoneCall call = Phone.getActiveCall(Q);

Retrieve phone call information

The PhoneCal1 class provides methods that enable applications to retrieve information about phone
calls. For example, the following code sample checks the length of the call, the status of the call, and
whether it is outgoing before displaying a message that includes the display phone number.

int threshold = 120; // Alert user if outgoing calls last longer than threshold.

int elapsedTime = call.getElapsedTime();

// Use getStatusString() to retrieve status as an string.

int status = call.getStatus();

if ((status == PhoneCall.STATUS_CONNECTED || status ==
PhoneCal1.STATUS_CONNECTING) && call.isOutGoing() && elapsedTime > threshold) {
// Use getCallId() to retrieve the caller ID as as an integer.
String phoneNumber = call.getDisplayPhoneNumber();
Status.show("Your call to " + phoneNumber + " has Tasted more than

(String)threshold + ".");

+

BlackBerry Application Developer Guide

Add DTMF tones

To add a single Dual Tone Multi Frequency (DTMF, or touch-tone) tone to the send queue, invoke
sendDTMFTone (). To add multiple tones to the send queue, invoke sendDTMFTones ().

0 Note: Handhelds play DTMF tones as soon as no other tones are pending, overriding conversations.

Retrieve the send queue for the current call

Invoke getDTMFTones ().

Listening for phone events

Implement the PhoneListener interface and then invoke Phone.addPhoneListener() to register the
phone listener with the system.

To de-register a phone listener, invoke removePhoneListener().
To act on a particular event, implement one of the following methods.

Method Description

callAdded(int callld) This method is invoked when a call is added to a conference call.

callAnswered(int callld) This method is invoked when a user answers a call (user driven).

callConferenceCallEstablished(int callId) This method is invoked when a conference call is established.

callConnected(int callId) This method is invoked when the network indicates a connected event
(network driven).

callDirectConnectConnected(int callld) This method is invoked when a direct-connect call is connected.

callDirectConnectDisconnected(int callIld) This method is invoked when a direct-connect call is disconnected.

callDisconnected(int callld) This method is invoked when a call is disconnected.

callEndedByUser(int callld) This method is invoked when a user ends the call.

callFailed(int callld, int reason) This method is invoked when a call fails.

callHeld(int callId) This method is invoked when a call goes on hold.

callIncoming(int callld) This method is invoked when a new call arrives.

callInitiated(int callid) This method is invoked when an outgoing call is initiated by the handheld.

callRemoved(int callId) This method is invoked when a call is removed from a conference call.

callResumed(int callId) This method is invoked when a held call resumes.

callWaiting(int callid) This method is invoked when a call is waiting.

conferenceCallDisconnected(int callId) This method is invoked when a conference call is ended (all members are

disconnected).

Accessing and managing phone logs

The phone logs API (net.rim.blackberry.api.phone.phonelogs) enables applications to access the
phone application log files. The phone call history consists of call logs, which represent individual phone
calls, grouped into a phone log.

70

6: Accessing the phone application

Retrieve phone logs

The Phonelogs class represents the phone call history. It provides method that enables you to open,
add, delete, or swap call logs.

To retrieve a phone log, invoke PhoneLogs.getInstance() .

PhonelLogs _1logs = PhonelLogs.getInstance();

Retrieve the number of calls in a folder

The phone logs are divided into two folders: FOLDER_NORMAL_CALLS and FOLDER_MISSED_CALLS. To
retrieve the number of calls in a folder, invoke number0fCalls().

int numberO0fCalls = _logs.numberOfCalls(FOLDER_NORMAL_CALLS);

Retrieve a call log

Invoke PhonelLogs.callAt().

You can instantiate two types of call logs: PhoneCal1Log objects, which can only have one participant,
and ConferencePhoneCal1llog objects, which have two or more participants. These objects enable you
to retrieve or change call log information, such as the participants or the date of the call.

PhoneCallLog phoneLog = (PhoneCallLog)_Tlogs.callAt(0);

Retrieve a call participant

The PhoneCal1LogID class identifies participants in phone call log by phone number. Invoke
PhoneCallLog.getParticipant() or ConferencePhoneCalllLog.getParticipantAt() to retrieve
a participant.

PhoneCallLogID participant = phonelLogs.getParticipant();

Add a call log

O Tip: The PhoneCal1LogID constructor strips dashes and other non-numeric characters from phone numbers.

To create a new phone or conference call log, invoke the PhoneCallLog() or
ConferencePhoneCallLog() constructor. Provide as parameters the date, duration, participants and
notes for the call.

Date date = new Date("1000"); // date of call

int duration = 60; // duration of call

PhoneCallLogID callerl = new PhoneCallLogID("555-1234"); // first participant

PhoneCallLogID caller2 = new PhoneCallLogID("555-1235"); // second participant

String notes = "New call."; // notes

ConferencePhoneCallLog conferenceCall = new ConferencePhoneCallLog(date, duration,
PhonelLogs.FOLDER_NORMAL_CALLS, callerl, caller2, notes);

To add this object to the phone log at the next available index, invoke PhonelLogs.addCal1().

71

BlackBerry Application Developer Guide

72

_Tlogs.addCall(conferenceCall);

To replace the call log at a given index with a new call log, invoke PhonelLogs . swapCal1() .

_logs.swapCall(conferenceCall, 0, FOLDER_NORMAL_CALLS);

0 Note: The swapCal1() method deletes the call at the given index.

Delete a call log
Invoke PhoneLogs.deleteCall().

_logs.deleteCall1(0);

Code example

The following code example calculates the time spent on the phone with a given participant.

Example: PhoneLogsDemo.java
/7': ¥

* PhonelLogsDemo. java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.phonelogs;

import net.rim.blackberry.api.phone.phonelogs.*;
import java.lang.¥*;

public class PhoneLogsDemo {
private PhonelLogs _logs;
static public void main(String[] args) {
PhonelLogsDemo phonelLogsDemo = new PhonelLogsDemo();
PhoneCallLogID participant = new PhoneCalllLogID("5551234");
int timeSpokenTo = phonelLogsDemo.findTimeSpokenTo(participant,
PhonelLogs.FOLDER_NORMAL_CALLS);
}
private PhoneLogsDemo() {
_Togs = PhonelLogs.getInstance();
}
public void close() {
}
// Returns the number of seconds spent on the phone with a participant.
public int findTimeSpokenTo(PhoneCallLogID participant,
long folder) {
int numberOfCalls = this._Tlogs.numberOfCalls(folder);
int timeSpokenTo = 0;
PhoneCallLog phoneCalllLog;
ConferencePhoneCalllLog conferencePhoneCalllLog;
for (int i = 0; i < numberOfCalls; i++) {
Object o = _logs.callAt(i, folder);
if (o instanceof PhoneCalllLog) {

6: Accessing the phone application

phoneCallLog = (PhoneCallLog)_logs.callAt(i, folder);

if (phoneCalllLog.getParticipant() == participant)
timeSpokenTo += phoneCallLog.getDuration();
} else {
conferencePhoneCalllLog = (ConferencePhoneCallLog)_Tlogs.callAt(i,
folder);
int participants = conferencePhoneCallLog.numberOfParticipants();
for (int j = 0; j < participants; j++)
if (conferencePhoneCalllLog.getParticipantAt(j) == participant) {
timeSpokenTo += conferencePhoneCallLog.getDuration();
j = participants;
}
3
}

return timeSpokenTo;

73

BlackBerry Application Developer Guide

74

Communicating with
BlackBerry applications

o Starting BlackBerry applications
e Adding menu items to BlackBerry applications
e Code example

Starting BlackBerry applications

The invocation APIs (net.rim.blackberry.api.invoke) enable applications to start standard
BlackBerry applications.

Note: Check fora ControlledAccessException if your application invokes the phone. This runtime exception is thrown
if the system administrator restricts access to the phone application using application control. See “Application control” on
page 12 of the BlackBerry Application Developer Guide Volume 1. Fundamentals for more information.

To start an application, call Invoke.invokeApplication() with the appropriate constant and an
object of the appropriate AppTicationArguments subclass.

Note: Calling Invoke.invokeApplication() results in a process context switch. When the BlackBerry application is
started, your application loses control. When the started application session ends, context might not return to your

application.
Application Constant Class
Address book APP_TYPE_ADDRESSBOOK AddressBookArguments
Calendar APP_TYPE_CALENDAR CalendarArguments
Memo pad APP_TYPE_MEMOPAD MemoArguments
Messages APP_TYPE_MESSAGES MessageArguments
Phone APP_TYPE_PHONE PhoneArguments
Tasks APP_TYPE_TASKS TaskArguments

Q Tips: The BlackBerry Browser is invoked from the browser application API (net.rim.blackberry.api.browser). See
" Display web content in the browser" on page 47 for more information.

The phone API (net.rim.blackberry.api.phone) provides access to advanced features of the phone application. See
" Using the phone API" on page 65 for more information.

The following excerpt from the Restaurants.java code example creates a menu item that invokes the
phone application to call a restaurant.

private Menultem phoneltem = new Menultem(_resources.getString(MENUITEM_PHONE),
110, 12) {

public void run() {
synchronized(store) {
String phoneNumber = phonefield.getText();
if (phoneNumber.length == 0) {
Dialog.alert(_resources.getString(ALERT_NO_PHONENUMBER)) ;
} else {

PhoneArguments call = new PhoneArguments(PhoneArguments.ARG_CALL,
phoneNumber) ;

BlackBerry Application Developer Guide

Invoke.invokeAppTlication(Invoke.APP_TYPE_PHONE, call);

1

Adding menu items to BlackBerry
applications

The application menu item API, in the net.rim.blackberry.api.menuitem package, enables you to
add menu items to BlackBerry applications.

For example, to integrate a customer relationship management application with the BlackBerry address
book application, add a View Sales Order menu item. When users click the View Sales Order menu item,
the application opens with a list of sales orders that the contact has placed.

The ApplicationMenuItemRepository class enables you to add or remove application menu items. It
provides constants that define the application contexts in which a menu item can appear. For example,
the App1icationMenuItemRepository.MENUITEM_MESSAGE_LIST constant specifies that the menu item
appears when the messages screen is open.

The abstract App1icationMenuItem class defines an item that appears in an application menu. To create
a menu item, extend the ApplicationMenuItem class.

Create an application menu item
To create an application menu item, extend the abstract App1icationMenuItem class.

public class SampleMenuItem extends ApplicationMenultem { ... }

Specify the position of the menu item in the menu

You can optionally override the constructor. In the following code sample, the constructor invokes
AppTlicationMenuItem() with an integer that specifies the relative order of the item in the menu (a
higher number means that the menu item appears lower in the menu).

SampTleMenuItem() {
super(20);
}

Specify the menu item text

To specify the text that appears on the menu, implement toStringQ).

public String toString() {
return "Open the Contacts Demo application";

}

Specify menu item behavior
To specify the behavior of the menu item, implement run() .

public Object run(Object context) {
Contact ¢ = (Contact)context; //an error if this doesn't work

76

7: Communicating with BlackBerry applications

if Cc ! null) {
new ContactsDemo().enterEventDispatcher();

} else {
throw new ITlegalStateException("Context is null, expected a Contact
instance");
}

Dialog.alert("Viewing an email message in the email view");
return null;

Register the application menu item

Retrieve the application menu item repository
Invoke ApplicationMenuItemRepository.getInstance().

ApplicationMenultemRepository repository =
ApplicationMenuItemRepository.getInstance();

Define a unique ID
Use the hash of the package name as the unique long ID for the application menu item repository.

Tong ID = Ox7cable23b72a0033L; //hash of com.rim.samples.docs.menuitem

Create your application menu item
Invoke the constructor.

TestApplicationMenultem tami = new TestApplicationMenuIltem();

Add the menu item to the repository
Invoke addMenuItem().

repository.addMenuItem(ApplicationMenultemRepository.MENUITEM_ADDRESSCARD_VIEW,
tami);

Code example

The following code example creates a menu item that appears when a user views a contact in the
address book. When a user clicks the menu item, the Contacts Demo application appears.

Example: DemoAppMenultem.java
/**

* DemoAppTicationMenultem.java
* Copyright (C) 2003 Research In Motion Limited.
% /

package com.rim.samples.docs.menuitem;

import net.rim.device.api.system.*;

import net.rim.device.api.ui.component.Dialog.*;
import net.rim.blackberry.api.menuitem.*;

import javax.microedition.pim.*;

77

BlackBerry Application Developer Guide

import com.rim.samples.docs.contactsdemo.*;

public final class DemoAppMenultem extends Application {
private static long ID = Ox7cable23b72a0033L;
//com.rim.samples.docs.menuitem

public static void main(String[] args) {
DemoAppMenultem app = new DemoAppMenultem();
app.enterEventDispatcher();

DemoAppMenuItem() {
AppTicationMenultemRepository amir =
ApplicationMenuItemRepository.getInstance();
amir.addMenuIltem(ApplicationMenultemRepository.MENUITEM_ADDRESSCARD_VIEW,
new SampleMenuIltem());

private static class SampleMenultem extends ApplicationMenuIltem {
SampleMenultem() {
super(20);
}

public String toString() {
return "Open the Contacts Demo";

}

public Object run(Object context) {
Contact ¢ = (Contact)context; //an error if this doesn’t work
if (¢ !=null) {
new ContactsDemo().enterEventDispatcher();
} else {
throw new ITlegalStateException("Context is null, expected a
Contact instance");
}
net.rim.device.api.ui.component.Dialog.alert("Viewing an email message
in the email view");
return null;

78

Storing persistent data

e Storage options
e Managing persistent data
e Managing custom objects

Storage options

Store data on the handheld in one of the following ways:
e using Mobile Information Device Profile (MIDP) record stores
 using the BlackBerry persistence model

Use the MIDP implementation if you want your application to be portable across multiple devices that
are compatible with the Java™ 2 Platform, Micro Edition (J2ME). If you are writing an application
specifically for BlackBerry handhelds, use the BlackBerry persistence model because it provides a more
flexible and efficient way to store data.

MIDP record store

The javax.microedition.rms package provides the MIDP record store implementation. Persistent
data is stored in RecordStore objects. A record store can be a maximum of 64 KB.

Discrete units of data are called records. A record is an array of bytes that is assigned a unique
identification number.

Create a record store

Invoke openRecordStore(). Specify true to indicate that the record store should be created if it does
not exist.

RecordStore store = RecordStore.openRecordStore("Contacts", true);

o Notes: When an application is deleted from a handheld, all record stores created by that application are also deleted.

Each record store has a unique name within a MIDlet suite. A MIDlet can only access record stores that are created by a
MIDlet in the same suite.

Add a record
Invoke addRecord().

int id = store.addRecord(_data.getBytes(), 0, data.length());

Retrieve a record
To retrieve a record, invoke getRecord(). Provide the record ID as parameter.
byte[] data = new byte[store.getRecordSize(id)];

store.getRecord(id, data, 0);
String dataString = new String(data);

BlackBerry Application Developer Guide

80

Retrieve all records

Open the record store and then retrieve the enumeration.

RecordStore store = RecordStore.openRecordStore("Contacts", false);
RecordEnumeration e = store.enumerateRecords(null, null, false);

The enumerateRecords(RecordFilter filter, RecordComparator comparator, Boolean
keepUpdated) method accepts the following parameters:

Parameter Description

filter This parameter specifies a RecordFilter object to retrieve a subset of record store records (if nu11, all
record store records are returned).

comparator This parameter specifies a RecordComparator object to determine the order in which records are
returned (if nu11, records are returned in an undefined order).

keepUpdated This parameter determines whether the enumeration is kept current with changes to the record store.

BlackBerry persistent storage

There are two main differences between the MIDP record store (RecordStore) and the BlackBerry

persistence model (PersistentStore):

» Data storage: MIDP records store data only as byte arrays. In contrast, the BlackBerry APIs enable
you to save any object format in the persistent store. As a result, searching for stored data is much
faster than in the record model. To store custom object types, the class must implement the
Persistable interface.

 Data sharing: In MIDP, each RecordStore belongs to a single MIDlet suite and a MIDlet can only
access record stores that are created by a MIDlet in the same suite. In the BlackBerry persistence
model, however, data can be shared between applications, at the discretion of the application that

creates the data. Code signing ensures that only authorized applications can access the data.

o Note: The BlackBerry persistence API is available only with BlackBerry handheld software version 3.6 or later. For earlier
versions of handheld software, you must use the MIDP record store.

Conserving storage space

BlackBerry handhelds have limited storage space. You should design your application carefully to
minimize the amount of memory that is required to store persistent data.

On a typical BlackBerry handheld, the storage space not required for standard BlackBerry applications
must be shared between all applications to store user data, including calendar appointments, contacts,
and email messages.

If the handheld is operating with low memory, it might perform the following actions to free memory
space:

o delete old email messages from the handheld

¢ delete calendar appointments that are more than 1 week old from the handheld (if wireless calendar
synchronization is enabled)

If the handheld deletes email messages or calendar appointments because of low memory, the data is
not deleted from the desktop email program.

O Tip: Users can view the current amount of available data storage by clicking Status in the handheld options.

8: Storing persistent data

Backup and restore

The synchronization API, in the net.rim.device.api.synchronization package, enables you to
back up and restore custom persistent data on the handheld. See " Adding support for backing up data"
on page 94 for more information.

Security

By default, applications on the handheld that have been digitally signed by RIM can access your data in
the persistent store. Contact RIM for information on how to control access to your data.

Administrative control

With the BlackBerry Enterprise Server version 3.5 Service Pack 2 or later for Microsoft® Exchange or
BlackBerry Enterprise Server version 2.2 or later for IBM® Lotus® Domino®, system administrators can
use IT policies to control the use of persistent storage by third-party applications.

Administrators can set the IT policy item ALLOW_USE_PERSISTENT_STORE to TRUE or FALSE. By default,
third-party applications are allowed to use persistent storage (ALLOW_USE_PERSISTENT_STORE is TRUE).

o Note: This policy item does not affect the use of the MIDP record store.

Data integrity

To maintain the integrity of data in persistent storage, partial updates are not made if an error occurs
during a commit.

o Note: Data integrity can be compromised when the VM performs an emergency garbage collection due to low memory. In
this case, outstanding transactions are committed immediately. If the handheld fails during this operation, the partially
completed transactions are committed when the handheld starts. Outstanding transactions are not committed during
normal garbage collection

Managing persistent data

Persistent data types

A custom data type can be stored persistently if its class implements the Persistable interface.
The following native data types can also be stored persistently.
* java.lang.Boolean

* java.lang.Byte

* java.lang.Character

* java.lang.Integer

* java.lang.Long

* java.lang.Object

* java.lang.Short

* java.lang.String

* java.util.Vector

* java.util.Hashtable

6 Note: When you persist an object, any persistable objects that it refers to are also persisted.

81

BlackBerry Application Developer Guide

82

Create a persistent database

Each application typically creates a single PersistentObject. This object is the root database of

persistent data and indexes for the application. The application saves data into this PersistentObject.

O Tip: Use a static constructor so that the PersistentObject is created only once, the first time that an object of this class
is created. Each time a process starts, the static blocks that it contains are run again.

Each PersistentObject is identified by a unique Tong key. This key is typically a hash of the fully

qualified package name.

o Note: When an application is deleted from a handheld, all persistent objects created by that application are also deleted.

Create a unique long key

1. Inthe IDE, type a string value, such as com.rim.samples.docs.userinfo.

2. Select this string.

3. Right-click and click Convert ' com.rim.samples.docs.userinfo' to long. The long value appears.

o Tip: Include a comment in your code to indicate the string used to generate the long key.

static PersistentObject store;
static {

store = PersistentStore.getPersistentObject(O0xala569278238dad2L);
}

Store data persistently

To save data to the persistent store, invoke setContents() on a PersistentObject. This method
replaces existing content with the new content. Invoke commit() to save to the persistent store.

6 Note: If an error occurs during a commit, partial updates are not committed. Data in the PersistentObject retains the
values from the last commit in order to preserve data integrity.

String[] userinfo = {username, password};

synchronized(store) {
store.setContents(userinfo);
store.commit();

}

If you have a number of objects that you want to commit to the store, you can commit them in a batch
transaction. To do this, invoke PersistentStore.getSynchObject() to retrieve the persistent store
monitor locking object. Then synchronize on that object, and invoke commit() as necessary. When you
release the synchronization on the monitor object, all your transactions are committed at once. If any
commit in the batch fails, then the entire batch transaction fails. If you invoke forceCommit() while
synchronized on the monitor object, this object is immediately committed and is not part of the batch
transaction.

Retrieve persistent data

Invoke getContents() on a PersistentObject

Perform an explicit cast on the object that is returned by PersistentObject.getContents() to
convert it to your desired format.

8: Storing persistent data

synchronized(store) {
String[] currentinfo = (String[])store.getContents();

if(currentinfo == null) {
Dialog.alert(_resources.getString(APP_ERROR));
} else {

currentusernamefield.setText(currentinfo[0]);
currentpasswordfield.setText(currentinfo[1l]);

o Tip: When an application first accesses a database, it should verify the order of any indexes and recreate the index if a
problem exists. Applications should also be able to identify and correct any problems with corrupt or missing data. See
" Data integrity" on page 81 for more information.

Delete a database

To delete a database, invoke PersistentStore.destroyPersistentObject(). Provide a unique key
for the PersistentObject as a parameter.
o Notes: The PersistentObject is used as the root database for the application. By deleting it, you permanently remove
all persistent data that the application has stored.
If the .cod file that defines a PersistentStore is deleted, all persistent objects created by that .cod are also deleted.

To delete individual data, simply treat the data as normal objects and remove references to it. The data is
garbage collected automatically.

Code example

The Userlnfo.java example demonstrates how to create an application for users to view their current user
name and password, type a new user name and password, and save changes.

Example: Userlnfo.java

/ *ik
* UserInfo.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.userinfo;

import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;

import net.rim.device.api.ui.container.*;

import net.rim.device.api.system.*;

import net.rim.device.api.util.*;

import java.util.¥;

import net.rim.device.api.il8n.*;

import com.rim.samples.docs.baseapp.*;

public class UserInfo extends BaseApp implements UserInfoResource,
KeyListener, TrackwheelListener {

private static PersistentObject store;

83

BlackBerry Application Developer Guide

84

private static ResourceBundle _resources;
private AutoTextEditField usernamefield;
private PasswordEditField passwordfield;
private AutoTextEditField currentusernamefield;
private AutoTextEditField currentpasswordfield;

static {
_resources = ResourceBundle.getBundle(
UserInfoResource.BUNDLE_ID, UserInfoResource.BUNDLE_NAME);
store = PersistentStore.getPersistentObject(0xala569278238dad2L);
}

private Menultem saveltem = new MenuItem(_resources.getString(MENUITEM_SAVE),
110, 10) {
public void run() {
String username = usernamefield.getText();
String password = passwordfield.getText();
String[] userinfo = {username, password};
synchronized(store) {
store.setContents(userinfo);
store.commit();

3
Dialog.inform(_resources.getString(APP_SUCCESS));

usernamefield.setText(null);
passwordfield.setText(null);

1

private Menultem getItem = new MenuItem(_resources.getString(MENUITEM_GET),
110, 11) {
public void run() {
synchronized(store) {
String[] currentinfo = (String[])store.getContents();

if(currentinfo == null) {
Dialog.alert(_resources.getString(APP_ERROR));
} else {

currentusernamefield.setText(currentinfo[0]);
currentpasswordfield.setText(currentinfo[1]);

};

public static void main(String[] args) {
UserInfo app = new UserInfo(Q);
app.enterEventDispatcher();

}

public UserInfo() {
MainScreen mainScreen = new MainScreen();
mainScreen.setTitle(new LabelField(
_resources.getString(APPLICATION_TITLE)));

usernamefield = new AutoTextEditField(

8: Storing persistent data

_resources.getString(FIELD_NAME), "");
passwordfield = new PasswordEditField(
_resources.getString(FIELD_PASSWORD), "");
currentusernamefield = new AutoTextEditField(
_resources.getString(FIELD_CURRENTNAME), "");
currentpasswordfield = new AutoTextEditField(
_resources.getString(FIELD_CURRENTPASSWORD), "");

SeparatorField separator = new SeparatorField();

mainScreen.add(usernamefield);
mainScreen.add(passwordfield);
mainScreen.add(separator);
mainScreen.add(currentusernamefield);
mainScreen.add(currentpasswordfield);
mainScreen.addKeyListener(this);
mainScreen.addTrackwheelListener(this);
pushScreen(mainScreen);

}

public void makeMenu(Menu menu, int instance) {
menu.add(saveltem);
menu.add(getItem);
super.makeMenu(menu, 0);

}

public void onExit() {
Dialog.alert(_resources.getString(APP_EXIT));

B

Managing custom objects

Create a database

Create a Vector object to store multiple objects. Create a PersistentObject as the root database of
your application.

private static Vector _data;
PersistentObject store;
static {
store = PersistentStore.getPersistentObject(Oxdec6a67096f833cL);
//key is hash of test.samples.restaurants
_data = (Vector)store.getContents();
synchronized (store) {
if (_data == null) {
_data = new Vector();
store.setContents(_data);
store.commit();

85

BlackBerry Application Developer Guide

86

Store data persistently

Objects that implement the Persistable interface are persistent.

The following code sample implements the Persistable interface as an inner class. It defines an
Object array with four elements to store a restaurant name, address, phone number, and specialty, and
methods to retrieve and set values for Object elements.

6 Note: A class must explicitly implement Persistable for objects of the class to be saved persistently. This requirement
applies even to subclasses. For example, if class A implements Persistable, and it has a subclass B, objects of subclass B
cannot be stored persistently unless class B also implements Persistable.

private static final class RestaurantInfo implements Persistable {
private String[] _elements;
public static final int NAME = 0;
public static final int ADDRESS = 1;
public static final int PHONE = 2;
public static final int SPECIALTY = 3;
public RestaurantInfo() {
_elements = new String[4];
for (int i = 0; i < _elements.length; ++i) {
_elements[i] = new String("");
}
}
public String getElement(int id) {
return _elements[id];

}
public void setElement(int id, String value) {
_elements[id] = value;

}

Create expandable objects

Use the following strategies to allow you to add fields to your objects:
¢ Store Boolean values as bits in an int. Reserve extra bits for future use.

» Store Strings directly, but use a vector or hashtable of key/value pairs so that additional (or
seldom-used fields) can be added.

e If you have indexes on a table, store them in a vector or array so that you can add further indexes.

Save an object

Define an object

The following code sample creates a RestaurantInfo object, and uses its set methods to define its
components.

RestaurantInfo info = new RestaurantInfo();
info.setETement(RestaurantInfo.NAME, namefield.getText());
info.setETement(RestaurantInfo.ADDRESS,addressfield.getText());
info.setETement(RestaurantInfo.PHONE, phonefield.getText());
info.setETement(RestaurantInfo.SPECIALTY, specialtyfield.getText());

8: Storing persistent data

Add the object to a vector

Invoke addETement ().

_data.addElement(info);

Save the updated data
Invoke setContents() and commit() on the PersistentObject to save the updated data.

synchronized(store) {
store.setContents(_data);
store.commit();

O Tip: Synchronize on the persistent object when you make changes so that other threads cannot make changes to the object
at the same time.

Retrieve an object
To retrieve the most recently saved object, invoke _data.lastElement() .

public void run() {
synchronized(store) {

_data = (Vector)store.getContents();

if (!_data.isEmpty()) { RestaurantInfo info =
(RestaurantInfo)_data.lastETement();
namefield.setText(info.getElement(RestaurantInfo.NAME));
addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));
phonefield.setText(info.getElement(RestaurantInfo.PHONE));
specialtyfield.setText(info.getETement(
RestaurantInfo.SPECIALTY));

Code example

The Restaurants.java code example demonstrates how to create an application that enables users to
store information about a favorite restaurant.

This code example enables users to save information about multiple restaurants and view information
about the most recently saved restaurant.

Example: Restaurants.java

/:': %

* Restaurants.java

* Copyright (C) 2004 Research In Motion Limited.
*/

package com.rim.samples.docs.restaurants;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;

import net.rim.device.api.system.*;

87

BlackBerry Application Developer Guide

import net.

rim.device.api.util.*;

import java.util.¥*;

import net
import net.
import net.
import com.

.rim.device.api.il8n.*;

rim.blackberry.api.invoke.*;
rim.blackberry.api.browser.*;
rim.samples.docs.baseapp.*;

public class Restaurants extends BaseApp implements RestaurantResource,
KeyListener, TrackwheellListener {

private
private
private
private
private

private
private

private

private

AutoTextEditField namefield;
AutoTextEditField addressfield;
EditField phonefield;

EditField websitefield;
EditField specialtyfield;

static Vector _data;
static PersistentObject store;

static ResourceBundle _resources;

MenuItem saveItem = new MenuItem(_resources.getString(MENUITEM_SAVE),

110, 10) {
public void run(Q) {

};

private
110, 11)

RestaurantInfo info = new RestaurantInfo();

info.setETlement(RestaurantInfo.NAME, namefield.getText());
info.setETlement(RestaurantInfo.ADDRESS, addressfield.getText());
info.setElement(RestaurantInfo.PHONE, phonefield.getText());
info.setElement(RestaurantInfo.WEBSITE, phonefield.getText());
info.setElement(RestaurantInfo.SPECIALTY,
specialtyfield.getText());

_data.addETement(info);

synchronized(store) {

store.setContents(_data);

store.commit();
}
Dialog.inform(_resources.getString(APP_SUCCESS));
namefield.setText(null);
addressfield.setText(null);
phonefield.setText("");
websitefield.setText("");
specialtyfield.setText("");

MenuItem getItem = new MenuItem(_resources.getString(MENUITEM_GET),
{

public void run() {

88

synchronized(store) {
_data = (Vector)store.getContents();
if (!_data.isEmpty() {
RestaurantInfo info = (RestaurantInfo)_data.lastElement();
namefield.setText(info.getElement(RestaurantInfo.NAME));
addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));

8: Storing persistent data

phonefield.setText(info.getElement(RestaurantInfo.PHONE));
websitefield.setText(info.getETement(RestaurantInfo.WEBSITE));

specialtyfield.setText(info.getETement(RestaurantInfo.SPECIALTY));
}
}

};

private Menultem phoneltem = new Menultem(_resources.getString(MENUITEM_PHONE),
110, 12) {
public void run() {
synchronized(store) {
String phoneNumber = phonefield.getText();
if (phoneNumber.length() == 0) {
Dialog.alert(_resources.getString(ALERT_NO_PHONENUMBER)) ;
} else {
PhoneArguments call = new
PhoneArguments (PhoneArguments.ARG_CALL, phoneNumber);
Invoke.invokeApplication(Invoke.APP_TYPE_PHONE, call);
}

}
};
private Menultem browserItem = new
MenuItem(_resources.getString(MENUITEM_BROWSER), 110, 12) {
public void run() {
synchronized(store) {
String websiteUr]l = websitefield.getText();
if (websiteUrl.length() == 0) {
Dialog.alert(_resources.getString(ALERT_NO_WEBSITE));
} else {
BrowserSession visit = Browser.getDefaultSession();
visit.displayPage(websiteUrl);

}
3
static {
_resources = ResourceBundle.getBundle(
RestaurantResource.BUNDLE_ID,
RestaurantResource.BUNDLE_NAME) ;
store = PersistentStore.getPersistentObject(0xdec6a67096f833cL);
// Key is hash of test.samples.restaurants.
synchronized (store) {
_data = (Vector)store.getContents();
if (_data == null) {
_data = new Vector();
store.setContents(_data);
store.commit();

}

public static void main(String[] args) {

89

BlackBerry Application Developer Guide

Restaurants app = new Restaurants();
app.enterEventDispatcher();

}

private static final class RestaurantInfo implements Persistable {

// Data.
private String[] _elements;

// Fields.

public static final int NAME = O;
public static final int ADDRESS =
public static final int PHONE = 2;
public static final int WEBSITE = 3;
public static final int SPECIALTY = 4;

1;

public RestaurantInfo() {
_elements = new String[4];
for (int i = 0; i < _elements.length; ++i) {
_elements[i] = new String("");

}
}

public String getElement(int id) {
return _elements[id];

}

public void setElement(int id, String value) {
_elements[id] = value;
}
}

public Restaurants() {
MainScreen mainScreen = new MainScreen();
mainScreen.setTitle(new LabelField(
_resources.getString(APPLICATION_TITLE)));
namefield = new AutoTextEditField(
_resources.getString(FIELD_NAME), "'");
addressfield = new AutoTextEditField(
_resources.getString(FIELD_ADDRESS), "");
phonefield = new EditField(
_resources.getString(FIELD_PHONE), "", Integer.MAX_VALUE,
BasicEditField.FILTER_PHONE) ;
websitefield = new EditField(
_resources.getString(FIELD_WEBSITE), "", Integer.MAX_VALUE,
BasicEditField.FILTER_URL);
specialtyfield = new EditField(
_resources.getString(FIELD_SPECIALTY), "",
Integer.MAX_VALUE, BasicEditField.FILTER_DEFAULT);

mainScreen.add(namefield);
mainScreen.add(addressfield);
mainScreen.add(phonefield);
mainScreen.add(websitefield);
mainScreen.add(specialtyfield);
mainScreen.addKeylListener(this);

90

8: Storing persistent data

mainScreen.addTrackwheellListener(this);
pushScreen(mainScreen);

}

public void makeMenu(Menu menu, int instance) {
menu.add(saveltem);
menu.add(getItem);
menu.add(phoneItem);
menu.add(browserItem);
super.makeMenu(menu, instance);

b
public void onExit() {

Dialog.alert(_resources.getString(APP_EXIT));
b

91

BlackBerry Application Developer Guide

92

Backing up and restoring
persistent data

e Synchronization API
e Adding support for backing up data

Synchronization API

The synchronization API, in the net.rim.device.api.synchronization package, enables your
application to integrate with the BlackBerry Desktop Software to perform two tasks:

e back up a database to a desktop file and restore it later
* synchronize data with a desktop application

O Tip: The BlackBerry Desktop Software requires that backup data use the following format:
Length<2> Type<l> Data<n>

To ensure that the data is in the appropriate format, use one of the write methods in the
net.rim.device.api.synchronization.ConverterUtilities class.

Data backup

The BlackBerry Desktop Software provides a Backup and Restore tool that enables users to save
handheld data to a file on their desktop, and use this file to restore data to the handheld.

When an application implements the synchronization API, the desktop software backs up and restores
the application database along with the other handheld databases. You can also use the synchronization
API to create data archives or to populate application databases when the handheld first connects to the
computer.

Data synchronization

The desktop software provides an Intellisync tool to synchronize the handheld with the applications on
the user computer.

Where backup and restore performs a bulk load of data between the handheld and a desktop backup
file, synchronization compares the data that exists in a desktop application with the data on the
handheld to merge the data.

To synchronize data with a desktop application, write a plug-in for the desktop software using the
BlackBerry Desktop API. The BlackBerry JDE also includes a sample synchronization application with a
desktop plug-in.

o Tip: There are no restrictions on the format that you use to store data for backup. The only requirement is that your
handheld application must read and write data in the same format that is used by your desktop plug-in application.

BlackBerry Application Developer Guide

Synchronization API overview
Implement the following interfaces provided by the synchronization API:

Interface Description

SyncConverter converts data between the SyncObject format required on the handheld and a serialized format required
on the desktop

SyncCollection represents the collection of synchronization objects for an application
SyncObject represents an object that can be backed up and restored to the user computer

The SerialSyncManager class provides access to the handheld synchronization manager, in particular
to register new objects for synchronization.
o Note: To back up and restore a very small amount of data, such as application configuration options, you can extend the

SyncItem class and implement its abstract methods. The SyncItem class implements the SyncCollection,
SyncConverter, and SyncObject interfaces for you.

Adding support for backing up data

To support backup, modify a class that implements the Persistable interface to implement the
SyncObject interface.

Modify the main class for your application to implement the SyncCollection and SyncConverter
interfaces.

Note: The SyncCollection and SyncConverter interfaces can be implemented by the same class or by separate classes,
depending on the design of your application. The following sections explain how to implement these interfaces in the same
class.

Define a unique ID

Define a _uid variable and implement getUID() to return a unique ID to use for synchronization
operations.

Define a constructor

Define a constructor that accepts a unique ID as a parameter and sets the _uid variable to this value.

o Note: Each synchronization object that is stored on the handheld must have an associated ID that is unique to its
application. The UIDGenerator sets this value ID by default.

Register a synchronization collection

In main(), register your SyncCollection with the handheld synchronization manager. Create a
separate project to pass in the init argument when the handheld first starts. See " Create an
initialization project" on page 95 for more information.

public static void main(String[] args) {
boolean startup = false;
for (int i=0; i<args.length; ++i) {
if (args[i].startsWith("init")) {
startup = true;

}

94

9: Backing up and restoring persistent data

if (startup) {
//enable application for synchronization on startup
SerialSyncManager.getInstance().enableSynchronization(new
RestaurantsSync());

} else {
RestaurantsSync app = new RestaurantsSync();
app.enterEventDispatcher();

Create an initialization project

To register a synchronization collection when the handheld starts, create a separate project that acts as
an alternate entry point to your main application. This passes an argument to your application the first
time that the handheld starts so that your application registers only once.

1. In the IDE, create a project.

Right-click the project and click Properties.

Click the Application tab.

In the Project type drop-down list, click Alternate CLDC Application Entry Point.

In the Alternate entry point for drop-down list, click the project that implements synchronization.
In the Arguments passed to field, type init.

Select the Auto-run on startup option.

Select the System module option.

Click OK.

Note: Arguments can be passed to BlackBerry CLDC applications on startup, however, this functionality does not exist
for MIDLet applications.

© © NP U AW

Code example

The RestaurantsSync.java code example demonstrates how to enable desktop software to back up and
restore persistent data for your application. This example modifies the Restaurants.java code example to
implement the synchronization API.

Example: RestaurantsSync.java

/ * %
* RestaurantsSync.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
*/

package com.rim.samples.docs.restaurantssync;

import java.io.*;

import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

95

BlackBerry Application Developer Guide

import java.util.*;
import net.rim.device.api.il8n.*;
import net.rim.device.api.synchronization.¥*;

import com.rim.samples.docs.baseapp.*;

public class RestaurantsSync extends BaseApp implements RestaurantsSyncResource,
SyncCollection, SyncConverter, KeyListener, TrackwheellListener {

private static final long KEY = Oxdec6a67096f833cL;

private AutoTextEditField namefield;
private AutoTextEditField addressfield;
private EditField phonefield;

private EditField specialtyfield;

private static PersistentObject store;

private static Vector _data;

private static ResourceBundle _resources;
private static final int FIELDTAG_NAME = 1;
private static final int FIELDTAG_PHONE = 2;
private static final int FIELDTAG_ADDRESS = 3;
private static final int FIELDTAG_SPECIALTY = 4;

private static RestaurantsSync _instance;

private Menultem saveltem = new Menultem(_resources, MenuItem.SAVE_CLOSE, 110,
10) {
public void run() {
RestaurantInfo info = new RestaurantInfo();
info.setETlement(RestaurantInfo.NAME, namefield.getText());
info.setETlement (RestaurantInfo.ADDRESS, addressfield.getText());
info.setElement(RestaurantInfo.PHONE, phonefield.getText());
info.setElement(RestaurantInfo.SPECIALTY, specialtyfield.getText());
_data.addETlement(info);

synchronized(store) {
store.setContents(_data);
store.commit();
}
Dialog.inform(_resources.getString(APP_SUCCESS));
namefield.setText(null);
addressfield.setText(null);
phonefield.setText("");
specialtyfield.setText("");
}
}
private Menultem getItem = new MenuItem("Get", 110, 11) {
public void run() {
synchronized(store) {
_data = (Vector)store.getContents();
if (!_data.isEmpty()) {
RestaurantInfo info = (RestaurantInfo)_data.lastElement();
namefield.setText(info.getElement(RestaurantInfo.NAME));
addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));
phonefield.setText(info.getElement(RestaurantInfo.PHONE)) ;

96

9: Backing up and restoring persistent data

specialtyfield.setText(info.getETement(
RestaurantInfo.SPECIALTY));

3
3
}
1
static {
_resources = ResourceBundle.getBundle(RestaurantsSyncResource.BUNDLE_ID,
RestaurantsSyncResource.BUNDLE_NAME) ;
store = PersistentStore.getPersistentObject(KEY);
synchronized (store) {
_data = (Vector)store.getContents();
if (_data == null) {
_data = new Vector();
store.setContents(_data);
store.commit();
}
}
b

public static void main(String[] args) {
boolean startup = false;
for (int i=0; i<args.length; ++i) {
if (args[i].startsWith("init")) {
startup = true;
}
}

if (startup) {
// Enable application for synchronization on startup.
SyncManager.getInstance() .enableSynchronization(
RestaurantsSync.getInstance());
} else {
RestaurantsSync app = new RestaurantsSync();
app.enterEventDispatcher();

}

public static RestaurantsSync getInstance() {
if (_instance == null) {
_instance = new RestaurantsSync();
}
return _instance;

}

private static final class RestaurantInfo implements Persistable, SyncObject {
private String[] _elements; // Data.
public static final int NAME = 0;
public static final int ADDRESS = 1;
public static final int PHONE = 2;
public static final int SPECIALTY = 3;
private int _uid;

public int getUID() {

97

BlackBerry Application Developer Guide

return _uid;

}

public RestaurantInfo() {
_elements = new String[4];
for (int i = 0; i < _elements.length; ++i) {
_elements[i] = "";
3
}
public RestaurantInfo(int uid) {
_elements = new String[4];
for (int i = 0; i < _elements.length; ++i) {
_elements[i] = "";
3
_uid = uid;

}

public String getElement(int id) {
return _elements[id];

}

public void setElement(int id, String value) {
_elements[id] = value;
}
}

// SyncConverter methods.
public SyncObject convert(DataBuffer data, int version, int UID)
try {
RestaurantInfo info = new RestaurantInfo(UID);
while(data.available() > 0) {
int Tength = data.readShort();
byte[] bytes = new byte[length];
switch (data.readByte()) {
case FIELDTAG_NAME:
data.readFully(bytes);
//trim null-terminator
info.setETement (RestaurantInfo.NAME,
new String(bytes).trim());
break;
case FIELDTAG_PHONE:
data.readFully(bytes);
info.setElement(RestaurantInfo.PHONE,
new String(bytes).trim());
break;
case FIELDTAG_ADDRESS:
data.readFully(bytes);
info.setElement(RestaurantInfo.ADDRESS,
new String(bytes).trim(Q));
break;
case FIELDTAG_SPECIALTY:
data.readFully(bytes);
info.setElement(RestaurantInfo.SPECIALTY,
new String(bytes).trim(Q));
break;

98

9: Backing up and restoring persistent data

default:
data.readFully(bytes);
break;
3
}
return info;
} catch (EOFException e) {
System.err.printin(e.toString());

}
return null;
}
public boolean convert(SyncObject object, DataBuffer buffer, int version) {
if (version == getSyncVersion()) {
if (object instanceof RestaurantInfo)
{

String name = ((RestaurantInfo)object).getElement(
RestaurantInfo.NAME);
String phone = ((RestaurantInfo)object).getElement(
RestaurantInfo.PHONE);
String address = ((RestaurantInfo)object).getElement(
RestaurantInfo.ADDRESS);
String specialty = ((RestaurantInfo)object).getElement(
RestaurantInfo.SPECIALTY);
buffer.writeShort(name.length()+1);
buffer.writeByte(FIELDTAG_NAME) ;
buffer.write(name.getBytes());
buffer.writeByte(0);
buffer.writeShort(phone.length()+1);
buffer.writeByte(FIELDTAG_PHONE);
buffer.write(phone.getBytes());
buffer.writeByte(0);
buffer.writeShort(address.length()+1);
buffer.writeByte(FIELDTAG_ADDRESS);
buffer.write(address.getBytes());
buffer.writeByte(0);
buffer.writeShort(specialty.length()+1);
buffer.writeByte(FIELDTAG_SPECIALTY);
buffer.write(specialty.getBytes());
buffer.writeByte(0);
return true;
}
}
return false;
B
public void beginTransaction() {
store = PersistentStore.getPersistentObject(KEY);
_data (Vector)store.getContents();

}

public void endTransaction() {
store.setContents(_data);
store.commit();

}

public SyncConverter getSyncConverter() {
return this;

99

BlackBerry Application Developer Guide

}
public String getSyncName() {
return "Restaurant Synchronization Demo";
b
public String getSyncName(Locale Tocale) {
return getSyncName();
}
public int getSyncObjectCount() {
store = PersistentStore.getPersistentObject(KEY);
_data = (Vector)store.getContents();
return _data.size();
}
public SyncObject[] getSyncObjects() {
SyncObject[] array = new SyncObject[_data.size()];
for (int i = _data.size() - 1; i >= 0; --1) {
array[i] = (SyncObject)_data.elementAt(i);

}
return array;
}
public SyncObject getSyncObject(int uid) {
for (int i = _data.size() -1; i>= 0; --1) {
SyncObject so = (SyncObject)_data.elementAt(i);
if (so.getUID() == uid) return so;
}
return null;
B
public int getSyncVersion() {
return 1;
}

public boolean addSyncObject(SyncObject object) {
_data.addElement(object);
return true;

B

public boolean removeAl1SyncObjects() {
_data.removeAllETements();
return true;

}

public void clearSyncObjectDirty(SyncObject object) {
// Not applicable.

b

public boolean isSyncObjectDirty(SyncObject object) {
return false;

}

public boolean removeSyncObject(SyncObject object) {
return false;

b

public void setSyncObjectDirty(SyncObject object) {

}

public boolean updateSyncObject(SyncObject oldObject, SyncObject newObject) {
return false;

B

public RestaurantsSync() {
MainScreen mainScreen = new MainScreen();
mainScreen.setTitle(new LabelField(

_resources.getString(APPLICATION_TITLE)));
namefield = new AutoTextEditField(_resources.getString(FIELD_NAME), "");

100

9: Backing up and restoring persistent data

addressfield = new AutoTextEditField(_resources.getString(FIELD_ADDRESS),
"");
phonefield = new EditField(
_resources.getString(FIELD_PHONE), "", Integer.MAX_VALUE,
BasicEditField.FILTER_PHONE);
specialtyfield = new EditField(_resources.getString(FIELD_SPECIALTY), "",
Integer.MAX_VALUE, BasicEditField.FILTER_DEFAULT);
mainScreen.add(namefield);
mainScreen.add(addressfield);
mainScreen.add(phonefield);
mainScreen.add(specialtyfield);
mainScreen.addKeyListener(this);
mainScreen.addTrackwheelListener(this);
pushScreen(mainScreen);
}
public void makeMenu(Menu menu, int instance) {
menu.add(saveltem);
menu.add(getItem);
super.makeMenu(menu, instance);
}
public void onExit() {
Dialog.alert(_resources.getString(APP_EXIT));
B

101

BlackBerry Application Developer Guide

102

Accessing setup and
configuration information

¢ Service book API

Service book API

The service book APl (net.rim.device.api.servicebook) enables handheld applications to interact
with the BlackBerry infrastructure. The service book consists of service records, each of which defines a
service that can be enabled on a handheld.

Service records define the communication protocol (WAP or IPPP), network gateway, and configuration
information such as browser settings.

The service book API enables applications to perform the following functions:

* Manage Mobile Data Service connections: The browser application API can connect to the wireless
network using any ServiceBook entry with a UID of BrowserConfig. For example, the Browser
class uses the service book to retrieve a BrowserSession. Browser.getTransportUid() queries
the service book to retrieve the UID associated with a given service record.

e Manage mail information: The mail API enables applications to specify a channel through which to
send e-mail by referencing the appropriate service record. For example, applications can choose to
send email via a BlackBerry Enterprise Server or a BlackBerry Internet Email Service. See " BlackBerry
mail API" on page 11 for more information.

To view the service book on handhelds, users click Service Book under the handheld options.

The ServiceBook class maintains a collection of ServiceRecord objects. Each ServiceRecord object
is identified by a unique ID (UID) and connection ID (CID).

CID

CMIME

ALP

IPPP
BrowserConfig
Sync

WAP

CICAL

Service record
Desktop [CMIME]

Desktop [ALP]
Desktop [IPPP]

Desktop [CICAL]

Description

The compressed multipurpose mail extensions (CMIME) CID defines email connections.

The address lookup protocol (ALP) CID defines connections for wireless Global Address List searches.
The IP Proxy Protocol (IPPP) CID defines HTTP connections using Mobile Data Service.

The browser configuration (BrowserConfig) CID defines BlackBerry and WAP browser connections.
The data synchronization (Sync) CID defines connections for wireless data synchronization.

The wireless application protocol (WAP) CID defines WAP gateway connections.

The compressed iCalendar (CICAL) CID defines connections for wireless calendar synchronization.

Description

This service record contains information required to send email messages using the desktop and
perform other functions, such as wireless email reconciliation.

This service record contains information required to perform wireless Global Address Book searches.

This service record contains information that is required to use and browse the Internet using
Mobile Data Service.

This service record contains information that is required to perform wireless calendar operations.

BlackBerry Application Developer Guide

104

Service record
Desktop [BrowserConfig]
Web Client [CMIME]

WAP Secure Transport
[WAP]

WAP Browser
[BrowserConfig]

Description
This service record contains configuration information for the BlackBerry Browser.

This service record contains information required to send messages and perform functions (for
example, wireless email reconciliation) using the BlackBerry Internet Email Service.

This service record contains information that is required to connect to a service provider's Wireless
Application Protocol (WAP) gateway.

This service record contains configuration information for the WAP Browser.

Desktop [Sync]

This service record contains information that is required to perform data synchronization.

Listen for service book events

Implement the GlobalEventListener interface (in the net.rim.device.api.system package). To
specify the actions to perform when a global event is received, implement
GlobalEventListener.eventOccurred().

To register the global event listener, invoke
Application.addGlobalEventListener(GlobalEventListener).

The ServiceBook class defines the following global events, identified by global unique identifiers

(GUID).

GUID
GUID_SB_ADDED
GUID_SB_BR_END

Description
The GUID for the global event that is sent when a service book is added.
The GUID for the global event that is sent when service book backup-restore ends.

GUID_SB_BR_START

The GUID for the global event that is sent when service book backup-restore starts.

GUID_SB_CHANGED

The GUID for the global event that is sent when a service book is changed.

GUID_SB_OTA_SWITCH

GUID_SB_OTA_UPDATE

GUID_SB_REMOVED

The GUID for the global event that is sent when all service records are inserted due to a move
BlackBerry Enterprise Server command over the air.

The GUID for the global event that is sent when all service records are updated for a UID over the
air.

The GUID for the global event that is sent when a service book is deleted.

Managing notifications

* Notification API

e Adding an event

e Responding to events

e Customizing system notifications

Notification API

The notification APl (net.rim.device.api.notification) enables you to add custom events for your
application and define the type of notification that users receive when custom events occur.

Note: Check for a ControlledAccessException when your application first accesses the notification API. This runtime
exception is thrown if the system administrator restricts access to the notification API using application control. See
"Application control” on page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more
information.

There are two types of notification events:
* Immediate events: system notification, such as flashing LED, vibration, or tune
« Deferred events: application-specific notification, such as a user interface

With immediate events, the handheld provides notification to the user as soon as the event occurs, using
a system notification, such as a flashing LED, vibration, or tune. An application cannot request a specific
type of notification. In the handheld profiles list, users control how they receive notification of
immediate events by choosing an active profile and setting profile options. To add custom system
notifications for immediate events, implement the Consequence interface.

With deferred events, the handheld schedules events in a queue according to their priority. When the
event occurs, applications that are affected by the event can provide a custom notification to the user,
typically by displaying a user interface element such as a dialog box. To listen for deferred events,
implement the NotificationsEnginelListener interface. The handheld does not provide system-wide
notification for deferred events.

Adding events

Register a new event source

Create a unique long ID
Define a Tong ID for each notification event.

public static final long ID_1 = Oxdc5bf2f81374095L;

O Tip: Use the IDE to convert a String to a Tong to create a similar identifier for your application:
1. In the IDE text pane, type a string.
2. Select the string, right-click and click Convert "string" to Long.

BlackBerry Application Developer Guide

106

Define a source object
Define an object that provides the source for the event. This object must implement toString(), which
returns the string to display in the profiles list.

Object event = new Object() {
public String toString() {
return "Notification Demo";

}

Register your application as a notification source

To add your application to the handheld profiles list as the source of an event, invoke
NotificationsManager.registerSource(). In this method, specify a unique event ID, the source
object, and the notification level.

Notification level sets the priority of the event, which determines the order in which deferred events
occur. The levels, in order from highest to lowest priority, are as follows:

* NotificationsConstants.CRITICAL

* NotificationsConstants.SENSITIVE

* NotificationsConstants.IMPORTANT

* NotificationsConstants.DEFAULT_LEVEL

* NotificationsConstants.CASUAL

o Note: The priority level applies to deferred events only. Immediate events occur as soon as they are triggered.

When you trigger a deferred event, you specify an expiry time. The user might not receive notification of a lower-priority
event, if the event expires before higher-priority events complete.
Create a library project

To register an event source, create a library project with 1ibMain () to perform the registration when the
handheld starts.

1. In the IDE, create a project.

Right-click the project and click Properties.
Click the Application tab.

In the Project type drop-down list, click Library.
Select the Auto-run on startup option.

Click OK.

Define 1ibMain Q.

public static final long ID_1 = Oxdc5bf2f81374095L;
public static final Object event = new Object() {
public String toString() { return "Sample Notification Event #1"; }

N o U AW

1

public static void 1ibMain(String[] args) {
NotificationsManager.registerSource(ID_1, event,
NotificationsConstants.CASUAL);

11: Managing notifications

Trigger an immediate event

Invoke triggerImmediateEvent(). Immediate events are indicated by standard system notifications,
such as tune, vibration, or LED.

NotificationsManager.triggerImmediateEvent(ID_1, 0, this, null);

The triggerImmediateEvent method accepts the following parameters:

Parameter Description

sourceID identifier of the application that starts the event (as specified when you invoked registerSource())
eventID application-specific event identifier

eventReference application-specific event cookie

context optional context object

In most cases, do not use immediate events because the handheld event notification does not
adequately indicate to the user what has happened. For example, if the handheld vibrates, it would be
difficult for the user to know whether an event has occurred in your application, or whether a new email
message has arrived. If you do use immediate events, consider implementing a custom notification, such
as a particular tune, to distinguish your application events from other handheld events. See

" Customizing system notifications" on page 112 for more information.

Trigger a deferred event

Invoke negotiateDeferredEvent(). A deferred event enables your application to notify the user with
a user interface element, such as a dialog box.

NotificationsManager.negotiateDeferredEvent(ID_1, 0, this, -1,
NotificationsConstants.MANUAL_TRIGGER, null);

The negotiateDeferredEvent() method accepts the following parameters:

Parameter Description

sourcelID identifier of the application that starts the event (as specified when you invoked registerSource())

eventID application-specific event identifier

eventReference application-specific event cookie

timeout event expiry time, in milliseconds, relative to time when the method is invoked (the timeout is ignored
unless the trigger is OUT_OF_HOLSTER_TRIGGER)

trigger eitherNotificationsConstants.OUT_OF_HOLSTER_TRIGGER, which specifies that the event occurs when

the handheld is disconnected from the computer; or NotificationsConstants.MANUAL_TRIGGER, which
specifies that the application itself triggers this event

context optional object that can store additional, arbitrary parameters to control the state or behavior of an event
notification

If you invoke negotiateDeferredEvent(), your application must implement the
NotificationEventListener to receive events and respond appropriately. See " Responding to
events" on page 110 for more information.

Cancel an event

Cancel an immediate event
Invoke cancelImmediateEvent(), and specify the source and event IDs.

107

BlackBerry Application Developer Guide

NotificationsManager.cancelImmediateEvent(ID_1, 0, this, null);

Cancel a deferred event

Invoke cancelDeferredEvent() and specify the source and event ID.

NotificationsManager.cancelDeferredEvent(ID_1, 0, this,
NotificationsConstants.MANUAL_TRIGGER, null);

Cancel all deferred events

Invoke cancelA11DeferredEvents() to cancel all deferred events that your application started.

NotificationsManager.cancelAl1DeferredEvents(ID_1,
NotificationsConstants.MANUAL_TRIGGER, null);

o Tip: If you invoke negotiateDeferredEvent () and do not specify a timeout, you must invoke cancelDeferredEvent()
to cancel the event, or the event never expires.

Code example

Example: NotificationDemo.java

/ *ik
* NotificationsDemo.java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.
7':/

package com.rim.samples.docs.notifications;

import net.rim.device.api.notification.*;
import net.rim.device.api.ui.*;

import net.rim.device.api.ui.component.¥*;
import net.rim.device.api.ui.container.¥*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

import com.rim.samples.docs.baseapp.*;
public class NotificationsDemo extends BaseApp {

public static final long ID_1 = Oxdc5bf2f81374095L;
private long _eventIdGenerator;
private static Object er;

public static final Object event = new Object() {
public String toString() {
return "Sample Notification Event #1";
}
b

public static void main(String[] args) {
NotificationsManager.registerSource(ID_1, event,
NotificationsConstants.CASUAL);
NotificationsManager.registerConsequence(ConsequenceDemo.ID, new
ConsequenceDemo());
NotificationsDemo app = new NotificationsDemo();

11: Managing notifications

app.enterEventDispatcher();
}

public NotificationsDemo() {
MainScreen mainScreen = new MainScreen();
mainScreen.setTitle("Notification Demo App");
mainScreen.addKeylListener(this);
mainScreen.addTrackwheellListener(this);
NotificationsManager.registerNotificationsEnginelListener(ID_1,

new NotificationsEnginelListenerImpl(this));

pushScreen(mainScreen);

}

private Menultem triggerItem = new MenuItem(null, 0, 100, 10) {
public void run() {
NotificationsManager.triggerImmediateEvent(ID_1, 0, this, null);
}
public String toString() {
return "Trigger event";
}
}

private Menultem deferItem = new MenuItem(null, 0, 100, 10) {
public void run() {
long timeout = -1; // Ignored unless trigger is OUT_OF_HOLSTER_TRIGGER.
int trigger = NotificationsConstants.MANUAL_TRIGGER;
Object er = new Object();
NotificationsManager.negotiateDeferredEvent(ID_1, ++_eventIdGenerator,
er, timeout, trigger, null);
}
public String toString() {
return "Start deferred event";
}
}
private Menultem cancelltem = new MenuItem(null, 0, 100, 10) {
public void run() {
int trigger = NotificationsConstants.MANUAL_TRIGGER;
NotificationsManager.cancelDeferredEvent(ID_1, _eventIdGenerator, er,
trigger, null);
3
public String toString() {
return "Cancel deferred event";
}
b

public void makeMenu(Menu menu, int instance) {
menu.add(triggerItem);
menu.add(deferItem);
menu.add(cancelItem);
super.makeMenu(menu, instance);

}

public void onExit() {
System.exit(0);
}

109

BlackBerry Application Developer Guide

private static class NotificationsEnginelListenerImpl implements
NotificationsEnginelListener {
private UiApplication _app;
public NotificationsEngineListenerImpl(UiApplication app) {
—app = app;
}

public void deferredEventWasSuperseded(long sourceID, Tong eventID,

Object eventReference, Object context) {

final long _eventID = eventID;

er = eventReference;

_app.invokeLater(new Runnable() {
public void run() {

NotificationsManager.cancelDeferredEvent(ID_1, _eventID, er,
NotificationsConstants.MANUAL_TRIGGER, null);

s
}

public void notificationsEngineStateChanged(int stateInt, long sourcelD,
long eventID, Object eventReference, Object context) {
if(stateInt == NotificationsConstants.OUT_OF_HOLSTER_ENGINE_STATE) {
// Perform some action if handheld is removed from holster.
}
if(stateInt == NotificationsConstants.IN_HOLSTER_ENGINE_STATE) {
// Perform some action if handheld is inserted into holster.
}
}

public void proceedWithDeferredEvent(long sourceID, long eventID,
Object eventReference, Object context) {
final long _eventID = eventID;
_app.invokelLater(new Runnable() {
public void run() {
String s = "This event has occurred: + _eventID;
Dialog d = new Dialog(Dialog.D_OK, s, Dialog.OK,
Bitmap.getPredefinedBitmap(Bitmap.INFORMATION), 0);
d.show();

b;

Responding to events

To define custom notification, implement NotificationsEnginelListener and then register it by
invoking negotiateDeferredEvent(). You do not need to implement the listener if you trigger
immediate events, for which the handheld provides standard system notification.

110

11: Managing notifications

Provide a custom Ul notification for deferred events

Implement the NotificationsEnginelListener interface. See the BlackBerry Application Developer
Guide Volume 1: Fundamentals for more information on creating user interfaces.

private static class ListenerImpl implements NotificationsEngineListener {...}

Define behaviour if an event is superseded

Implement deferredEventWasSuperseded(). This method is invoked when the event is superseded by
another event at the same or higher priority level. For example, you could cancel the event if it is
superseded.

public void deferredEventWasSuperseded(long sourceID, Tong eventID, Object
eventReference, Object context) {
final long _eventID = eventID;
er = eventReference;
_app.invokeLater(new Runnable() {
public void run() {
NotificationsManager.cancelDeferredEvent(ID_1, _eventID, er,
NotificationsConstants.MANUAL_TRIGGER, null);
}
b

Define holstering behaviour

Implement notificationsEngineStateChanged(). This method is invoked when the handheld is
inserted in, or removed from, the holster. For example, you could perform a specific action when a
deferred event is scheduled and the handheld is connected to, or disconnected from, the computer.

public void notificationsEngineStateChanged(int stateInt, long sourceID, long
eventID, Object eventReference, Object context) {
if(stateInt == otificationsConstants.OUT_OF_HOLSTER_ENGINE_STATE) {
// perform action if handheld is removed from holster
}
if(stateInt == NotificationsConstants.IN_HOLSTER_ENGINE_STATE) {
// perform action if handheld is inserted into holster

}

Define notification

Implement proceedwithDeferredEvent() to define how to notify the user when the event occurs,
such as by displaying a dialog box. This method is invoked when the listener proceeds with the event (no
other higher priority events are in the queue).

public void proceedWithDeferredEvent(long sourceID, long eventID, Object
eventReference, Object context) {

final long _eventID = eventID;

_app.invokeLater(new Runnable() {
public void run() {
String s = "This event has occurred: + _eventID;
Dialog d = new Dialog(Dialog.D_OK, s, Dialog.OK,
Bitmap.getPredefinedBitmap(Bitmap.INFORMATION), 0);
d.show();

m

BlackBerry Application Developer Guide

_eventHashtable.put(_eventID, d);

b;

Register the notifications listener

Register your listener with the NotificationsManager. Provide as parameters the event source ID of

your application and an instance of the class that implements the NotificationsEnginelListener

interface.

NotificationsManager.registerNotificationsEnginelListener(ID_1, new
ListenerImpl(this));

o Note: You can only register one NotificationsEnginelistener for each application.

Customizing system notifications

112

Implement the Consequence interface to create custom system notifications, such as a particular tune,
for immediate events or to perform other actions when events occur, such as creating a log that counts
the number of notifications received.

o Note: The Consequence interface is used only for immediate events that require system notification. Deferred events
require your application to implement the NotificationsEnginelistener and respond with an application-specific
response

Provide an application on the handheld Home screen to enable users to set notification options.

Respond to notification events

Implement the Consequence and SyncConverter interfaces to respond to notification events. The
Consequence interface defines an application response to notification events. The SyncConverter
interface defines the functionality required to convert data from object to serialized format. It is required
to enable the handheld to back up and restore profile configurations. See " Backing up and restoring
persistent data" on page 89 for more information.

private static class ConsequenceImpl implements Consequence,SyncConverter {...}

Define a unique ID

Define a unique 1D for this consequence.

public static final long ID = 0xbd2350cOdfda2a51L;

Define constants

Declare DATA and TYPE constants for the application. These constants are used when identifying the
type of incoming data from the SyncConverter when convert() is invoked. They are arbitrary
identifiers for data that is appropriate to this application.

private static final int TYPE = 'n' << 24 | 'o' << 16 | 't' << 8 | 'd';

11: Managing notifications

private static final byte[] DATA = new byte[] {'m', 'y', '-', 'c',
'O', Inl! lfl’ l.il, lgl, I_l! lol’ lbl, Ijl! lel’ 'C', ltl};
private static final Configuration CONFIG = new Configuration(DATA);

Create a tune

Create a tune to be played as part of the consequence for event notifications.

private static final short BFlat = 466; //466.16

private static final short TEMPO = 125;

private static final short d16 = 1 * TEMPO;

private static final short dpause = 10; //10 millisecond pause

private static final short[] TUNE = new short[] {BFlat, d16, pause, BFlat};
private static final int VOLUME = 80; //percentage volume

Play a tune from a supported audio format

On handhelds that support standard audio formats, you can also play back an audio file in one of the
following supported formats:

e audio/adpcm

e audio/midi

e audio/x-midi

e audio/mid

BlackBerry handhelds use the Mobile Media APl (javax.microedition.media) to support standard
audio formats.

To determine the supported audio formats at runtime, invoke
Manager.getSupportedContentTypes().

See the javax.microedition.media package in the AP/ Reference for information.

Define a notification

Implement startNotification() to define the notification for this consequence. In the following
code sample, the LED flashes and a tune is played.
public void startNotification(long consequenceID, long sourceID, long eventID,
Object configuration, Object context) {
LED.setConfiguration(500, 250, LED.BRIGHTNESS_50);
LED.setState(LED.STATE_BLINKING);
Alert.startAudio(TUNE, VOLUME);
Alert.startBuzzer (TUNE, VOLUME);

Stop a notification
Implement stopNotification() to stop notification for this consequence.

public void stopNotification(long consequenceID, long sourcelD,
Tong eventID, Object configuration, Object context) {

13

BlackBerry Application Developer Guide

14

LED.setState(LED.STATE_OFF);
Alert.stopAudio();
Alert.stopBuzzer();

Store user profile settings

Implement newConfiguration() to create a new configuration object that stores user profile settings.
This object is passed to the consequence implementation to determine whether the type of consequence
that the user specified is appropriate for the event. The following code sample returns the CONFIG object
that you defined earlier.

public Object newConfiguration(long consequenceID, long sourcelD,
byte profileIndex, int Tevel, Object context) {

return CONFIG;
}

Enable handheld data backup

Implement SyncConverter.convert(). This method is invoked when data is backed up from the
handheld to the user computer. The following sample implementation reads incoming data from the
DataBuffer and applies a four-byte type and length to the raw data.

public SyncObject convert(DataBuffer data, int version, int UID) {
try {
int type = data.readInt();
int length = data.readCompressedInt();
if (type == TYPE) {
byte[] rawdata = new byte[length];
data.readFully(rawdata);
return new Configuration(rawdata);
}
} catch (EOFException e) {
System.err.printin(e);
}

return null;

Enable handheld data restore

Implement SyncConverter.convert(). This method is invoked when data is restored from the user
computer to the handheld.

public boolean convert(SyncObject object, DataBuffer buffer, int version) {
boolean retval = false;
if (object instanceof Configuration) {
Configuration c¢ = (Configuration)object;
buffer.writeInt(TYPE);
buffer.writeCompressedInt(c._data.length);
buffer.write(c._data);
retval = true;

11: Managing notifications

return retval;

Define the notification configuration

Create a class that describes the notification configuration information. The class implements
SyncObject and Persistable. You must implement SyncObject.getUID() but you can return O
because this value is required only for data synchronization, which is not required in this example.

private static final class Configuration implements SyncObject, Persistable {
public byte[] _data;
public Configuration(byte[] data) {
_data = data;

}

public int getUID(Q) {
return 0;

}

Register a consequence

If you create a custom Consequence implementation, register it with the Noti ficationsManager by
invoking registerNotificationsObjects().

NotificationsManager.registerConsequence(ConsequenceImpl.ID, new
ConsequenceImpl1());

To register the consequence when the handheld starts, perform this registration in a library project. See
" Create a library project" on page 106 for more information.

Code example

Example: ConsequenceDemo.java

/ * %
* ConsequenceDemo. java
* Copyright (C) 2001-2004 Research In Motion Limited. A1l rights reserved.

*/
package com.rim.samples.docs.notifications;

import net.rim.device.api.synchronization.¥*;
import net.rim.device.api.notification.*;
import net.rim.device.api.system.*;

import net.rim.device.api.util.*;

import java.io.*;

public class ConsequenceDemo implements Consequence, SyncConverter {

public static final long ID = 0xbd2350cOdfda2a51L;

private static final int TYPE = 'n’ << 24 | 0’ << 16 | 't’ << 8 | ’d’;
private static final byte[] DATA = new byte[] {
lml, lyl’ !_!’ ,C,, lol’ ln!’ !.F!’ !_i!,

115

BlackBerry Application Developer Guide

private static final Configuration CONFIG = new Configuration(DATA);

private static final short BFlat 466; // The actual value is 466.16.
private static final short TEMPO = 125;

private static final short d16 = 1 * TEMPO;

private static final short pause = 10; // 10 millisecond pause.

private static final short[] TUNE = new short[] {BFlat, d16, pause, BFlat};
private static final int VOLUME = 80; // Percentage volume.

public void startNotification(long consequenceID, long sourceID, long eventID,
Object configuration, Object context) {
LED.setConfiguration(500, 250, LED.BRIGHTNESS_50);
LED.setState(LED.STATE_BLINKING);

Alert.startAudio(TUNE, VOLUME);
Alert.startBuzzer(TUNE, VOLUME);
}

public void stopNotification(long consequenceID, Tong sourceID, Tong eventID,
Object configuration, Object context) {
LED.setState(LED.STATE_OFF);
Alert.stopAudio();
Alert.stopBuzzer();
B

public Object newConfiguration(long consequenceID, long sourcelD,
byte profileIndex, int level, Object context) {
return CONFIG;

}
public SyncObject convert(DataBuffer data, int version, int UID) {
try {
int type = data.readInt();

int length = data.readCompressedInt();
if (type == TYPE) {
byte[] rawdata = new byte[length];
data.readFully(rawdata);
return new Configuration(rawdata);
}
} catch (EOFException e) {
System.err.println(e);
}
return null;
b
public boolean convert(SyncObject object, DataBuffer buffer, int version) {
boolean retval = false;
if (object instanceof Configuration) {
Configuration c¢ = (Configuration)object;
buffer.writeInt(TYPE);
buffer.writeCompressedInt(c._data.length);
buffer.write(c._data);
retval = true;

116

11: Managing notifications

return retval;

}

/* Inner class to store configuration profile. */
private static final class Configuration implements SyncObject, Persistable {

public byte[] _data;

public Configuration(byte[] data) {
_data = data;

}

public int getUID() {
return 0;

}

17

BlackBerry Application Developer Guide

18

Managing applications

e Application manager
e Managing code modules
e Managing code modules

Application manager

The virtual machine (VM) on BlackBerry Wireless Handhelds has an application manager that functions
as the central dispatcher of operating system events for other Java applications.

The net.rim.device.api.system.ApplicationManager class enables applications to interact with
the application manager to perform the following actions:

e interact with processes, such as retrieving the IDs for foreground applications

e post global events to the system

¢ lock or unlock the handheld, or determine whether the handheld is locked

e run an application immediately or at a specific time

To use any of the AppTicationManager methods, you must first retrieve a reference to the current
application manager by invoking getAppTicationManager().

ApplicationManager manager = ApplicationManager.getApplicationManager();

Retrieve information about applications

Retrieve information about running processes by invoking getVisibleApplications() on the
AppTlicationManager class. For example you could write an system administration application that
audits the state of the handheld to determine how long users spend using each application.

To retrieve an array of App1icationDescriptor objects for visible applications that are running, invoke
getVisibleApplications().AnApplicationDescriptor object contains descriptive information for
the application, such as its name, icon, position on the Home screen, and resource bundle. Use
ApplicationDescriptor methods to retrieve this information. For example, to retrieve the name of a
running application, invoke getName () on an application descriptor.

ApplicationManager manager = ApplicationManager.getApplicationManager();
ApplicationDescriptor descriptors[] = manager.getVisibleApplications();
// retrieve the name of a running application

String appnamel = descriptors[0].getName();

To retrieve an ApplicationDescriptor for the current application, invoke
AppTlicationDescriptor.currentApplicationDescriptor().

ApplicationDescriptor descriptor =
ApplicationDescriptor.currentApplicationDescriptor();
String appname = descriptor.getName();

BlackBerry Application Developer Guide

120

Post a global event

Use ApplicationManager.postGlobalEvent() as a basic mechanism to communicate with other
processes.
Tip: You can also send and receive messages between processes using the runtime store. See " Sharing runtime objects
between applications" on page 125 for more information.
To post a global event to a particular application, invoke postGlobalEvent(int processId, Tlong
guid, int dataO, int datal, Object objectO, Object objectl).
The processID parameter specifies the ID of the process to which to post the event. To retrieve a
process ID, invoke getProcessId(ApplicationDescriptor). The guid parameter specifies a global

unique identifier (GUID) for the event. The data and object parameters specify additional information
for the event.

To post a global event to all applications, use one of the following forms of postGlobalEvent():

Method signature Description
boolean postGlobalEvent(Tong guid) posts a global event with a unique identifier
boolean postGlobalEvent(Tong guid, int data0, int datal) postsa global event with additional data

abstract boolean postGlobalEvent(long guid, int data0, posts a global event with additional integer and object
int datal, Object object0, Object objectl) data

Receive a global event

To receive a global event, implement the net.rim.device.api.system.GlobalEventListener
interface and GlobalEventListener.eventOccurred(), which is invoked when a global event occurs.
In its implementation of eventOccurred(), the application specifies which actions to perform when a
global event is received.

Register the GlobalEventListener by invoking
Application.addGlobalEventListener(GlobalEventListener).

Lock the handheld

To determine whether a handheld is locked, invoke App1icationManager.isSystemLocked().
To lock a handheld, invoke ApplicationManager.lockSystem(true).

If the user has set a password, the lock screen appears and the user must type this password to use the
handheld again. If a password is not set, the keyboard lock screen appears and the user must double-
click the trackwheel to use the handheld again.

To unlock a handheld, invoke App1icationManager.unlockSystem(true).

Run an application with different arguments

Create a new application descriptor
Use the existing ApplicationDescriptor as a template. Specify the arguments to use in mainQ).

ApplicationDescriptor template =
ApplicationDescriptor.currentApplicationDescriptor();

String[] args = { "admin", "secure" };

ApplicationDescriptor newdescriptor = new ApplicationDescriptor(template, args);

12: Managing applications

The ApplicationDescriptor constructor has two other forms:

Method signature Description
AppTlicationDescriptor(ApplicationDescriptor This form of the constructor enables you to specify a name for the
original, String name, String[] args) new ApplicationDescriptor
ApplicationDescriptor(ApplicationDescriptor This form of the constructor enables you to specify a name, and
original, String name, String[] args, Bitmap initial settings, including an application icon, a Home screen
icon, int position, String nameResourceBundle, position, and the resource bundle and ID to use for the application
int nameResourceld) title

Run the application
Run the application using a new ApplicationDescriptor object.
ApplicationManager appmanager = ApplicationManager.getApplicationManager();
try {
appmanager.runApplication(newdescriptor);
} catch(ApplicationManagerException) {
//handle error

}

The runApplication() method creates a new process and invokes the exported main() method in the
specified descriptor, using its arguments. The new process moves to the foreground if possible.

Run an application at a specified time

Invoke scheduleApplication() instead of runApplication().

try {
appmanager.scheduleApplication(newdescriptor, 1728000, false);

} catch(ApplicationManagerException) {
//handle error

}

The scheduleApplication() method requires the following parameters:

* an ApplicationDescriptor object

¢ time at which to start the application, in milliseconds

e aBoolean value, where true indicates that the time is absolute (calculated from midnight, January
1, 1970 UTC) and false indicates that the time is relative to midnight local time

6 Note: The application does not run if the handheld is restarted or turned off before the specified time.

Managing code modules

The CodeModuTeManager class, in the net.rim.device.api.system package, enables you to retrieve
information about and manage code modules on the handheld.

A code module is a .cod file, the compiled archive of a single project in the IDE. To view a list of third-
party applications installed on handhelds, in the handheld options, click Applications. Click the
Properties menu item to view information about each application.

121

BlackBerry Application Developer Guide

122

Retrieve module information

The CodeModuleManager class provides methods that enable applications to retrieve information about
code modules on the handheld, such as the name, type, description, version, and creation date.

To retrieve a handle for the module, invoke getModuleHandl1e (). Provide as a parameter the name of
the code module.

int handle = CodeModuleManager.getModuleHandle("test_module");

Invoke methods of the CodeModuleManager class to retrieve specific information. Provide the module
handle as a parameter to these methods.

String name = CodeModuleManager.getModuleName(handle);

String vendor = CodeModuleManager.getModuleVendor(handle);

String description = CodeModuleManager.getModuleDescription(handle);
int version = CodeModuleManager.getModuleVersion(handle);

int size = CodeModuleManager.getModuleCodeSize(handle);

int timestamp = CodeModuleManager.getModuleTimestamp(handle);

Retrieve an array of handles

To retrieve an array of handles for all existing modules on the handheld, invoke getModuTleHandles().

int handles[] = CodeModuleManager.getModuleHandles();

String name = CodeModuleManager.getModuleName(handles[0]);

The net.rim.device.api.system.CodeModuleManager class provides methods for creating, saving,
and deleting code modules. These capabilities enable an application on the handheld to receive .cod
files wirelessly.

Code module manager methods

Method Description

int handle = This method retrieves the handle of the module in which

CodeModuleManager.getModuleHandleForObject(anObject); an object class is defined

boolean Tibrary = CodeModuleManager.isLibrary(handle); This method determines whether a module is a library.
This method returns true if the module is a library or
false if the module is an application.

int size = CodeModuleManager.getModuleHandleForObject(This method determines the size, in bytes, of the code
anObject); that a module contains.

AppTlicationDescriptor descriptors[] = This method retrieves an array of all descriptors that a
CodeModuleManager.getApplicationDescriptiors(handle); code module contains.

Create a module
Invoke createNewModule() . Provide the size of the module in bytes as a parameter.
int handle = CodeModuleManager.createNewModule(3000);

This method returns the module handle (or O if the module cannot be created).

12: Managing applications

To add data to the module when you create it, invoke the following form of createNewModule().
Provide as parameters the length in bytes of the entire module, a byte array to add to the module, and
the Tength parameter specifies the number of bytes from the byte array to add to the start of the
module.

static int createNewModule(int totalLength, byte[] data, int length);

Write data into a module
Invoke writeNewModule() . Provide a byte array of data as a parameter to this method.

Boolean success = CodeModuleManager.writeNewModule(handle, data, 0, data.length);

o Tip: A module must have the correct format for a .cod file. You can write data into a code module in increments, as long
as you know the offset at which to add data.

Save a module to the handheld database
To save a module to the handheld database, invoke saveNewModule ().

int result = CodeModuleManager.saveNewModule(handle);

The saveNewModuTe () method returns one of the result codes that are defined in the
CodeModuTeManager class, such as CMM_OK if the module is saved successfully.

Delete a module from the handheld database

Invoke deTeteModule(). Provide as parameters the handle of the module to delete and a Boolean value
to specify whether to delete the module and any data it contains or to delete the module only if does not
have any associated data. If the module is in use, it is deleted the next time that the handheld is
restarted.

int handle = CodeModuleManager.getModuleHandle("test_module");
if(handle !'= 0) {
Boolean success = CodeModuleManager.deleteModule(handle, true);

}

123

BlackBerry Application Developer Guide

124

Sharing runtime objects
between applications

* Sharing runtime objects

Sharing runtime objects

BlackBerry handhelds use a runtime store to provide a central location in which applications can share
runtime objects. By default, only applications that have been digitally signed by RIM can access data in
the runtime store. Contact RIM for information on how to control access to your data.

Retrieve the runtime store
Invoke RuntimeStore.getRuntimeStore().

RuntimeStore store = RuntimeStore.getRuntimeStore();

To add or retrieve runtime objects, invoke methods on RuntimeStore.

6 Note: The runtime store is not persistent. If the handheld is restarted, data in the runtime store is lost.

Add a runtime object
Invoke RuntimeStore.put(). Provide as parameters a unique long ID and the object to store.

RuntimeStore store = RuntimeStore.getRuntimeStore();
// create an object and a unique number to identify the object
String msg = "Some shared text";
Tong ID = 0x60ac754bc0867248L;
// put() throws an ITlegalArgumentException if an object with the same ID exists
try {
store.put(ID, msg);
} catch(I1legalArgumentException e) {
// handle exception - an object with the sam

}

Replace a runtime object
Invoke replace().

RuntimeStore store = RuntimeStore.getRuntimeStore();

String newmsg = "Some new text";

try {
// returns the existing object with the specified ID if it exists, or null
// otherwise

BlackBerry Application Developer Guide

Object obj = store.replace(0x60ac754bc0867248L, newmsg);
} catch(ControlledAccessException e) {
// handle exception - insufficient permissions

}

Retrieve a registered runtime object
Invoke RuntimeStore.get(). Provide as a parameter the object ID.

RuntimeStore store = RuntimeStore.getRuntimeStore();
// get() throws a ControlledAccessException if your application does not have read
access to the specified object.
try {
// get() returns the objectm with the specified ID if it exists, or null
// otherwise
Object obj = store.get(0x60ac754bc0867248L);
} catch(ControlledAccessException e) {
//handle exception

}

Retrieve an unregistered runtime object
Invoke RuntimeStore.waitFor() to wait for an object to be registered.

RuntimeStore store = RuntimeStore.getRuntimeStore();
try {

Object obj = store.waitFor(0x60ac754bc0867248L);
} catch(ControlledAccessException e) {

//handle exception - insufficient permissions
} catch(RuntimeException e) {

//handle exception - time out

}

o Note: If the object with the specified ID does not exist, waitFor() blocks for a maximum of MAX_WAIT_MILLIS. The
waitFor() method throws a RuntimeException if the object is not registered by this time.

126

13: Sharing runtime objects between applications

127

Glossary

A

ALX
Application Loader XML

API

application programming interface

APN
Access Point Name

C

CA
Certificate Authority

CDMA
Code Division Multiple Access

CHAP
Challenge Handshake Authentication Protocol

cHTML
Compact Hypertext Markup Language
CLDC

Connected Limited Device Configuration

CPU
central processing unit

D

DES
Data Encryption Standard

DNS
Domain Name System

G

GIF
Graphics Interchange Format

GPRS
General Packet Radio Service

GUI
graphical user interface

GUID
globally unique identifier

H

HTML
Hypertext Markup Language

HTTP
Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol over Secure Socket
Layer

I
i18n
internationalization
IDE
integrated development environment
iDEN
Integrated Digital Enhanced Network

IMEI
International Mobile Equipment Identity

IMSI
International Mobile Subscriber Identity

170
input/output
IP

Internet Protocol

IPPP
IP Proxy Protocol

ISDN
Integrated Services Digital Network

J
J2ME

Java 2 Platform, Micro Edition
J2SE

Java 2 Platform, Standard Edition
JAD

Java Application Descriptor
JAR

Java Archive
JDE

Java Development Environment
JPEG

Joint Photographic Experts Group
JRE

Java Runtime Environment
K
KB

kilobytes
KVM

Kilobyte virtual machine
L
LAN

local area network
LDAP

Lightweight Directory Access Protocol
LTPA

Lightweight Third-Party Authentication
M
MB

megabyte
MHz

megahertz
MIDlet

MIDP application

Glossary

MIDP
Mobile Information Device Profile

MIME
Multipurpose Internet Mail Extensions

MSISDN
Mobile Station ISDN

o

0CSP
Online Certificate Status Protocol

P

PAP
Password Authentication Protocol

PDA
personal digital assistant
PIM

personal information management

PIN
personal identification number

PNG
Portable Network Graphics

R

RAM
random access memory

RRC
Radio Resource Control

RTC
real-time clock

S

SDK
software development kit

SIM
Subscriber Identity Module

SMS
Short Message Service

129

BlackBerry Application Developer Guide

SRAM
static random access memory

SRP
Service Relay Protocol

SSL
Secure Sockets Layer

T

TCP
Transmission Control Protocol

TCP/IP
Transmission Control Protocol/Internet Protocol
TIFF

Tag Image File Format

TLS
Transport Layer Security

U

UDP
User Datagram Protocol

ul
user interface

URI
Uniform Resource Identifier

URL
Uniform Resource Locator

130

uTc
Universal Time Coordinate

\'

VM
virtual machine

w

WAP
Wireless Application Protocol

WBMP
wireless bitmap

WML
Wireless Markup Language
WMLC
Wireless Markup Language Compiled

WTLS
Wireless Transport Layer Security

X

XHTML
Extensible Hypertext Markup Language

XML
Extensible Markup Language

Index

A

addCall(), PhonelLogs class, 71
addElement(), Vector class, 87

addGlobalEventListener(), Application class, 120
addMenultem(), ApplicationMenultemRepository class,

77
addPhonelListener(), Phone class, 70
addRecordStore(), RecordStore class, 79
address book
about, 25
converting to serial formats, 28
creating contacts, 25
importing contacts, 28
invoking, 75
opening Contactlist, 25
removing contacts, 29
retrieving contact information, 27
saving contacts, 27
administrative control
about, 81
APIs
invocation, 75
messaging, 11
notifications, 105
persistence, 79
PIM, 23
service book, 103
synchronization, 93
Application class, addGlobalEventListener(), 120
application descriptor, different arguments, 120
application manager, virtual machine, 119
ApplicationDescriptor class
about, 120
currentApplicationDescriptor(), 120
ApplicationManager class
about, 119
getVisibleApplications(), 119
isSystemLocked(), 120
lockSystem(), 120
postGlobalEvent(), 120
runApplication(), 121
scheduleApplication(), 121
unlockSystem(), 120
ApplicationMenultem class
about, 76
extending, 76

overriding constructor, 76

toString(), 76
ApplicationMenultemRepository class

about, 76

addMenultem(), 77

getlnstance(), 77
applications

auto-run on startup, 95

different arguments, 120

event source, 106

inter-process communication, 120

managing, 119

retrieving information, 119

scheduling, 121

system modules, 95

See also code modules
appointments, See calendar
attachments

about, 19

registering a handler, 20

retrieving contents, 20

retrieving information, 20

sending, 21
audio formats, supported, 113
auto-run, applications, 95

backup
about, 81
implementing, 93
supporting, 94
Backup and Restore
about, 93
BlackBerry applications
adding menu items, 76
starting, 75
Boolean data type, persistence, 81
browser
about, 47
API overview, 47
Browser class
getDefaultSession(), 47
getSession(), 47
browser content
filtered, 64
retrieving, 51

BlackBerry Application Developer Guide

browser fields, about, 48
browser sessions, retrieving, 47
BrowserContentProvider class
about, 58
getAccept(), 59
getSupportedMIMETypes(), 59
BrowserContentProvider interface
getBrowserContent(), 59
BrowserField class, finishLoading(), 51
BrowserPageContext interface, about, 59
BrowserSession class, displayPage(), 48
Byte data type, persistence, 81

c

calendar
adding appointment information, 37
converting to serial formats, 39
creating a recurring appointment, 38
creating an appointment, 37
invoking, 75
opening a list, 37
retrieving appointment information, 39
saving an appointment, 38
See also PIM

CalendarArguments class, about, 75

call logs
adding, 71
code example, 72
replacing, 71

callAt(), Phonelogs class, 71

cancelAllDeferredEvents(), NotificationsManager class,
108

cancelDeferredEvent(), NotificationsManager class, 108

cancellmmediateEvent(), NotificationsManager class,
107

Character data type, persistence, 81

.cod files, compiled projects, 9

code examples
BasicMail java, 17
BrowserFieldSampleApp.java, 52
BrowserPlugin.java, 60
ConsequenceDemo.java, 115
ContactsDemo.java, 29
DemoAppMenultem.java, 77
DemoOptionsProvider.java, 44
EventDemo.java, 40
NotificationsDemo.java, 108
PhoneLogsDemo.java, 72
Protocol.java, 64
Restaurants.java, 87
RestaurantsSync.java, 95
TaskDemo.java, 35

132

Userlnfo.java, 83
code modules
creating, 121
deleting, 123
methods, 122
retrieving handle arrays, 122
retrieving handles, 122
retrieving information, 121
saving, 123
writing, 123
code signing
about, 5
registering, 8
requesting signatures, 9
verification, 6
CodeModuleManager class
about, 121
createNewModule(), 122
deleteModule(), 123
getApplicationDescriptor(), 122
getModuleHandle(), 122
getModuleHandleForObject(), 122
getModuleHandles(), 122
isLibrary(), 122
saveNewModule(), 123
writeNewModule(), 123
commit(), PersistentObject class, 82
conference calls, about, 71
ConferencePhoneCallLog class
constructor, 71
getParticipantAt(), 71
Consequence class
newConfiguration(), 114
startNotification(), 113
stopNotification(), 113
Consequence interface
about, 112
ContactList class
about, 25
closing, 27
opening, 25
convert(), SyncConverter class, 114
createNewModule(), CodeModuleManager class, 122
.csl files, required signatures, 9
.cso files, optional signatures, 9
currentApplicationDescriptor(), ApplicationDescriptor
class, 120
custom consequences, code example, 115
custom notifications
about, 110
defining, 111
user profile settings, 114

custom objects, managing, 85

D

data

persistent storage, 82
data integrity, 81
data types

persistence, 81
databases, creating persistent, 82
deferred events

cancelling, 108

cancelling all, 108

code example, 108

triggering, 107
deferredEventWasSuperseded(),

NotificationsEngineListener interface, 111
deleteCall(), Phonelogs class, 72
deleteModule(), CodeModuleManager class, 123
deleting, persistent databases, 83
display characteristics, specifying, 59
displayBrowserField(), RenderingApplication class, 48
displayPage(), BrowserSession class, 48
DTMF tones, queueing, 70

E

email, See messaging
enableSynchronization(), SerialSyncManager class, 94
entry points, alternate, 95
enumerateRecords(), RecordStore class, 80
eventOcurred(), GlobalEvent interface, 120
events
adding, 105
calendar, 37
cancelling, 107
global, 120
messaging, 13
phone, 70
service book, 104
triggering deferred, 107
examples
BasicMail java, 17
BrowserFieldSampleApp.java, 52
BrowserPlugin.java, 60
ConsequenceDemo.java, 115
ContactsDemo.java, 29
DemoAppMenultem.java, 77
DemoOptionsProvider.java, 44
EventDemo.java, 40
NotificationsDemo.java, 108
PhonelLogsDemo.java, 72
Protocol.java, 64
Restaurants.java, 87

Index

RestaurantsSync.java, 95
TaskDemo.java, 35
Userlnfo.java, 83

F

file extensions
.cod files, 9
.csl files, 9
.cso files, 9

filtering URLs, 64
finishLoading(), BrowserField class, 51
FolderEvent class, about, 13
folders
listing, 18
managing, 18
saving messages, 19
searching, 19

G

get(), RuntimeStore class, 126
getAccept(), BrowserContentProvider class, 59
getActiveCall(), Phone class, 69
getApplicationDescriptor(), CodeModuleManager class,
122
getBrowserContent(), BrowserContentProvider
interface, 59
getBrowserField(), RenderingApplication interface, 51
getContents(), PersistentObject class, 82
getDefaultSession(), Browser class, 47
getDisplayPhoneNumber(), PhoneCall class, 69
getElapsedTime(), PhoneCall class, 69
getinstance()
ApplicationMenultem class, 77
OptionsProvider interface, 43
SerialSyncManager class, 94
getModuleHandle(), CodeModuleManager class, 122
getModuleHandles(), CodeModuleManager class, 122
getModuleManagerForObject(), CodeModuleManager
class, 122
getParticipantAt(), ConferencePhoneCallLog class, 71
getParticipants(), PhoneCallLog class, 71
getRecord(), RecordStore class, 79
getRenderingOptions(), RenderingApplication
interface, 49
getRuntimeStore(), RuntimeStore class, 125
getSession(), Browser class, 47
getStatus(), PhoneCall class, 69
getSupportedContentTypes(), Manager class, 113
getSupportedMIMETypes(), BrowserContentProvider
class, 59
getVisibleApplications(), ApplicationManager class, 119
global events, posting, 120
GlobalEventListener interface, about, 120

133

BlackBerry Application Developer Guide

H

handheld options

about, 43

adding, 43

code example, 44

registering, 43

storing data persistently, 44

using public methods, 44
handhelds

locking, 120

unlocking, 120
Hashtable data type, persistence, 81
HTTP filters, about, 64
HTTPFilterRegistry class, registerFilter(), 64

immediate events

cancelling, 107

code example, 108

triggering, 107
initialization projects, creating, 95
Integer data type, persistence, 81
integrity, data, 81
Intellisync, about, 93
intercepting, URLs, 64
inter-process communication, global events, 120
Invoke class, invokeApplication(), 75
invokeApplication(), Invoke class, 75
isLibrary(), CodeModuleManager class, 122
isOutgoing(), PhoneCall class, 69
isSystemLocked(), ApplicationManager class, 120

L

lastElement(), Vector class, 87

library projects, creating, 106

locking, handhelds, 120

lockSystem(), ApplicationManager class, 120
Long data type, persistence, 81

M

Manager class, getSupportedContentTypes(), 113
managing, applications, 119
memo pad, invoking, 75
MemoArguments class, about, 75
menu items

adding, 76

adding to BlackBerry applications, 76

registering, 77

specifying behavior, 76

specifying position, 76

specifying text, 76
MessageArguments class, about, 75

134

MessageEvent class, about, 13
messages
about, 11
attachments, 19
creating, 11
managing events, 13
managing folders, 18
multipart, 12
reading, 14
receiving, 13
replying, 16
storing, 12
MIME types
listing accepted, 59
supporting additional, 58
Mobile Media API, about, 113

N

negotiateDeferredEvent(), Notifications manager class,
107
newConfiguration(), Consequence class, 114
notifications
about, 105
adding events, 105
canceling events, 107
custom, 110
custom system, 112
custom system notifications, 112
deferred events, 107
defining custom, 111
holstering, 111
immediate events, 107
listener, 111
registering listener, 112
superseded, 111
triggering deferred events, 107
tunes, 113
NotificationsEngineListener interface, 111
about, 110
deferredEventWasSuperseded(), 111
notificationsEngineStateChanged(), 111
registerNotificationsEngineListener(), 112
notificationsEngineStateChanged(),
NotificationsEngineListener interface, 111
NotificationsManager class
cancelDeferredEvent(), 108
cancellmmediateEvent(), 107
code example, 108
negotiateDeferredEvent(), 107
registerNotificationsObject(), 115
registerSource(), 106

Index

triggerimmediateEvent(), 107 about, 69
numberOfCalls(), Phonelogs class, 71 getDisplayPhoneNumber(), 69
getElapsedTime(), 69
0 getStatus(), 69
Object data type, persistence, 81 isOutgoing(), 69
openRecordStore(), RecordStore class, 79 PhoneCallLog class
options constructor, 71
See handheld options getParticipants(), 71
OptionsProvider interface PhoneCallLogID class
about, 43 about, 71
getinstance(), 43 PhonelListener interface, about, 70
registerOptionsProvider(), 43 Phonelogs class
addcCall(), 71
P callAt(), 71
persistence deleteCall(), 72
BlackBerry APIs, 80 getinstance(), 71
code examples, 87 swapCall(), 71
creating databases, 82 PIM .
custom objects, 85 ﬂelds, 23
limited memory, 80 |Fems, 23
lists, 23

MIDP API, 79

retrieving data, 82

retrieving objects, 87

saving data, 82

saving objects, 86
persistent data, managing, 81

See also Address Book, Calendar, Tasks
postGlobalEvent(), ApplicationManager class, 120
proceedWithDeferredEvent(),

NotificationsEngineListener interface, 111
put(), RuntimeStore class, 125

persistent databases, deleting, 83 R
PersistentObject class N _
about, 82 receiving, email messages, 13
commit(), 82 record stores
getContents(), 82 333% 7?9
setContents(), 82 adaing, "
PersistentStore class, about, 80 opening,
phone calls retrieving, 79
about, 69 retrieving all, 80
adding DTMF tones, 70 RecordStore class
duration, 69 addRecordStore(), 79
retrieving, 69 enumerateRecords(), 80
status, 69 getRecord(), 79
Phone class openRecordStore(), 79
addPhoneListener(), 70 registerFilter(), HTTPFilterRegistry class, 64
getActiveCall(), 69 registering

attachment handler, 20

removePhonelistener(), 70 e
notification event source, 105

phone listener, registering, 70

phone logs options items, 43
about, 70 startup, 106
missed calls folder, 71 synchronization collections, 94
normal calls folder, 71 registerNotificationsEngineListener(),

NotificationsEngineListener class, 112
registerNotificationsObjects(), NotificationsManager
class, 115
registerOptionsProvider(), OptionsProvider interface, 43

retrieving, 71
phone, invoking, 75
PhoneArguments class, about, 75
PhoneCall class

135

BlackBerry Application Developer Guide

registerSource(), NotificationsManager class, 106
removePhoneListener(), Phone class, 70
rendering

separate threads, 48
rendering options

specifying, 49
rendering providers

registering, 58
RenderingApplication class, displayBrowserField(), 48
RenderingApplication interface,

getRenderingOptions(), 49
replace(), RuntimeStore class, 125
restore

about, 81

impementing, 93

supporting, 94
retrieving

attachment contents, 20

attachment information, 20
root database, persistence, 82
runApplication(), ApplicationDescriptor class, 121
runtime APIs, about, 5
runtime objects

retrieving, 125

sharing, 125
runtime storage, 5
runtime store

replacing objects, 125

retrieving objects, 126

unregistered objects, 126
RuntimeStore class

get(), 126

getRuntimeStore(), 125

put(), 125

replace(), 125

waitFor(), 126

S
saveNewModule(), CodeModuleManager class, 123

scheduleApplication(), ApplicationDescriptor class, 121

scheduling, applications, 121
security
See also code signing
security, about, 81
security, handheld lock, 120
sending
attachments, 21
messages, 15
serial formats
appointments, 39
contacts, 28
tasks, 34

136

SerialSyncManager class
enableSynchronization(), 94
getlnstance(), 94

service books
about, 103
events, 104

service records
about, 103

setContents(), PersistentObject class, 82

Short data type, persistence, 81

signing, See code signing

startNotification(), Consequence class, 113

stopNotification(), Consequence class, 113

StoreEvent class, about, 13

String data type, persistence, 81

swapCall(), PhoneLogs class, 71

SyncCollection class
registering, 94

SyncConverter class
convert(), 114
notifications, 112

synchronization
about, 93
collections, 94
initializing, 95
objects, 94
registering collections, 94

SyncObject interface, about, 94

T

TaskArguments class, about, 75
tasks
adding information, 32
code example, 35
converting to serial formats, 34
creating, 32
invoking, 75
removing, 34
retrieving information, 33
to do, See tasks
toString(), ApplicationMenultem class, 76
triggerimmediateEvent(), NotificationsManager class,
107
tunes
audio formats, 113
creating, 113

U

unique keys, creating, 82

unlocking, handhelds, 120

unlockSystem(), ApplicationManager class, 120
user profile settings, custom notifications, 114

Index

v web content
Vector class browser fields, 48
addElement(), 87 displaying, 47
lastElementy(), 87 web pages
Vector data type, persistence, 81 dlsplayl‘ng, 47
requesting, 48
w writeNewModule(), CodeModuleManager class, 123

waitFor(), RuntimeStore class, 126

137

	Contents
	Using controlled APIs
	BlackBerry controlled APIs
	Code signatures
	Code signature verification
	Code signing request process
	Optional signatures
	Signing limitations
	Registering for code signing
	Register for code signatures
	Change your private key password
	Requesting code signatures

	Integrating email
	BlackBerry mail API
	Mail API classes
	Messages

	Working with messages
	Receive message notification
	Receive more of a message
	Open a message
	Send a message
	Reply to a message
	Forward a message
	Code example

	Managing folders
	List folders
	Retrieve an array of folders by type
	Retrieve an array of folders by searching
	Retrieve a folder by name
	Retrieve a folder by ID
	File a message

	Managing attachments
	Create a custom attachment handler
	Retrieve attachments
	Send an attachment

	Integrating PIM functions
	PIM APIs
	PIM lists
	PIM items

	Using the address book
	BlackBerry-specific address fields
	Open a contact list
	Create a contact
	Add contact information
	Modify contact information
	Save a contact
	Retrieve contact information
	Convert a contact to a serial format
	Import a contact
	Delete a contact
	Close a contact list
	Code example

	Using tasks
	Open a task list
	Create a task
	Add task information
	Set the status of a task
	Modify task information
	Save a task
	Retrieve task information
	Convert a task to a to serial format
	Import a task
	Delete a task
	Close a task list
	Code example

	Using the calendar
	Open an event list
	Create an appointment
	Add appointment information
	Create a recurring appointment
	Modify appointment information
	Save an appointment
	Retrieve appointment information
	Convert an appointment to a serial format
	Import an appointment
	Close an event list
	Code example

	Adding handheld options
	Options API
	Adding option items
	Registering to add options
	Store options
	Provide access to option data
	Code example

	BlackBerry Browser
	Browser APIs
	Displaying web content
	Displaying web content in the browser
	Displaying web content in a browser field

	Supporting additional MIME types
	Register as rendering provider for a MIME type
	Code example

	Registering as a HTTP filter
	Code example

	Accessing the phone application
	Using the phone API
	Retrieve a phone call
	Retrieve phone call information
	Add DTMF tones
	Retrieve the send queue for the current call

	Listening for phone events
	Accessing and managing phone logs
	Retrieve phone logs
	Retrieve the number of calls in a folder
	Retrieve a call log
	Retrieve a call participant
	Add a call log
	Delete a call log
	Code example

	Communicating with BlackBerry applications
	Starting BlackBerry applications
	Adding menu items to BlackBerry applications
	Create an application menu item
	Register the application menu item
	Code example

	Storing persistent data
	Storage options
	MIDP record store
	BlackBerry persistent storage

	Managing persistent data
	Persistent data types
	Create a persistent database
	Store data persistently
	Retrieve persistent data
	Delete a database
	Code example

	Managing custom objects
	Create a database
	Store data persistently
	Create expandable objects
	Save an object
	Retrieve an object
	Code example

	Backing up and restoring persistent data
	Synchronization API
	Data backup
	Data synchronization

	Adding support for backing up data
	Define a unique ID
	Define a constructor
	Register a synchronization collection
	Create an initialization project
	Code example

	Accessing setup and configuration information
	Service book API
	Listen for service book events

	Managing notifications
	Notification API
	Adding events
	Register a new event source
	Trigger an immediate event
	Trigger a deferred event
	Cancel an event
	Code example

	Responding to events
	Provide a custom UI notification for deferred events
	Register the notifications listener

	Customizing system notifications
	Respond to notification events
	Define a unique ID
	Define constants
	Create a tune
	Play a tune from a supported audio format
	Define a notification
	Stop a notification
	Store user profile settings
	Enable handheld data backup
	Enable handheld data restore
	Define the notification configuration
	Register a consequence
	Code example

	Managing applications
	Application manager
	Retrieve information about applications
	Post a global event
	Receive a global event
	Lock the handheld
	Run an application with different arguments
	Run an application at a specified time

	Managing code modules
	Retrieve module information
	Retrieve an array of handles
	Code module manager methods
	Create a module
	Write data into a module
	Save a module to the handheld database
	Delete a module from the handheld database

	Sharing runtime objects between applications
	Sharing runtime objects
	Retrieve the runtime store
	Add a runtime object
	Replace a runtime object
	Retrieve a registered runtime object
	Retrieve an unregistered runtime object

	Glossary
	A
	C
	D
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

