
BlackBerry Java
Development Environment
Version 4.0

BlackBerry Application Developer Guide

Volume 2: Advanced Topics

BlackBerry Java Development Environment Version 4.0 BlackBerry Application Developer Guide Volume 2: Advanced Topics

Last modified: 26 November 2004

Part number: SWD_X_JDE(EN)-002.000

At the time of publication, this documentation complies with BlackBerry JDE Version 4.0.

© 2004 Research In Motion Limited. All rights reserved. The BlackBerry and RIM families of related marks, images and symbols are the exclusive
properties of Research In Motion Limited. RIM, Research In Motion, BlackBerry and 'Always On, Always Connected' are registered with the U.S.
Patent and Trademark Office and may be pending or registered in other countries.

Microsoft, Windows, and Outlook are registered trademarks of Microsoft Corporation in the United States and/or other countries. Java is a
trademark of Sun Microsystems, Inc. in the U.S. and other countries. IBM, Lotus, and Domino are trademarks of International Business Machines
Corporation in the United States, other countries or both. All other brands, product names, company names, trademarks, and service marks are the
properties of their respective owners.

The handheld and/or associated software are protected by copyright, international treaties and various patents, including one or more of the
following U.S. patents: 6,278,442; 6,271,605; 6,219,694; 6,075,470; 6,073,318; D,445,428; D,433,460; D,416,256. Other patents are registered or
pending in various countries around the world. Please visit www.rim.net/patents.shtml for a current listing of applicable patents.

This document is provided �as is� and Research In Motion Limited (RIM) assumes no responsibility for any typographical, technical, or other
inaccuracies in this document. RIM reserves the right to periodically change information that is contained in this document; however, RIM makes no
commitment to provide any such changes, updates, enhancements, or other additions to this document to you in a timely manner or at all. RIM
MAKES NO REPRESENTATIONS, WARRANTIES, CONDITIONS, OR COVENANTS, EITHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION,
ANY EXPRESS OR IMPLIED WARRANTIES OR CONDITIONS OF FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, MERCHANTABILITY,
DURABILITY, TITLE, OR RELATED TO THE PERFORMANCE OR NON-PERFORMANCE OF ANY SOFTWARE REFERENCED HEREIN, OR PERFORMANCE
OF ANY SERVICES REFERENCED HEREIN). IN CONNECTION WITH YOUR USE OF THIS DOCUMENTATION, NEITHER RIM NOR ITS AFFILIATED
COMPANIES AND THEIR RESPECTIVE DIRECTORS, OFFICERS, EMPLOYEES, OR CONSULTANTS SHALL BE LIABLE TO YOU FOR ANY DAMAGES
WHATSOEVER BE THEY DIRECT, ECONOMIC, COMMERCIAL, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY, OR INDIRECT DAMAGES,
EVEN IF RIM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, INCLUDING, WITHOUT LIMITATION, LOSS OF BUSINESS REVENUE OR
EARNINGS, LOST DATA, DAMAGES CAUSED BY DELAYS, LOST PROFITS, OR A FAILURE TO REALIZE EXPECTED SAVINGS.

This document might contain references to third-party sources of information and/or third-party web sites (�Third-Party Information�). RIM does not
control, and is not responsible for, any Third-Party Information, including, without limitation, the content, accuracy, copyright compliance, legality,
decency, links, or any other aspect of Third-Party Information. The inclusion of Third-Party Information in this document does not imply endorsement
by RIM of the third party in any way. Any dealings with third parties, including, without limitation, compliance with applicable licenses, and terms
and conditions are solely between you and the third party. RIM shall not be responsible or liable for any part of such dealings.

Published in Canada

Research In Motion Limited
295 Phillip Street
Waterloo, ON N2L 3W8
Canada

Research In Motion UK Limited
Centrum House, 36 Station Road
Egham, Surrey TW20 9LF
United Kingdom

Contents
Using controlled APIs .. 5

BlackBerry controlled APIs...5
Code signatures...6

Integrating email..11
BlackBerry mail API ... 11
Working with messages ... 13
Managing folders... 18
Managing attachments.. 19

Integrating PIM functions ..23
PIM APIs.. 23
Using the address book ... 25
Using tasks... 31
Using the calendar .. 37

Adding handheld options ...43
Options API .. 43
Adding option items ... 43

BlackBerry Browser ..47
Browser APIs.. 47
Displaying web content... 47
Supporting additional MIME types.. 58
Registering as a HTTP filter .. 64

Accessing the phone application ..69
Using the phone API .. 69
Listening for phone events ... 70
Accessing and managing phone logs ... 70

Communicating with BlackBerry applications...75
Starting BlackBerry applications ... 75
Adding menu items to BlackBerry applications... 76

Storing persistent data ...79
Storage options... 79
Managing persistent data... 81
Managing custom objects... 85

Backing up and restoring persistent data ..93
Synchronization API .. 93
Adding support for backing up data... 94

Accessing setup and configuration information .. 103
Service book API.. 103

Managing notifications.. 105
Notification API ... 105
Adding events .. 105
Responding to events .. 110
Customizing system notifications.. 112

Managing applications .. 119
Application manager ... 119
Managing code modules.. 121

Sharing runtime objects between applications .. 125
Sharing runtime objects.. 125

Glossary ... 128

Index... 131

 1
Using controlled APIs

BlackBerry controlled APIs
The BlackBerry® APIs described in this guide have controlled access. Applications that use controlled
APIs can be run in the simulator; however, you must obtain code signatures from Research In Motion
(RIM) before you can load these applications onto BlackBerry Wireless Handhelds. See "Code
signatures" on page 6 for more information.

� BlackBerry controlled APIs
� Code signatures

Package Description

net.rim.blackberry.api.browser This package enables applications to invoke the BlackBerry Browser. See
"Displaying web content" on page 47 for more information.

net.rim.blackberry.api.invoke This package enables applications to invoke BlackBerry applications, such as
tasks, messages, MemoPad and phone. See "Starting BlackBerry applications"
on page 75 for more information.

net.rim.blackberry.api.mail This package enables applications to interact with the BlackBerry messages
application to send, receive, and open email messages. See "Working with
messages" on page 13 for more information.

net.rim.blackberry.api.mail.event This package defines messaging events and listener interfaces to manage mail
events. See "Mail events" on page 13 for more information.

net.rim.blackberry.api.menuitem This package enables you to add custom menu items to BlackBerry applications,
such as the address book, calendar, and messages. See "Adding menu items to
BlackBerry applications" on page 76 for more information.

net.rim.blackberry.api.options This package enables you to add items to the handheld options. See "Adding
option items" on page 43 for more information.

net.rim.blackberry.api.pdap This package enables applications to interact with BlackBerry personal
information management (PIM) applications, including address book, tasks,
and calendar. Most of the same functionality is provided by the MIDP package
javax.microedition.pim. See "PIM APIs" on page 23 for more information.

net.rim.blackberry.api.phone This package provides access to advanced features of the phone application.
See "Using the phone API" on page 69 for more information.

net.rim.blackberry.api.phone.phonelogs This package provides access to the phone call history. See "Accessing and
managing phone logs" on page 70 for more information.

net.rim.device.api.browser.field This package enables applications to display a browser field within their user
interface. See "Displaying web content in a browser field" on page 48 for more
information.

net.rim.device.api.browser.plugin This package enables you to add support for additional MIME types to the
BlackBerry Browser. See "Supporting additional MIME types" on page 58 for
more information.

net.rim.device.api.crypto.* These packages provide data security capabilities, including data encryption
and decryption, digital signatures, data authentication, and certificate
management. See the API Reference for more information.

net.rim.device.api.io.http This package enables applications to register with the BlackBerry Browser as
provider for one or more URLs. See "Registering as a HTTP filter" on page 64
for more information.

BlackBerry Application Developer Guide
Code signatures
RIM tracks the use of some sensitive APIs in the BlackBerry JDE for security and export reasons. In the
API Reference, a lock icon or the text �signed� indicates sensitive classes or methods. In the
documentation for a class that contains signed methods, select or clear the SHOW Signed option at the
top of the page to view or hide signed methods.

If you use signed classes or methods in your applications, the .cod files must be digitally signed by RIM
before you can load them onto handhelds.

Use the Signature Tool, which is installed with the BlackBerry JDE, to request the appropriate signatures
for your .cod files.

Code signature verification
There are two types of code signature verification:

� Linktime verification: When you load a signed .cod file onto the handheld, the virtual machine (VM)
links the .cod file with the API libraries and verifies that the .cod file includes the required
signatures. If a signature is missing, the VM stops linking and does not load the application.

� Runtime verification: When the user uses the application on the handheld, if the application invokes
a method that requires a signature, the VM verifies that the application contains the necessary
signature. If the signature is not present, a ControlledAccessException is thrown and the
requested operation is not performed.

See "Registering for code signing" on page 8 for more information on .csi files. See "Requesting code
signatures" on page 9 for more information on .csl and .cso files.

net.rim.device.api.notification This package provides methods to trigger event notifications and respond to
system-wide and application-specific events. See "Notification API" on page
105 for more information.

net.rim.device.api.servicebook This package enables applications to add, delete, and access service book
entries. See "Accessing setup and configuration information" on page 103 for
more information.

net.rim.device.api.synchronization This package enables applications to perform backup and restore operations on
custom data. See "Adding support for backing up data" on page 94 for more
information.

net.rim.device.api.system This package provides classes that enable functionality such as persistent data
storage, interprocess communication (IPC), SMS, network communication using
datagrams, and application management. See the following locations for more
information:

� �Application manager� on page 119
� �Using datagram connections� on page 96
� �Storing persistent data� on page 79

Package Description

Note: To test and debug your code before receiving code signatures, use the simulator. Code must be signed only for
deployment to handhelds.

Note: You never send your actual code to RIM. The Signature Tool sends an SHA-1 hash of your code file so that the signing
authority system can generate the necessary signature.
6

1: Using controlled APIs
Code signing request process
1. The Signature Tool opens an HTTP connection to the signing authority system and sends a request.

The request includes a hash of your code in the .csl and .cso files. Your actual code is not sent to
RIM.

2. The signing authority system verifies that the request is valid and applies a RIM private key to the
hash of each .cod file to create the signatures.

3. The signing authority system returns the signatures to the Signature Tool and closes the HTTP
connection.

4. The Signature Tool appends the signatures to each .cod file.

When the files are signed, the Status column for the .cod file displays Signed.

If any problems occur with the signature request, the Status column displays Failed - See Details.

When your .cod files are signed, you can load them onto the BlackBerry Wireless Handheld. See
�Packaging and deploying applications� on page 32 of the BlackBerry Application Developer Guide
Volume 1 � Fundamentals for more information.

Optional signatures
You can load applications onto handhelds without optional .cso signatures. These signatures are only
required if their corresponding methods are invoked during runtime.

When the application calls a method that requires a signature, the VM verifies that the application has
this authorization. If the VM does not find these optional signatures, the application stops.

Signing limitations
There are several situations in which the code signing process does not proceed.

Client parameters
The signing authority administrator can limit your access to signatures by specifying a limit using both
time and frequency parameters. These parameters are defined in your .csi file. Be aware of these possible
limitations when applying for signatures.

To request a change in these .csi parameters, contact your signing authority administrator.

Lost data
You cannot perform any code signing requests without your .csi file. Your registration key is stored within
your .csi file � none of your signature requests can be sent to the signing authority system if the
Signature Tool cannot find this key and sign your requests with it.

Parameter Definition

of Requests This parameter sets the number of requests you can make using a particular .csi file. After you make
the maximum number of requests, the .csi file is invalid and you can no longer make signature requests
using this file. Contact your signing authority administrator to apply for another .csi file.

Requests are limited for security reasons; however, the signing authority administrator can allow you
to make an infinite number.

Expiry Date This parameter sets the expiry date for your .csi file. After your .csi file expires, you can no longer make
signature requests using this file. Contact your signing authority administrator and apply for another
.csi file.
7

BlackBerry Application Developer Guide
If your system stops responding, and you lose data or even entire file structures, you might discover that
you have also lost the ability to perform signing requests. If you lose your .csi file, the Signature Tool
cannot communicate with the signing authority system on your behalf.

If you lose your .csi file, contact your signing authority administrator and request a new one.

Registering for code signing
You require a separate set of code signing keys for each computer that requests keys. Once keys are
installed on a computer, they cannot be reinstalled or moved to another computer.

Register for code signatures
You must have HTTP access to the Internet to register for code signing.

1. To activate your account, complete the registration form on the BlackBerry Developer Zone at
http://www.blackberry.com/developers.

In this form, you provide a 10-digit personal information number (PIN).

2. When you receive .csi files in an email message from RIM, save them to your computer.

3. Double-click a .csi file.

If a dialog box appears that states that a private key cannot be found, perform the following actions
before you continue:

� Click Yes to create a new key pair file.

� Type a password for your private key, and retype to confirm.

� Click OK.

� Move your mouse to generate data for a new private key.

4. In the Registration PIN field, type the PIN that RIM provided.

5. In the Private Key Password field, type a password of at least eight characters. This is your private
key password, which protects your private key.

6. Click Register.

7. Click Exit.

Change your private key password
You must have HTTP access to the Internet to change your private key password.

1. In the BlackBerry JDE bin folder, double-click SignatureTool.jar.

2. Click Change Password.

3. In the Old Password field, type your current private key password.

4. Click Verify.

5. Type and confirm a new password.

6. Click OK.

Note: Protect your private key password. If you lose this password, you must register with RIM again. If this password is
stolen, contact RIM immediately to revoke your key to prevent others from requesting code signatures using your identity.
8

1: Using controlled APIs
Requesting code signatures
Request a code signature from the IDE
1. Build your projects.

In the IDE, on the Build menu, click Build All. The IDE creates the following three files, located in the
same folder as the project .jdp file, for each project:

2. On the Build menu, click Request signatures.

3. Click Add.

4. In the Look In drop-down list, click the folder in which the .cod file is located.

5. Click a .cod file.

6. Click Open.

7. Click Request.

8. Type your private key password.

9. Click OK.

Request signatures at a command prompt
1. At the command prompt, move to the folder containing the Signature Tool software.

2. Type the following command line:
java -jar SignatureTool.jar [-a] [-c] [-C] <file>

where:

[-a] is used when you want the program to automatically request signatures.

[-c] is used when you want the program to close after requesting signatures if no errors occur.

[-C] is used when you want the program to close regardless of its success.

<file> can be the name of only one .csi file or one or more .cod files.

� .csi: The .csi file contains client registration information and a list of the signatures that the
client is allowed to apply for. You can only pass in one .csi at a time.

� .cod: The .cod file is the compiled application that can be loaded onto handhelds after all
required signatures are in place. You can pass in as many .cod files as you want.

File extension Description

.cod file the compiled project that is loaded on the handheld

.csl file a list of required linktime signatures

.cso file a list of signatures that might be required at runtime if the application invokes
controlled methods

Warning: If you have already registered for code signing with a previous version of the SDK, back up the following files,
which are located in the BlackBerry JDE bin folder, before you install a new version of the BlackBerry JDE:

� Sigtool.db
� Sigtool.csk

If these files are lost, you must register again with RIM.
9

BlackBerry Application Developer Guide
10

 2
Integrating email

BlackBerry mail API
The BlackBerry mail API, in the net.rim.blackberry.api.mail and
net.rim.blackberry.mail.event packages, enables applications to send, receive, and access email
messages using the messages application.

Mail API classes

Messages
The Message class represents an email message. A Message object consists of a set of attributes, such as
subject, sender, and recipients, and a message body (its contents). See "Multipart messages" on page 12
for more information.

The following classes and interfaces define supported message attributes:

� BlackBerry mail API
� Working with messages
� Managing folders
� Managing attachments

Notes: The BlackBerry mail API provides access to email messages in the handheld messages list, but not to other message
types, such as SMS messages, PIN messages, or phone call logs. For access to phone call logs, use the Phone Log API
(net.rim.blackberry.api.phonelogs). See "Accessing and managing phone logs" on page 70 for more information.

Check for a ControlledAccessException when your application first accesses the Mail API. This runtime exception is
thrown if the system administrator restricts access to the Mail API using application control. See �Application control� on
page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more information.

Class name Description

Session This class, which represents an abstract model for email operations, provides access to email service, storage, and
transport. Applications retrieve a new Session object to send or receive email messages.

To retrieve a session with the default mail service on the handheld, invoke
Session.waitForDefaultSession() and wait until the service is available.

To retrieve a session with a different email service, create a ServiceConfiguration object for the email service
and invoke Session.getDefaultInstance(ServiceConfiguration).

Store This class models the underlying message storage on the handheld. To retrieve a Store instance, invoke the
Session instance.

Transport This class represents the email transport protocol.

Class or interface name Description

Address This class represents an email, ftp, http, or wap address that is used in the from, reply-to, and
recipient attributes, and in the message body. The Address class contains fields to store the fully
qualified address string, such as scott.tooke@rim.com, and the display name.

Header This class defines supported header fields, such as TO, FROM, and DATE.

Message.Flag This interface defines message flags, such as MOVED, OPENED, or SAVED.

BlackBerry Application Developer Guide
Multipart messages
The mail API supports multipart messages. The Multipart abstract class provides a container for
multiple BodyPart objects. Multipart provides methods to retrieve and set its subparts.

Each BodyPart consists of header fields (attributes) and contents (body). The mail API provides four
implementations of BodyPart.

Message storage
The Folder class represents a local mailbox folder. Several folder types are defined, including INBOX,
OUTBOX, SENT, and OTHER. You can use these folder types to retrieve folders for retrieving or saving
messages.

The Store class models the underlying message storage and provides methods for finding and retrieving
folders. Folders exist in a hierarchy, as the following example demonstrates:
Mailbox - Ming Li

Inbox
Projects

In Progress
Complete

Personal

A standard delimiter character separates each folder in the hierarchy, which you can retrieve using
getSeparator(). You can list all the folders in a Store object, list the subfolders in a folder, or find a
folder based on a search string.

The Folder class defines methods for retrieving messages or subfolders, saving messages, and deleting
messages.

Message.Icons This interface defines the character representations of the various message status icons, such as
a check mark for a sent message.

Message.RecipientType This interface defines supported recipient types, such as TO, CC, or BCC.

Message.Status This interface defines status options for sending and receiving messages, such as RX_RECEIVED,
RX_ERROR, TX_SENT, and TX_READ.

Class name Description

ContactAttachmentPart This class represents an address card attachment part, using the
javax.microedition.pim.Contact interface. See "Using the address book" on page 25 for
more information.

TextBodyPart This class represents a body part with content that is text/plain type. You use this class to create
a multipart message that includes a text/plain part.

UnsupportedAttachmentPart This class represents an unsupported attachment part. You cannot instantiate this class. The
content type is always application/octet-stream.

SupportedAttachmentPart This class represents a supported attachment part, for which there is a registered attachment
handler on the handheld.

Class or interface name Description

Note: Multiple Folder instances can refer to the same folder on the handheld. As a result, you should always invoke
addFolderListener() and removeFolderListener() on the same Folder object. Use Folder.equals() to
determine whether two Folder objects refer to the same folder.
12

2: Integrating email
Mail events
The BlackBerry mail event package (net.rim.blackberry.api.mail.event) defines the following
messaging events, and listeners for each event:

The MailEvent class is the base class for these mail event classes. The MailEvent class defines an
abstract dispatch() method to invoke the appropriate listener method for each event.

The EventListener interface provides a common interface for the FolderListener and
MessageListener interfaces.

The following table lists the objects to which each listener type can be added:

Working with messages

Receive message notification
To receive message notification, implement the FolderListener and StoreListener interfaces.

public class MailTest implements FolderListener, StoreListener { ... }

Add a listener to the message store
To listen for message store events, such handheld synchronization, retrieve the Store object and add a
StoreListener instance to it.

try {
Store store = Session.waitForDefaultSession().getStore();

} catch (NoSuchServiceException e) {
System.out.println(e.toString());

}

store.addStoreListener(this);

To define application behavior when messages are added to or removed from the message store in batch
operations, implement StoreListener.batchOperation(). For example, your application could check
if any messages to which it has references were removed.

void batchOperation(StoreEvent e) {
//perform action when messages added or removed in batch operation

}

Event Description

FolderEvent This event triggers when a message in a folder is added or removed.

MessageEvent This event triggers when a message changes (body, header, or flags).

StoreEvent This event triggers when a message is added to, or removed from, the message store in a batch operation
(for example, when the handheld is synchronized with the desktop).

Listener Applicable objects

FolderListener Folder or Store object

MessageListener Message object

StoreListener Store object
13

BlackBerry Application Developer Guide
Add a listener to a folder
To listen for folder events, such as the addition of a message to a particular folder, retrieve the Folder
object for which you want to receive notifications of new messages. Add the FolderListener instance
to the folder.

Folder[] folders = store.list(Folder.INBOX);
Folder inbox = folders[0];
inbox.addFolderListener(this);

To perform actions when folder events occur, implement FolderListener.messagesAdded() and
FolderListener.messagesRemoved(). For example, you could implement these methods to maintain
the consistency of any references in your application to specific mail folders.

void messagesAdded(FolderEvent e) {
//perform processing on added messages

}
void messagesRemoved(FolderEvent e) {

//perform processing on removed messages
}

Receive more of a message
By default, the first section of a message (typically about 2 KB) is sent to the handheld. Invoke
hasMore() on a body part to determine if more data is available on the server. Invoke
moreRequestSent() to determine if a request for more data has already been sent. Invoke more() to
request more of a message.

if ((bp.hasMore()) && (! bp.moreRequestSent()) {
Transport.more(bp, true);

}

The second parameter of more() is a Boolean value that specifies whether to retrieve only the next
section of the body part (false) or all remaining sections of the body part (true).

Open a message
Retrieve the message store and the folder that contains the message.

Store store = Session.waitForDefaultSession.getStore();
Folder folder = Store.getFolder("SampleFolder");

Retrieve the message objects from the folder. Iterate through the array and retrieve information, such as
the sender and subject, to display to the user.

Message[] msgs = folder.getMessages();

When a user selects a message from the list, invoke methods on the Message object to retrieve the
appropriate fields and body contents to display to the user.

Message msg = msgs[0]; // retrieve the first message
Address[] recipients = msg.getRecipients(Message.RecipientType.TO)
Date sent = msg.getSentDate();
Address from = msg.getFrom();
String subject = msg.getSubject();
14

2: Integrating email
Object o = msg.getContent();
//verify that the message is not multipart
if (o instanceof String) {

String body = (String)o;
}
...

Send a message
To send messages, use a Transport object, which represents the email transport protocol.

Create a message
Create a Message object, and specify a folder in which to save a copy of the sent message.

Store store = Session.getDefaultInstance().getStore();
Folder[] folders = store.list(Folder.SENT);
Folder sentfolder = folders[0];
Message msg = new Message(sentfolder);

Specify recipients
Create an array of Address objects and add each address to the array. You should catch an
AddressException, which is thrown if an address is invalid.

Address toList[] = new Address[1];
try {

toList[0]= new Address("scott.tooke@rim.com", "Scott Tooke");
} catch(AddressException e) {

System.out.println(e.toString());
}

Add recipients
Invoke Message.addRecipients(). As parameters to this method, provide the type of recipient (TO, CC,
or BCC) and the array of addresses to add. If your message has multiple types of recipients, invoke
addRecipients() once each.

msg.addRecipients(Message.RecipientType.TO, toList);

Specify the name and email address of a sender
Invoke setFrom().

Address from = new Address("scott.mcpherson@blackberry.com", "Scott McPherson");
msg.setFrom(from);

Add a subject line
Invoke setSubject().

msg.setSubject("Test Message");

Tip: Invoke getBodyText() on a message to retrieve the plain text contents as a String. If the message does not contain
plain text, the method returns null.
15

BlackBerry Application Developer Guide
Specify the message contents
Invoke setContent(). Typically, you retrieve content from text that a user types in a field.
try {

msg.setContent("This is a test message.");
} catch(MessagingException e) {

System.out.println(e.getMessage());
}

Send the message
Invoke Transport.send().

try {
Transport.send(msg);

} catch(MessagingException e) {
System.out.println(e.getMessage());

}

Reply to a message
To create a message as a reply to an existing message, invoke Message.reply(). As a parameter to this
method, specify true to reply to all message recipients or false to reply only to the sender.

Store store = Session.waitForDefaultSession().getStore();
Folder[] folders = store.list(INBOX);
Folder inbox = folders[0];
Message[] messages = folder.getMessages();
if(messages.length > 0) {

Message msg = messages[0];
}
Message reply = msg.reply(true);
Transport.send(reply);

Forward a message
Invoke forward() on an existing Message object.

Message fwdmsg = msg.forward();

Add recipients
Create an array of addresses and invoke addRecipients().
Address toList[] = new Address[1];
toList[0]= new Address("katie.laird@rim.com", "Katie Laird");
fwdmsg.addRecipients(Message.RecipientType.TO, toList);

Specify message contents
Invoke setContent().

Note: The subject line of a forwarded message is set automatically to FW:<original_subject>.

Note: You cannot edit the text of the forwarded message. The setContent() method adds text before the forwarded
message.
16

2: Integrating email
try {
fwdmsg.setContent("This is a forwarded message.");

} catch(MessagingException e) {
System.out.println(e.getMessage());

}

Send the message
Invoke send().

try {
Transport.send(fwdmsg);

} catch(MessagingException e) {
System.out.println(e.getMessage());

}

Code example

Example: BasicMail.java

/**
 * BasicMail.java
 * Copyright (C) 2001-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.basicmail;

import net.rim.blackberry.api.mail.*;
import net.rim.blackberry.api.mail.event.*;
import net.rim.device.api.system.*;

public class BasicMail extends Application {
 private Store store;
 static void main (String args[]) {
 BasicMail app = new BasicMail();
 app.enterEventDispatcher();
 }
 BasicMail() {
 Store store = Session.getDefaultInstance().getStore();
 Folder[] folders = store.list(Folder.SENT);
 Folder sentfolder = folders[0];
 // Create message.
 Message msg = new Message(sentfolder);
 // Add TO Recipients.
 Address toList[] = new Address[1];
 try {
 toList[0]= new Address("scott.tooke@rim.com", "Scott Tooke");
 } catch(AddressException e) {
 System.out.println(e.toString());
 }
 try {
 msg.addRecipients(Message.RecipientType.TO, toList);
 } catch (MessagingException e) {
 System.out.println(e.toString());
17

BlackBerry Application Developer Guide
 }
 // Add CC Recipients.
 Address ccList[] = new Address[1];
 try {
 ccList[0]= new Address("katie.laird@rim.com", "Katie Laird");
 } catch(AddressException e) {
 System.out.println(e.toString());
 }
 try {
 msg.addRecipients(Message.RecipientType.CC, ccList);
 } catch (MessagingException e) {
 System.out.println(e.toString());
 }
 // Add the subject.
 msg.setSubject("A Test Email");
 // Add the message body.
 try {
 msg.setContent("This is a test message.");
 } catch(MessagingException e) {
 // Handle messaging exceptions.
 }
 // Send the message.
 try {
 Transport.send(msg);
 } catch(MessagingException e) {
 System.out.println(e.getMessage());
 }
 System.out.println("Email sent successfully.");
 System.exit(0);

 }
}

Managing folders
To list, retrieve, and search for folders, retrieve a Store object by invoking getStore() on the default
session.
Store store = Session.waitForDefaultSession().getStore();

List folders
To list the folders in a mailbox store, invoke Store.list().

Folder[] folders = store.list();

Retrieve an array of folders by type
Invoke list(). Provide the folder type as a parameter to this method.

Folder[] folders = store.list(INBOX);
Folder inbox = folders[0];
18

2: Integrating email
Retrieve an array of folders by searching
To retrieve all the folders in the hierarchy that match a specified search string, invoke findFolder().

Folder[] folders = store.findFolder("Inbox");

The findFolder() method returns an array of folders that match the specified string, or an empty array
if a matching folder is not found.

Retrieve a folder by name
Invoke getFolder(). Provide as parameter the absolute path to the folder. A
FolderNotFoundException exception is thrown if the folder is not found.

Folder folder = store.getFolder("Mailbox - Scott Tooke/Inbox/Projects");

Retrieve a folder by ID
Invoke getID() to retrieve the folder ID, and then invoke getFolder() with the ID as a parameter.

Folder[] folders = store.list();
long id = folders[0].getId();
Folder f2 = store.getFolder(id);

File a message
Invoke appendMessage() on a Folder object.

Message msg = new Message();
...
Folder folder = store.getFolder("Inbox");
folder.appendMessage(msg);

Managing attachments
The mail API enables you to open incoming email attachments and to create outgoing attachments on
the handheld. A message attachment is represented as a separate BodyPart on a Multipart message.

Create a custom attachment handler
Implement the AttachmentHandler interface.

Register accepted MIME types
To register the MIME type of attachments that your attachment handler accepts, implement
supports(). This method is invoked when the handheld receives an attachment.

public boolean supports(String contentType) {
19

BlackBerry Application Developer Guide
return (contentType.toLowerCase().indexOf("contenttype") != -1 ? true : false);
}

Define the associated menu item string
Implement menuString() to return the menu item string to display in the messages list when the user
selects an attachment.

public String menuString() {
return "Custom Attachment Viewer";

}

Define attachment processing
Implement run() to perform the appropriate processing on the attachment data and display it to the
user.

public void run(Message m, SupportedAttachmentPart p) {
//perform processing on data
Screen view = new Screen();
view.setTitle(new LabelField("Attachment Viewer"));
view.add(new RichTextField(new String((byte[])p.getContent())));

}

Register an attachment handler
The AttachmentHandlerManager class controls how attachments are processed on the handheld. To
enable the message application to invoke your custom attachment when the user opens an attachment
of the associated type, register your attachment handler by invoking addAttachmentHandler().

AttachmentHandlerManager m = AttachmentHandlerManager.getInstance();
CustomAttachmentHandler ah = new CustomAttachmentHandler();
m.addAttachmentHandler(ah);

Retrieve attachments
The SupportedAttachmentPart class represents an attachment with a corresponding viewer on the
handheld. An attachment that does not have a viewer on the handheld is represented as an
UnsupportedAttachmentPart.

Retrieve attachment contents
Invoke getContent().

String s = new String((byte[])p.getContent());

Retrieve attachment information
The SupportedAttachmentPart class provides several methods on a to retrieve attachment
information. The following example invokes getName() and getSize() to retrieve the attachment
name and size.

Note: The run() method is invoked when the corresponding menu item is selected in the messages list.

Note: The BlackBerry Enterprise Server Attachment Service has first priority in receiving attachments. Third-party
attachment handlers cannot override default handheld behavior. See the BlackBerry Enterprise Server Maintenance and
Troubleshooting Guide for more information.
20

2: Integrating email
public void run(Message m, SupportedAttachmentPart p) {
...
String name = p.getName();
int size = p.getSize();

}

Send an attachment
To send an email message with an attachment, create a multipart message by creating a new
Multipart object. To create each attachment component, create a SupportedAttachmentPart object,
designating the Multipart as its parent. To add each SupportedAttachmentPart to the Multipart,
invoke addBodyPart() on that object.

When you invoke setContent() on the Message object, pass in the Multipart object as its parameter.

byte[] buf = new byte[256]; // the attachment
MultiPart multipart = new MultiPart(); // default type of multipart/mixed
SupportedAttachmentPart attach = new SupportedAttachmentPart(multipart,

"application/x-example", "filename", data);
multipart.addBodyPart(attach); // add the attachment to the multipart
msg.setContent(multipart);
Transport.send(msg); // send the message
21

BlackBerry Application Developer Guide
22

 3
Integrating PIM functions

PIM APIs
The Java personal information management (PIM) APIs (javax.microedition.pim) and the BlackBerry
personal digital assistant profile (PDAP) APIs (net.rim.blackberry.api.pdap) enable you to access
the calendar, tasks, and address book on the handheld.

The PIM class is an abstract class that provides methods for accessing PIM databases on the handheld.
Invoke PIM.getInstance() to retrieve a PIM object.

PIM lists
The PIMList interface represents the common functionality of all contact, event, or task lists. A list
contains zero or more items, represented by subclasses of PIMItem. Use PIM lists to organize related
items and to retrieve some or all of the items in the list.

PIM items
The PIMItem interface represents the common functionality of an item in a list. The Contact, Event,
and ToDo interfaces extend PIMItem. A PIM item represents a collection of data for a single entry, such
as a calendar appointment or a contact.

When you create a PIM item in a particular PIM list, the item remains associated with that list as long as
it exists. You can also import or export data in PIM items using standard formats, such as iCal and vCard.

Fields

A PIM item stores data in fields.
Each PIMItem interface�Contact, Event, or ToDo�defines unique integer IDs for each field that it
supports. For example, the Contact interface defines fields to store an email address (EMAIL), name
(FORMATTED_NAME), and phone number (TEL).

� PIM APIs
� Using the address book
� Using tasks
� Using the calendar

Note: As of version 4.0, the net.rim.blackberry.api.pim package is deprecated. The classes from this package are
now available in the javax.microedition.pim and net.rim.blackberry.api.pdap packages.

Note: Check for a ControlledAccessException when your application first accesses the PIM API. This runtime exception
is thrown if the system administrator restricts access to the PIM API using application control. See �Application control� on
page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more information.

Note: On handhelds, each ContactList, ToDoList, or EventList instance refers to the native database on the handheld.
Third-party applications cannot create custom lists.

BlackBerry Application Developer Guide
Each field has a data type ID, such as INT, BINARY, DATE, BOOLEAN, or STRING. To retrieve the data type
of a field, invoke PIMList.getFieldDataType(int field). The data type determines which method
you use to get or set field data. For example, if the data type for a field is STRING, invoke
PIMItem.addString() to add a value, PIMItem.setString() to change an existing value, and
PIMItem.getString() to retrieve a value.

Before you attempt to set or retrieve a field value, verify that the method supports the field by invoking
PIMList.isSupportedField(int field).

A field can have an associated descriptive label to display to users. To retrieve a field label, invoke
PIMList.getFieldLabel(int field).

Listeners
An application can implement the PIMListListener interface to receive notification when an item in a
list changes. The PIMListListener interface provides three methods:

ContactList cl = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.WRITE_ONLY);

((BlackBerryPIMList)cl).addListener(new PIMListListener() {
public void itemAdded(PIMItem item) {

System.out.println(" ITEM ADDED: " + ((Contact)item).getString(Contact.UID,
0));

}
public void itemUpdated(PIMItem oldItem, PIMItem newItem) {

System.out.println(" ITEM UPDATED: " +
((Contact)oldItem).getString(Contact.UID, 0) + " to " +
((Contact)newItem).getString(Contact.UID, 0));

}
public void itemRemoved(PIMItem item) {

System.out.println(" ITEM REMOVED: " +
((Contact)item).getString(Contact.UID, 0));

}
});

Remote address lookup
To support remote address lookup, instantiate the BlackBerryContactList interface rather than the
the ContactList interface. BlackBerryContactList contains the same functionality as
ContactList, but provides additional methods to support remote address lookup.

The RemoteLookupListener interface provides a single method, items(), which returns an
enumeration of the results of a remote address lookup.

Method Description

itemAdded(PIMItem item) invoked when an item is added to a list

itemRemoved(PIMItem item) invoked when an item is removed from a list

itemUpdated(PIMItem oldItem, PIMItem newItem) invoked when an item changes

Note: The listener remains associated with the handheld database even after the corresponding PIMList object has been
deleted. To remove the listener, invoke BlackBerryPIMList.removeListener().
24

3: Integrating PIM functions
Using the address book
Use an instance of ContactList to add or view contact information in the handheld address book.
Create Contact objects to store individual contacts with information such as name, phone number,
email address, and street address.

BlackBerry-specific address fields
The BlackBerryContact interface, which extends Contact, defines the following constants to provide
access to fields that are specific to BlackBerry contacts:

� BlackBerryContact.PIN: provides access to the PIN field

� BlackBerryContact.USER1 through USER4: provide access to the USER1 through USER4 fields

Invoke BlackBerryPIMList.setFieldLabel() to define labels for the USER1 through USER4 fields.
The change takes effect immediately; you do not need to commit the change.

Open a contact list
You must create a contact list before you can add contacts. Invoke PIM.openPIMList(). Provide as
parameters the type of list to open (PIM.CONTACT_LIST) and the access mode with which to open the
list (READ_WRITE, READ_ONLY, or WRITE_ONLY).

If you are writing an application specifically for BlackBerry handhelds, cast your contact list as a
BlackBerryContactList because this interface provides additional methods to support remote
address lookup. To make an application portable across multiple J2ME-compatible devices, use the
PDAP implementation.

ContactList contactList = null;
try {

contactList = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.READ_WRITE);

} catch (PimException e) {
return;

}

Create a contact
Invoke createContact() on a contact list.

Contact contact = contactList.createContact();

Note: Changing a label affects all contacts on the handheld.

Note: The contact is not added to the database until you commit it. See "Save a contact" on page 27 for more information.
25

BlackBerry Application Developer Guide
Add contact information
The Contact class defines fields in which to store data, such as Contact.NAME, Contact.ADDR, and
Contact.TEL. Each field has a specific data type, which you can retrieve by invoking
PIMList.getFieldDataType(int field). Depending on the data type of the field, add a new value a
by invoking one of the following methods: addString(), addStringArray(), addDate(), addInt(),
addBoolean(), or addBinary().

Before you set or retrieve a field, verify that the item supports the field by invoking
ContactList.isSupportedField(int field).

Some fields can store multiple values, using attributes to differentiate between values. For example, the
TEL field supports the ATTR_HOME, ATTR_WORK, ATTR_MOBILE, and ATTR_FAX attributes to store
numbers for work, home, mobile, and fax numbers. To determine how many values a field supports,
invoke PIMList.maxValues(int field). This method returns the number of values supported, or -1
to indicate that an arbitrary number of values can be added. To verify that a field supports a particular
attribute, invoke isSupportedAttribute(int field, int attribute).

//create string array for name
try {

ContactList contactList =
(ContactList)PIM.getInstance().openPIMList(PIM.CONTACT_LIST,
PIM.WRITE_ONLY);

} catch (PIMException e) {
}
Contact contact = contactList.createContact();
String[] name = new String[5]; // 5 name elements
try {

name[Contact.NAME_PREFIX] = "Mr.";
name[Contact.NAME_FAMILY] = "McPherson";
name[Contact.NAME_GIVEN] = "Scott";

} catch (IllegalArgumentException iae) {
// handle exception

}
//add name
if(contactList.isSupportedField(Contact.NAME)) {

contact.addStringArray(Contact.NAME, Contact.ATTR_NONE, name);
}
//create string array for address
String[] address = new String[7]; // 7 address elements
try {

address[Contact.ADDR_COUNTRY] = "United States";
address[Contact.ADDR_LOCALITY] = "Los Angeles";
address[Contact.ADDR_POSTALCODE] = "632300";
address[Contact.ADDR_REGION] = "California";
address[Contact.ADDR_STREET] = "323 Main Street";

} catch (IllegalArgumentException iae) {
// handle exception

}
//add address
contact.addStringArray(Contact.ADDR, Contact.ATTR_NONE, address);
//add home telephone number
if (contactList.isSupportedField(Contact.TEL) &&

contactList.isSupportedAttribute(Contact.TEL, Contact.ATTR_HOME)) {
contact.addString(Contact.TEL, Contact.ATTR_HOME, "555-1234");

}

26

3: Integrating PIM functions
//add work telephone number
if (contactList.isSupportedField(Contact.TEL)) {

contact.addString(Contact.TEL, Contact.ATTR_HOME, "555-5555");
}
//add work email address
if (contactList.isSupportedField(Contact.EMAIL)) {

contact.addString(Contact.EMAIL, Contact.ATTR_WORK,
"scott.mcpherson@blackberry.com");

}

Modify contact information
For fields that support only one value, invoke the appropriate set method to replace an existing value
with a new value.

For the name and address fields, which contain a string array value, retrieve the array and then modify
one or more indexes in the array before adding it back in.

if (contact.countValues(Contact.NAME) > 0) {
String[] newname = contact.getStringArray(Contact.NAME, 0);

}
// Change the prefix to Dr. and add the suffix, Jr.
newname[Contact.NAME_PREFIX] = "Dr.";
newname[Contact.NAME_SUFFIX] = "Jr.";
contact.setStringArray(Contact.NAME, 0, Contact.ATTR_NONE, newname);

For fields that support multiple values, verify that the maximum number of values is not exceeded before
adding another value.

if (contact.countValues(Contact.EMAIL) < contactList.maxValues(Contact.EMAIL)) {
contact.addString(Contact.EMAIL, Contact.ATTR_NONE,

"scott.mcpherson@blackberry.com");
}

Save a contact
Invoke commit(). Before you commit the change, invoke isModified() to determine whether any
contact fields have changed since the contact was last saved.

if(contact.isModified()) {
contact.commit();

}

Retrieve contact information
Invoke PIMList.items().

Note: If you invoke an add method, such as addString(), for a field that already has a value, a FieldFullException is
thrown. Use the corresponding set method, such as setString(), to change an existing value.

Note: When you invoke PIMList.items() to retrieve an enumeration of items in a list, the order of items is undefined.
Your application must sort items as necessary.
27

BlackBerry Application Developer Guide
For a particular contact, invoke PIMItem.getFields() to retrieve an array of IDs for fields that have
data. Invoke PIMItem.getString() to retrieve the field values.

ContactList contactList = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.READ_WRITE);
Enumeration enum = contactList.items();
while (enum.hasMoreElements()) {

Contact c = (Contact)enum.nextElement();
int[] fieldIds = c.getFields();
int id;
for(int index = 0; index < fieldIds.length; ++index) {

id = fieldIds[index];
if(c.getPIMList().getFieldDataType(id) == Contact.STRING) {

for(int j=0; j < c.countValues(id); ++j) {
String value = c.getString(id, j);
System.out.println(c.getPIMList().getFieldLabel(id) + "=" + value);

}
}

}
}

Convert a contact to a serial format
To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported formats, invoke PIM.supportedSerialFormats() and specify
the list type (PIM.Contact_LIST).

To write an item to a supported serial format, invoke toSerialFormat().

ContactList contactList = (ContactList)PIM.getInstance().openPIMList(
PIM.CONTACT_LIST, PIM.READ_ONLY);

String[] dataFormats = PIM.getInstance().supportedSerialFormats(
PIM.CONTACT_LIST);

ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
Enumeration e = contactList.items();
while (e.hasMoreElements()) {
 Contact c = (Contact)e.nextElement();

PIM.getInstance().toSerialFormat(c, byteStream, "UTF8", dataFormats[0]);
}

Import a contact
Invoke fromSerialFormat(), which returns an array of PIM items. To create a new contact using the
PIM item, invoke ContactList.importContact()

//import contact from vCard
ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE." This parameter cannot be null.

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE." This parameter cannot be null.
28

3: Integrating PIM functions
PIMItem[] pi = PIM.getInstance().fromSerialFormat(istream, "UTF8");
ContactList contactList =

(ContactList)PIM.getInstance().openPIMList(PIM.CONTACT_LIST, PIM.READ_WRITE);
Contact contact2 = contactList.importContact((Contact)pi[0]);
contact2.commit();

Delete a contact
Invoke removeContact() on a contact list.

contactList.removeContact(contact);

Close a contact list
Invoke close().

try {
contactList.close();

} catch(PIMException e) {
Dialog.alert(e.toString());

}

Code example
The following example demonstrates how to display a screen that enables users to add new contacts to
the handheld address book. After you save a contact, open the address book to verify that the contact
was saved.

Example: ContactsDemo.java

/**
 * ContactsDemo.java
 * Copyright (C) 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.contactsdemo;

import java.io.*;
import java.util.*;
import javax.microedition.pim.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.i18n.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import com.rim.samples.docs.baseapp.*;
import net.rim.blackberry.api.pdap.*;

public final class ContactsDemo extends BaseApp {
 private ContactScreen _contactScreen;
 public static void main(String[] args) {
29

BlackBerry Application Developer Guide
 new ContactsDemo().enterEventDispatcher();
 }
 public ContactsDemo() {
 _contactScreen = new ContactScreen();
 pushScreen(_contactScreen);
 }
 protected void onExit() {
 }
 // Inner class. Creates a Screen to add a contact.
 public static final class ContactScreen extends MainScreen {
 private EditField _first, _last, _email, _phone, _pin;
 private SaveMenuItem _saveMenuItem;
 private class SaveMenuItem extends MenuItem {
 private SaveMenuItem() {
 super(null, 0, 100000, 5);
 }
 public String toString() {
 return "Save";
 }
 public void run() {
 onSave();
 }
 }
 public ContactScreen() {
 _saveMenuItem = new SaveMenuItem();
 setTitle(new LabelField("Contacts Demo", LabelField.ELLIPSIS |

LabelField.USE_ALL_WIDTH));
 _first = new EditField("First Name: ", "");
 add(_first);
 _last = new EditField("Last Name: ", "");
 add(_last);
 _email = new EditField("Email Address: ", "",
 BasicEditField.DEFAULT_MAXCHARS, BasicEditField.FILTER_EMAIL);
 add(_email);
 _phone = new EditField("Work Phone: ", "",
 BasicEditField.DEFAULT_MAXCHARS, BasicEditField.FILTER_PHONE);
 add(_phone);
 _pin = new EditField("PIN:", "", 8, BasicEditField.FILTER_HEXADECIMAL);
 add(_pin);
 }
 protected boolean onSave() {
 String firstName = _first.getText();
 String lastName = _last.getText();
 String email = _email.getText();
 String phone = _phone.getText();
 String pin = _pin.getText();
 // Verify that a first or last name and email has been entered.
 if ((firstName.equals("") && lastName.equals("")) || email.equals("")) {
 Dialog.inform("You must enter a name and an email address!");
 return false;
 } else {
 try {
 ContactList contactList =

(ContactList)PIM.getInstance().openPIMList(PIM.CONTACT_LIST, PIM.WRITE_ONLY);
 Contact contact = contactList.createContact();
30

3: Integrating PIM functions
 String[] name = new
String[contactList.stringArraySize(Contact.NAME)];

 // Add values to PIM item.
 if (!firstName.equals("")) {
 name[Contact.NAME_GIVEN] = firstName;
 }
 if (!lastName.equals("")) {
 name[Contact.NAME_FAMILY] = lastName;
 }
 contact.addStringArray(Contact.NAME, Contact.ATTR_NONE, name);
 contact.addString(Contact.EMAIL, Contact.ATTR_HOME, email);
 contact.addString(Contact.TEL, Contact.ATTR_WORK, phone);
 if (contactList.isSupportedField(BlackBerryContact.PIN)) {
 contact.addString(BlackBerryContact.PIN, Contact.ATTR_NONE,

pin);
 }
 // Save data to address book.
 contact.commit();
 // Reset UI fields.
 _first.setText("");
 _last.setText("");
 _email.setText("");
 _phone.setText("");
 _pin.setText("");
 return true;
 } catch (PIMException e) {
 return false;
 }
 }
 }
 protected void makeMenu(Menu menu, int instance) {
 menu.add(_saveMenuItem);
 super.makeMenu(menu, instance);
 }
 }
}

Using tasks
Use an instance of the ToDoList class to store a list of tasks, or to do items. Create one or more ToDo
objects to store data for each task, such as summary, priority, due date, and status.

Open a task list
Invoke PIM.openPIMList(). Provide as parameters the type of list to open (PIM.TODO_LIST) and the
access mode with which to open the list (READ_WRITE, READ_ONLY, or WRITE_ONLY).

ToDoList todoList = null;
try {

todoList = (ToDoList)PIM.getInstance().openPIMList(
PIM.TODO_LIST, PIM.READ_WRITE);
} catch (PimException e) {
31

BlackBerry Application Developer Guide
//an error occurred
return;

}

Create a task
Invoke createToDo() on a task list.
ToDo task = todoList.createToDo();

Add task information
The ToDo class defines fields in which to store data, such as SUMMARY, PRIORITY, and DUE. Each field has
a specific data type, which you can retrieve by invoking PIMList.getFieldDataType(int field).
Depending on the data type of the field, set the field data by invoking one of the following methods:
addString(), addDate(), addInt(), addBoolean(), or addBinary().

See "PIM APIs" on page 23 for more information on fields.

Before you set or retrieve a field, verify that the item supports the field by invoking isSupportedField(
int field).

if (task.isSupportedField(ToDo.SUMMARY)) {
task.addString(ToDo.SUMMARY, ToDo.ATTR_NONE, "Create project plan");

}
if (task.isSupportedField(ToDo.DUE)) {

Date date = new Date();
task.addDate(ToDo.DUE, ToDo.ATTR_NONE, (date + 17280000));

}
if (task.isSupportedField(ToDo.NOTE)) {

task.addString(ToDo.NOTE, ToDo.ATTR_NONE, "Required for meeting");
}
if (task.isSupportedField(ToDo.PRIORITY)) {

task.addInt(Todo.PRIcORITY, ToDo.ATTR_NONE, 2);
}

Set the status of a task
Use the PIM extended field ToDo.EXTENDED_FIELD_MIN_VALUE + 9.

task.addInt(ToDo.EXTENDED_FIELD_MIN_VALUE + 9, ToDo.ATTR_NONE, 2);

Note: The task is not added to the database until you commit it. See "Save a task" on page 33 for more information.

Constant Value

STATUS_NOT_STARTED 1

STATUS_IN_PROGRESS 2

STATUS_COMPLETED 3

STATUS_WAITING 4

STATUS_DEFERRED 5
32

3: Integrating PIM functions
Modify task information
Invoke the appropriate set method, such as setString(), to replace an existing value with a new
value. Invoke countValues() to determine if a value is already set for the field.

if (task.countValues(ToDo.SUMMARY) > 0) {
task.setString(ToDo.SUMMARY, 0, ToDo.ATTR_NONE, "Review notes");

}

Save a task
Invoke commit(). Before you save, invoke isModified() to determine whether any task fields have
changed since the task was last saved.

if(task.isModified()) {
task.commit();

}

Retrieve task information
Retrieve an enumeration
Invoke PIMList.items() on the task list.

ToDoList todoList = (ToDoList)PIM.getInstance().openToDoList(
PIM.TODO_LIST, PIM.READ_ONLY);

Enumeration enum = todoList.items();

Retrieve field IDs and values for a task
To retrieve an array of IDs for fields that have data for a particular ToDo item, invoke
PIMItem.getFields(). To retrieve the field values, invoke PIMItem.getString().

while (enum.hasMoreElements()) {
ToDo task = (ToDo)enum.nextElement();
int[] fieldIds = task.getFields();
int id;
for(int index = 0; index < fieldIds.length; ++index) {

id = fieldIds[index];
if(task.getPIMList().getFieldDataType(id) == STRING) {

for(int j=0; j < task.countValues(id); ++j) {
String value = task.getString(id, j);
System.out.println(task.getFieldLable(id) + "=" + value);

}
}

}
}

Note: If you invoke an add method, such as addString(), when a value already exists, a FieldFullException is thrown.
Use the corresponding set method, such as setString(), to change an existing value.
33

BlackBerry Application Developer Guide
Convert a task to a to serial format
To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported serial formats, invoke PIM.supportedSerialFormats() and
specify the list type (PIM.TODO_List).

To write an item to a serial format, invoke toSerialFormat().

ToDoList todoList = (ToDoList)PIM.getInstance().openPIMList(
PIM.TODO_LIST, PIM.READ_ONLY);
ByteArrayOutputStream byteStream = new ByteArrayOutputStream();
String[] dataFormats = PIM.getInstance().supportedSerialFormats(PIM.TODO_LIST);
Enumeration e = todoList.items();
while (e.hasMoreElements()) {

ToDo task = (ToDo)e.nextElement();
PIM.getInstance().toSerialFormat(task, byteStream, "UTF8", dataFormats[0]);

}

Import a task
Invoke fromSerialFormat(), which returns an array of PIMItem objects. To create a new task using the
PIM items, invoke ToDoList.importToDo().

String[] dataFormats = PIM.toDoSerialFormats();
//write task to vCard
ByteArrayOutputStream os = new ByteArrayOutputStream();
PIM.getInstance().toSerialFormat(task, os, "UTF8", dataFormats[0]);
//import task from vCard
ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());
PIMItem[] pi = PIM.getInstance().fromSerialFormat(is, "UTF8");
ToDoList todoList = (ToDoList)PIM.getInstance().openPIMList(

PIM.TODO_LIST, PIM.READ_WRITE);
ToDo task2 = todoList.importToDo((ToDo)pi[0]);

Delete a task
Invoke removeToDo() on a task list.

todoList.removeToDo(task);

Close a task list
Invoke todoList.close(). Make sure you catch applicable exceptions.

try {

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE." This parameter cannot be null.

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE." This parameter cannot be null.

Tip: The importToDo() method saves the task, so you do not have to invoke commit().
34

3: Integrating PIM functions
todoList.close();
} catch (PimException e) {

// handle exception
}

Code example

Example: TaskDemo.java

/**

 * TaskDemo.java
 * Copyright (C) 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.taskdemo;
import java.io.*;
import java.util.*;
import javax.microedition.pim.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.i18n.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import com.rim.samples.docs.baseapp.*;

public final class TaskDemo extends BaseApp {
 private TaskScreen _taskScreen;
 public static void main(String[] args) {
 new TaskDemo().enterEventDispatcher();
 }
 private TaskDemo() {
 _taskScreen = new TaskScreen();
 pushScreen(_taskScreen);
 }
 protected void onExit() {
 }
 public final static class TaskScreen extends MainScreen {
 // Members.
 private EditField _summary, _note;
 private DateField _due;
 private ObjectChoiceField _priority, _status;
 private SaveMenuItem _saveMenuItem;
 private class SaveMenuItem extends MenuItem {
 private SaveMenuItem() {
 super(null, 0, 100000, 5);
 }
 public String toString() {
 return "Save";
 }
 public void run() {
 onSave();
 }
 }
35

BlackBerry Application Developer Guide
 public TaskScreen() {
 _saveMenuItem = new SaveMenuItem();
 setTitle(new LabelField("Tasks Demo",
 LabelField.ELLIPSIS | LabelField.USE_ALL_WIDTH));
 _summary = new EditField("Task Summary: ", "");
 add(_summary);
 // In TODO.Priority, 0 to 9 is highest to lowest priority.
 String[] choices = {"High", "Normal", "Low"};
 _priority = new ObjectChoiceField("Priority: ", choices, 1);
 add(_priority);
 String[] status = { "Not Started", "In Progress", "Completed",
 "Waiting on someone else", "Deferred" };
 _status = new ObjectChoiceField("Status: ", status, 0);
 add(_status);
 _due = new DateField("Due: ", System.currentTimeMillis() + 3600000,
 DateField.DATE_TIME);
 add(_due);
 _note = new EditField("Extra Notes: ", "");
 add(_note);
 }
 protected boolean onSave() {
 try {
 ToDoList todoList = (ToDoList)PIM.getInstance().
 openPIMList(PIM.TODO_LIST, PIM.WRITE_ONLY);
 ToDo task = todoList.createToDo();
 task.addDate(ToDo.DUE, ToDo.ATTR_NONE, _due.getDate());
 task.addString(ToDo.SUMMARY, ToDo.ATTR_NONE, _summary.getText());
 task.addString(ToDo.NOTE, ToDo.ATTR_NONE, _note.getText());
 task.addInt(ToDo.PRIORITY, ToDo.ATTR_NONE,
 _priority.getSelectedIndex());
 // ToDo.EXTENDED_FIELD_MIN_VALUE + 9 represents status.
 // Add 1 to selected index so that values are correct.
 // See the RIM Implementation Notes in the API docmentation for

ToDo.
 task.addInt(ToDo.EXTENDED_FIELD_MIN_VALUE + 9, ToDo.ATTR_NONE,
 _status.getSelectedIndex() + 1);
 // Save task to handheld tasks.
 task.commit();
 _summary.setText("");
 _note.setText("");
 _due.setDate(null);
 _priority.setSelectedIndex(1); // Reset to ìNormalî priority.
 _status.setSelectedIndex(0); // Reset to ìNot Startedî status.
 return true;
 } catch (PIMException e) {
 return false;
 }
 }
 protected void makeMenu(Menu menu, int instance) {
 menu.add(_saveMenuItem);
 super.makeMenu(menu, instance);
 }
 }
}

36

3: Integrating PIM functions
Using the calendar
Use an instance of the EventList class to access the handheld calendar. Create one or more Event
objects to store information for specific appointments. For each event, you can store data such as the
summary, location, start and end time, and reminder notification.

Open an event list
You must create an EventList before you can add events. Invoke PIM.openPIMList(). Provide as
parameters the type of list to open (PIM.EVENT_LIST) and the mode in which to open the list
(READ_WRITE, READ_ONLY, or WRITE_ONLY).

EventList eventList = null;
try {

eventList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_WRITE);

} catch (PimException e) {
// handle exception

}

Create an appointment
Invoke createEvent() on an event list.
Event event = eventList.createEvent();

Add appointment information
The Event class defines fields in which to store data, such as SUMMARY, LOCATION, START, END, and
ALARM. Each field has a specific data type, which you can retrieve by invoking
PIMList.getFieldDataType(int field). Depending on the data type of the field, set the field data
by invoking one of the following methods: addString(), addDate(), addInt(), addBoolean(), or
addBinary().

Before you set or retrieve a field, verify that the item supports the field by invoking isSupportedField(
int field).

if (event.isSupportedField(Event.SUMMARY)) {
event.addString(Event.SUMMARY, Event.ATTR_NONE, "Meet with customer");

}
if (event.isSupportedField(Event.LOCATION)) {

event.addString(Event.LOCATION, Event.ATTR_NONE, "Conference Center");
}
Date start = new Date(System.currentTimeMillis() + 8640000);
if (event.isSupportedField(Event.START)) {

event.addDate(Event.START, Event.ATTR_NONE, start);
}
if (event.isSupportedField(Event.END)) {

event.addDate(Event.END, Event.ATTR_NONE, start + 72000000);
}

Note: The appointment is not added to the database until you commit the change. See "Save an appointment" on page
38 for more information.
37

BlackBerry Application Developer Guide
if (event.isSupportedField(Event.ALARM)) {
if (event.countValues(Event.ALARM) > 0) {

eventValue(Event.ALARM,0);
event.setInt(Event.ALARM, 0, Event.ATTR_NONE, 396000);

}
}

Create a recurring appointment
To define a recurrence pattern for an appointment, use a RepeatRule object. The RepeatRule class
defines fields for the properties and values that you can set, such as COUNT, FREQUENCY, and INTERVAL.
To retrieve an array of supported fields, invoke RepeatRule.getFields().

Define a recurrence pattern
Invoke setInt() or setDate() on a new RepeatRule object.

RepeatRule recurring = new RepeatRule();
recurring.setInt(RepeatRule.FREQUENCY, RepeatRule.MONTHLY);
recurring.setInt(RepeatRule.DAY_IN_MONTH, 14);

Assign a recurrence pattern to an appointment
Invoke setRepeat() on an event.

EventList eventList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_WRITE);
Event event = eventList.createEvent();
event.setRepeat(recurring);

Modify appointment information
To replace an existing value with a new one, invoke the appropriate set method, such as setString().
To determine if a value is already set for the field, invoke countValues().

if (event.countValues(Event.LOCATION) > 0) {
event.setString(Event.LOCATION, 0, Event.ATTR_NONE, "Board Room");

}

Save an appointment

Invoke commit(). Before you save the appointment, invoke isModified() to determine whether any of
the appointment fields have changed since the appointment was last saved.

if(event.isModified()) {
event.commit();

Tip: If the Event.ALARM field is not set, the appointment reminder is automatically set to 15 minutes before the start of
the event.

Note: If you invoke an add method, such as addString(), when a value already exists, a FieldFullException is thrown.
Use the corresponding set method, such as setString(), to change an existing value.

Tip: The importEvent() method saves the appointment, so you do not have to invoke commit().
38

3: Integrating PIM functions
}

Retrieve appointment information
Retrieve an enumeration of appointments
Invoke PIMList.items().

EventList eventList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_ONLY);
Enumeration e = eventList.items();

Retrieve field IDs and values
To retrieve an array of IDs of fields that have data for a particular task, invoke PIMItem.getFields().
To retrieve the field values, invoke PIMItem.getString().

while (e.hasMoreElements()) {
Event event = (Event)e.nextElement();
int[] fieldIds = event.getFields();
int id;
for(int index = 0; index < fieldIds.length; ++index) {

id = fieldIds[index];
if(e.getPIMList().getFieldDataType(id) == STRING) {

for(int j=0; j < event.countValues(id); ++j) {
String value = event.getString(id, j);
System.out.println(event.getFieldLable(id) + "=" + value);

}
}

}
}

Convert an appointment to a serial format
To import or export PIM item data, use an output stream writer to export tasks from the handheld to a
supported serial format, such as iCal and vCard.

To retrieve a string array of supported serial formats, invoke PIM.supportedSerialFormats() and
specify the list type (PIM.EVENT_List).

To write an item to a serial format, invoke toSerialFormat().

EventList eventList = (EventList)PIM.getInstance().openPIMList(PIM.EVENT_LIST,
PIM.READ_ONLY);

ByteArrayOutputStream bytestream = new ByteArrayOutputStream();

To write an item to a serial format, invoke toSerialFormat().

Enumeration e = eventList.items();
while (e.hasMoreElements()) {

Event event = (Event)e.nextElement();
PIM.getInstance().toSerialFormat(event, byteStream, "UTF8", dataFormats[0]);

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE". This parameter cannot be null.
39

BlackBerry Application Developer Guide
}

Import an appointment
Invoke fromSerialFormat(java.io.InputStream is, java.lang.String enc), which returns an
array of PIMItem objects. Invoke EventList.importEvent() to add a new appointment.

// Convert an existing appointment into a vCard and then import the vCard as a new
// appointment
String[] dataFormats = PIM.eventSerialFormats();
//write appointment to vCard
ByteArrayOutputStream os = new ByteArrayOutputStream();
PIM.getInstance().toSerialFormat(event, os, "UTF8", dataFormats[0]);
//import appointment from vCard
ByteArrayInputStream is = new ByteArrayInputStream(outputStream.toByteArray());
PIMItem[] pi = PIM.getInstance().fromSerialFormat(is, "UTF8");
EventList eventList = (EventList)PIM.getInstance().openPIMList(
PIM.EVENT_LIST, PIM.READ_WRITE);
Event event2 = eventList.importEvent((Event)pi[0]);

Close an event list
Invoke close().

try {
eventList.close();

} catch (PimException e) {
// handle exception

}

Code example
The following example displays a screen that enables users to create new, recurring appointments in the
handheld calendar. You could combine this sample with ContactsDemo.java to allow the user to invite
attendees to the meeting. See �ContactsDemo.java� on page 29 for more information.

After you save an appointment, click the Calendar icon to verify that the appointment was saved.

Example: EventDemo.java

/**
 * EventDemo.java
 * Copyright (C) 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.eventdemo;
import java.io.*;
import java.util.*;
import javax.microedition.pim.*;
import net.rim.device.api.ui.*;

Note: The enc parameter specifies the character encoding to use when writing to the output stream. Supported character
encodings include "UTF8," "ISO-8859-1," and "UTF-16BE." This parameter cannot be null.
40

3: Integrating PIM functions
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.i18n.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import com.rim.samples.docs.baseapp.*;

public final class EventDemo extends BaseApp {
 private EventScreen _eventScreen;
 public static void main(String[] args) {
 new EventDemo().enterEventDispatcher();
 }
 private EventDemo() {
 _eventScreen = new EventScreen();
 pushScreen(_eventScreen);
 }
 protected void onExit() {
 }
 public final static class EventScreen extends MainScreen {
 private EditField _subject, _location;
 private SaveMenuItem _saveMenuItem;
 private DateField _startTime, _endTime;
 private ObjectChoiceField _repeat;
 private Event event;
 private class SaveMenuItem extends MenuItem {
 public SaveMenuItem() {
 super(null, 0, 100000, 5);
 }
 public String toString() {
 return "Save";
 }
 public void run() {
 onSave();
 }
 }
 public EventScreen() {
 _saveMenuItem = new SaveMenuItem();
 setTitle(new LabelField("Event Demo", LabelField.ELLIPSIS |
 LabelField.USE_ALL_WIDTH));
 _subject = new EditField("Subject: ", "");
 add(_subject);
 _location = new EditField("Location: ", "");
 add(_location);
 _startTime = new DateField("Start: ", System.currentTimeMillis() +
 3600000, DateField.DATE_TIME);
 _endTime = new DateField("End: ", System.currentTimeMillis() +
 7200000, DateField.DATE_TIME);
 add(new SeparatorField());
 add(_startTime);
 add(_endTime);
 add(new SeparatorField());
 String[] choices = {"None", "Daily", "Weekly", "Monthly", "Yearly"};
 _repeat = new ObjectChoiceField("Recurrence: ", choices, 0);
 add(_repeat);
 }
41

BlackBerry Application Developer Guide
 protected boolean onSave() {
 try {
 EventList eventList = (EventList)PIM.getInstance().
 openPIMList(PIM.EVENT_LIST, PIM.WRITE_ONLY);
 event = eventList.createEvent();
 event.addString(Event.SUMMARY, PIMItem.ATTR_NONE,
 _subject.getText());
 event.addString(Event.LOCATION, PIMItem.ATTR_NONE,
 _location.getText());
 event.addDate(Event.END, PIMItem.ATTR_NONE, _endTime.getDate());
 event.addDate(Event.START, PIMItem.ATTR_NONE,
 _startTime.getDate());
 if(_repeat.getSelectedIndex() != 0) {
 event.setRepeat(setRule());
 }
 // Save the appointment to the Calendar.
 event.commit();
 //reset fields on screen
 _subject.setText("");
 _location.setText("");
 _endTime.setDate(null);
 _startTime.setDate(null);
 _repeat.setSelectedIndex(0);
 return true;
 } catch (PIMException e) {
 System.err.println(e);
 }
 return false;
 }
 private RepeatRule setRule() {
 RepeatRule rule = new RepeatRule();
 int index = _repeat.getSelectedIndex();
 if (index == 0) {
 rule.setInt(RepeatRule.FREQUENCY, RepeatRule.DAILY);
 }
 if (index == 1) {
 rule.setInt(RepeatRule.FREQUENCY, RepeatRule.WEEKLY);
 }
 if (index == 2) {
 rule.setInt(RepeatRule.FREQUENCY, RepeatRule.MONTHLY);
 }
 if (index == 3) {
 rule.setInt(RepeatRule.FREQUENCY, RepeatRule.YEARLY);
 }
 return rule;
 }
 protected void makeMenu(Menu menu, int instance) {
 menu.add(_saveMenuItem);
 menu.addSeparator();
 super.makeMenu(menu, instance);
 }
 }
}

42

 4
Adding handheld options

Options API
The BlackBerry options API, in the net.rim.blackberry.api.options package, enables you to add
items to the handheld options. Use this capability to add system-wide options to the handheld that
multiple applications can use.

When users click the Options icon on the handheld Home screen, a list of options, such as AutoText,
Date/Time, and Firewall, appears. The user can select one of these items to view a screen for that
particular option. The screen displays one or more fields. Typically, the user can change the value of each
field.

Adding option items

Registering to add options
Implement the OptionsProvider interface, including the getTitle(), save(), and
populateMainScreen() methods.

Create a library project
To add option items when the handheld starts, create a library project with a libMain() method to
perform the required registration.

1. In the IDE, create a project.

2. Right-click the project and click Properties.

3. In the Properties window, click the Application tab.

4. In the Project type drop-down list, click Library.

5. Select the Auto-run on startup option.

6. Click OK.

Register as an options provider
Implement getInstance() to retrieve a static instance of your class. Only one instance should exist at a
time.

Invoke registerOptionsProvider() in libMain(). Provide as parameter a static instance of your
class.

private static DemoOptionsProvider _instance;
...
public static DemoOptionsProvider getInstance() {

� Options API
� Adding option items

BlackBerry Application Developer Guide
if(_instance == null) {
_instance = new DemoOptionsProvider("Options Demo");

}
return _instance;

}

...
public static void libMain(String[] args) {

OptionsManager.registerOptionsProvider(getInstance());
}

Store options
To store the option value that is currently selected, implement the Persistable interface. In your
implementation, define methods for setting the selected option value, and committing and retrieving an
option value in the persistent store.

See "Managing persistent data" on page 81 for more information on storing persistent data.

Provide access to option data
In your library class, add public methods to enable other applications to access your option data.

Code example

Example: DemoOptionsProvider.java

/**
 * DemoOptionsProvider.java
 * Copyright 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.demooptionsprovider;
import net.rim.blackberry.api.options.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.i18n.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

// A simple library class to demonstrate the use of the options facilities.
public final class DemoOptionsProvider implements OptionsProvider {
 // members
 private ObjectChoiceField _ocf;
 private OptionsDemoData _data;
 private String _title;
 private static DemoOptionsProvider _instance;
 // constructors
 private DemoOptionsProvider() {

Note: If you implement the Persistable interface as an inner class, make it�and its get(), set(), and commit()
methods�public so that other applications can access your options data.
44

4: Adding handheld options
 }
 private DemoOptionsProvider(String title) {
 _title = title;
 _data = OptionsDemoData.load();
 }
 // Only allow one instance of this class.
 public static DemoOptionsProvider getInstance() {
 if (_instance == null) {
 _instance = new DemoOptionsProvider("Options Demo");
 }
 return _instance;
 }
 // On startup, create the instance and register it.
 public static void libMain(String[] args) {
 OptionsManager.registerOptionsProvider(getInstance());
 }
 // Get the title for the option item.
 public String getTitle() {
 return _title;
 }
 // Add fields to the screen.
 public void populateMainScreen(MainScreen screen) {
 int index = _data.getSelected();
 String[] choices = {"High", "Low", "None"};
 _ocf = new ObjectChoiceField("Security: ", choices, index);
 screen.add(_ocf);
 }
 // Save the data.
 public void save() {
 _data.setSelected(_ocf.getSelectedIndex());
 _data.commit();
 }
 // Retrieve the data. Used by other applications to access options data.
 public OptionsDemoData getData() {
 return _data;
 }
 // Inner class to store selected option values.
 public static final class OptionsDemoData implements Persistable {
 private static final long ID = 0x6af0b5eb44dc5164L;
 private int _selectedOption;
 private OptionsDemoData() {
 }
 public int getSelected() {
 return _selectedOption;
 }
 public void setSelected(int index) {
 _selectedOption = index;
 }
 public void commit() {
 PersistentObject.commit(this);
 }
 private static OptionsDemoData load() {
 PersistentObject persist = PersistentStore.getPersistentObject(
 OptionsDemoData.ID);
 OptionsDemoData contents = (OptionsDemoData)persist.getContents();
45

BlackBerry Application Developer Guide
 synchronized(persist) {
 if(contents == null) {
 contents = new OptionsDemoData();
 persist.setContents(contents);
 persist.commit();
 }
 }
 return contents;
 }
 }
}

46

 5
BlackBerry Browser

Browser APIs

Displaying web content

Displaying web content in the browser
To display web content in the BlackBerry Browser, use the browser application API
(net.rim.blackberry.api.browser).

Retrieve a browser session
To retrieve the default BrowserSession object, invoke the static method
Browser.getDefaultSession(). This object gives you access to the running browser on the handheld.

To retrieve a different session, invoke getSession(). This method retrieves a browser configuration
service record according to its unique ID (UID). See "Service book API" on page 103 for more
information.

� Browser APIs
� Displaying web content
� Supporting additional MIME types
� Registering as a HTTP filter

API name and package Description

Browser application API

(net.rim.blackberry.api.browser)

This API enables applications to display web content, including supported image types, HTML and WML
pages, by invoking the BlackBerry Browser. It also enables applications to supply a referrer, HTTP headers
and post data in an HTTP request.

Browser field API

(net.rim.blackberry.api.browser.
field)

This API enables an application to retrieve web content for display in a browser field, which is included
in the application UI. This API also enables applications to configure the appearance of the browser field,
such as by eliminating the scroll bar or specifying displaying the browser field in only a portion of the
screen.

Browser page API

(net.rim.blackberry.api.browser.
plugin)

This API enables applications to add support for additional MIME types. By registering as rendering
provider for a MIME type when the handheld starts, all subsequent browser sessions will support the
additional MIME type.

HTTP Filter API

(net.rim.device.api.io.http)

This API enables applications to register with the browser as provider for one or more URLs.

Note: Retrieving the default session overrides any open sessions on the handheld.

BlackBerry Application Developer Guide
Request a web page
To request a web page, invoke BrowserSession.displayPage(). The example below uses the version
of displayPage() that accepts only a URL. To specify a referrer, HTTP headers, and post data, use the
version that accepts these additional parameters.

Code sample
The following excerpt from the Restaurants.java sample creates a menu item that displays a web page in
the browser.

private MenuItem browserItem = new
MenuItem(_resources.getString(MENUITEM_BROWSER), 110, 12) {
public void run() {

synchronized(store) {
String websiteUrl = websitefield.getText();
if (websiteUrl.length == 0) {

Dialog.alert(_resources.getString(ALERT_NO_WEBSITE));
} else {

BrowserSession visit = Browser.getDefaultSession();
visit.displayPage(websiteUrl);

}
}

}
};

Displaying web content in a browser field
To include a browser field within an application UI, use the browser field API
(net.rim.device.api.browser.field). The browser rendering library handles the rendering of web
content for the field, and then returns a BrowserField, a field in which URL content is rendered, to your
application for display.

The RenderingApplication interface defines the callback functionality a rendering session requires to
assist with handling URL resources. To display web content in a browser field, implement the
RenderingApplication interface.

Create a separate thread for rendering
To prevent the application from hanging while the application retrieves and displays the browser field,
perform these actions on a separate thread.

class CreationThread extends Thread {
BrowserFieldHandlerApplication _callBackApplication;
BasicRenderingApplication _renderingApplication;
public CreationThread(BrowserFieldHandlerApplication callBackApplication) {

_callBackApplication = callBackApplication;
}
public void run() {

_renderingApplication = new
BasicRenderingApplication(_callBackApplication);

BrowserField field = _renderingApplication.getBrowserField("www.rim.com");
_callBackApplication.displayBrowserField(field);

Note: The browser session that is used to open a browser field is independent of the default browser session on the
handheld. Any open browser sessions are unaffected.
48

5: BlackBerry Browser
}
}

Set rendering options
Override getRenderingOptions(). If you do not override this method, default rendering options are
used. See RenderingOptions in the API Reference for more information.

Handle events
To handle events, such as a URL request, implement eventOccurred().

public Object eventOccurred(Event event) {
int eventId = event.getUID();
switch (eventId) {

case Event.EVENT_URL_REQUESTED : {
UrlRequestedEvent e = (UrlRequestedEvent) event;
// this is a regular request
String absoluteUrl = e.getURL();
HttpConnection conn = null;
OutputStream out = null;
try {

conn = (HttpConnection) Connector.open(absoluteUrl);
FormData postData = e.getPostData();
if (postData == null) {

conn.setRequestMethod(HttpConnection.GET);
} else {

conn.setRequestMethod(HttpConnection.POST);
byte[] postBytes = postData.getBytes();
conn.setRequestProperty(

HttpProtocolConstants.HEADER_CONTENT_LENGTH,
String.valueOf(postBytes.length));

if (conn.getRequestProperty(
HttpProtocolConstants.HEADER_CONTENT_TYPE) == null) {
conn.setRequestProperty(

HttpProtocolConstants.HEADER_CONTENT_TYPE,
postData.getContentType());

}
out = conn.openOutputStream();
out.write(postBytes);

}
HttpHeaders requestHeaders = e.getHeaders();
if (requestHeaders != null) {

/* From
http://www.w3.org/Protocols/rfc2616/rfc2616-
sec15.html#sec15.1.3
...
Clients SHOULD NOT include a Referer header field in a
(non-secure) HTTP request if the referring page was
transferred with a secure protocol.*/
String referer =

requestHeaders.getPropertyValue("referer");
boolean sendReferrer = true;
if (referer != null && referer.startsWith("https:") &&

!absoluteUrl.startsWith("https:")) {
sendReferrer = false;
49

BlackBerry Application Developer Guide
}
int size = requestHeaders.size();
for (int i = 0; i < size; i++) {

String header = requestHeaders.getPropertyKey(i);
// remove refer header if needed
if (!sendReferrer && header.equals("referer")) {

requestHeaders.removeProperty(i);
continue;

}
conn.setRequestProperty(header,

requestHeaders.getPropertyValue(i));
}

}
} catch (IOException e1) {
} finally {

if (out != null) {
try {

out.close();
} catch (IOException e2) {
}

}
}
BrowserField browserField = getBrowserField(conn, e);
_callbackApplication.displayBrowserField(browserField);

break;
}
case Event.EVENT_BROWSER_FIELD_CHANGED : {

/*
 * Browser field title might have changed. Update title.
 */
break;

}
case Event.EVENT_REDIRECT : {

RedirectEvent e = (RedirectEvent) event;
switch (e.getType()) {

case RedirectEvent.TYPE_SINGLE_FRAME_REDIRECT :
// show redirect message
Application.getApplication().invokeAndWait(new Runnable() {

public void run() {
Status.show("");

}
});
break;
case RedirectEvent.TYPE_JAVASCRIPT :
case RedirectEvent.TYPE_META :
case RedirectEvent.TYPE_300_REDIRECT :

}
String absoluteUrl = e.getLocation();
HttpConnection conn = null;
try {

conn = (HttpConnection) Connector.open(absoluteUrl);
} catch (IOException e1) {
}
BrowserField browserField = getBrowserField(conn,

e.getOriginalEvent());
50

5: BlackBerry Browser
_callbackApplication.displayBrowserField(browserField);
break;

}
case Event.EVENT_CLOSE :
// close the appication
break;
case Event.EVENT_TICK_CONTENT_READ : // no progress bar is supported
case Event.EVENT_SET_HEADER :// no cache support
case Event.EVENT_SET_HTTP_COOKIE : // no cookie support
case Event.EVENT_HISTORY : // no history support
case Event.EVENT_LOADING_IMAGES :// no progress bar is supported
case Event.EVENT_EXECUTING_SCRIPT : // no progress bar is supported
case Event.EVENT_FULL_WINDOW : // no full window support
case Event.EVENT_STOP : // no stop loading support
default :

}
return null;

}

Retrieve browser content for rendering
Implement getBrowserField() so that it retrieves the browser content for rendering. The
getBrowserField() method invokes RenderingSession.getBrowserField() to retrieve a browser
field; applications cannot instantiate BrowserField directly.

public BrowserField getBrowserField (String absoluteUrl) {
HttpConnection conn = null;
try {

conn = (HttpConnection) Connector.open(absoluteUrl);
// set transcode to true
conn.setRequestProperty("x-rim-transcode-content", "*/*");

} catch (IOException e1) {
}
return getBrowserField(conn, null);

}
private BrowserField getBrowserField(HttpConnection conn, Event e) {

BrowserField field = null;
try {

field = _renderingSession.getBrowserField(conn, this, e);
} catch (RenderingException re) {

return null;
}
// add to the event queue a thread that invokes finishLoading()
Application.getApplication().invokeLater(new RenderingThread(field));
return field;

}

Render the browser field
Invoke BrowserField.finishLoading(). In the following code sample,
BrowserField.getBrowserField() runs finishLoading() by adding a new rendering thread to the
application event queue.

Notes: HTML files display a blank field until you invoke BrowserField.finishLoading(). WML files and images might
load before this method is invoked.

The finishLoading() method should be run on a separate thread so that the UI does not lock.
51

BlackBerry Application Developer Guide
class RenderingThread implements Runnable {
BrowserField _browserField;
RenderingThread(BrowserField field) {

_browserField = field;
}
public void run() {

try {
_browserField.finishLoading();

} catch (RenderingException e) {
// handle exception

}

}
}

Display the browser field
Implement displayBrowserField() so it deletes the screen contents, and then adds the browser field
to the screen.

public void displayBrowserField(BrowserField browserField) {
synchronized (Application.getEventLock()) {

_vfm.deleteAll();
_vfm.add(browserField);

}

}

Code example
The following example consists of three files: BasicRenderingApplication.java,
BrowserFieldHandlerApplication.java, and BrowserFieldSampleApp.java.

Example: Browser field sample

/**
 * BasicRenderingApplication.java
 * Copyright (C) 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.browser;

import java.io.IOException;
import java.io.OutputStream;
import javax.microedition.io.Connector;
import javax.microedition.io.HttpConnection;
import net.rim.device.api.browser.field.*;
import net.rim.device.api.io.http.HttpHeaders;
import net.rim.device.api.io.http.HttpProtocolConstants;
import net.rim.device.api.system.Application;
import net.rim.device.api.ui.Graphics;
import net.rim.device.api.ui.component.Status;
import com.rim.samples.docs.browser.BrowserFieldHandlerApplication.*;

final public class BasicRenderingApplication implements RenderingApplication {
 RenderingSession _renderingSession;
52

5: BlackBerry Browser
 BrowserFieldHandlerApplication _callbackApplication;
 public BasicRenderingApplication(BrowserFieldHandlerApplication

callBackApplication) {
 _renderingSession = RenderingSession.getNewInstance();
 _callbackApplication = callBackApplication;
 }
 /**
 * Simple method to get a browser field by specifying the URL.
 * This call blocks until the browser field is returned by

RenderingSession.getBrowserField().
 * The browser field can continue to be rendered after the field is returned.
 *
 * @param absoluteUrl - absolute url of the page to render
 * @return rendered browser field
 */
 public BrowserContent getBrowserField (String absoluteUrl) {
 HttpConnection conn = null;
 try {
 conn = (HttpConnection) Connector.open(absoluteUrl);
 // Set transcode to true.
 conn.setRequestProperty("x-rim-transcode-content", "*/*");
 } catch (IOException e1) {
 }
 return getBrowserField(conn, null);
 }
 private BrowserContent getBrowserField(HttpConnection conn, Event e) {
 BrowserContent field = null;
 try {
 field = _renderingSession.getBrowserContent(conn, this, e);
 } catch (RenderingException re) {
 return null;
 }
 Application.getApplication().invokeLater(new RenderingThread(field));
 return field;
 }

 /**
 * Invoked when an event occurs.
 */
 public Object eventOccurred(Event event) {
 int eventId = event.getUID();
 switch (eventId) {
 case Event.EVENT_URL_REQUESTED : {
 UrlRequestedEvent e = (UrlRequestedEvent) event;
 // this is a regular request
 String absoluteUrl = e.getURL();
 HttpConnection conn = null;
 OutputStream out = null;
 try {
 conn = (HttpConnection) Connector.open(absoluteUrl);
 byte[] postData = e.getPostData();
 if (postData == null) {
 conn.setRequestMethod(HttpConnection.GET);
 } else {
 conn.setRequestMethod(HttpConnection.POST);
53

BlackBerry Application Developer Guide
 conn.setRequestProperty(
HttpProtocolConstants.HEADER_CONTENT_LENGTH,

 String.valueOf(postData.length));
 out = conn.openOutputStream();
 out.write(postData);
 }
 HttpHeaders requestHeaders = e.getHeaders();
 if (requestHeaders != null) {
 /* From
 http://www.w3.org/Protocols/rfc2616/rfc2616-

sec15.html#sec15.1.3
 ...
 Clients SHOULD NOT include a Referer header field in a
 (non-secure) HTTP request if the referring page was
 transferred with a secure protocol.*/
 String referer = requestHeaders.getPropertyValue("referer");
 boolean sendReferrer = true;
 if (referer != null && referer.startsWith("https:") &&

!absoluteUrl.startsWith("https:")) {
 sendReferrer = false;
 }
 int size = requestHeaders.size();
 for (int i = 0; i < size; i++) {
 String header = requestHeaders.getPropertyKey(i);
 // Remove refer header if needed.
 if (!sendReferrer && header.equals("referrer")) {
 requestHeaders.removeProperty(i);
 continue;
 }
 conn.setRequestProperty(header,

requestHeaders.getPropertyValue(i));
 }
 }
 } catch (IOException e1) {
 } finally {
 if (out != null) {
 try {
 out.close();
 } catch (IOException e2) {
 }
 }
 }
 BrowserContent browserField = getBrowserField(conn, e);
 _callbackApplication.displayBrowserField(browserField);
 break;
 }
 case Event.EVENT_BROWSER_CONTENT_CHANGED : {
 // Browser field title might have changed. Update title.
 break;
 }
 case Event.EVENT_REDIRECT : {
 RedirectEvent e = (RedirectEvent) event;
 switch (e.getType()) {
 case RedirectEvent.TYPE_SINGLE_FRAME_REDIRECT :
 // Show redirect message.
 Application.getApplication().invokeAndWait(new Runnable() {
54

5: BlackBerry Browser
 public void run() {
 Status.show("");
 }
 });
 break;
 case RedirectEvent.TYPE_JAVASCRIPT :
 case RedirectEvent.TYPE_META :
 case RedirectEvent.TYPE_300_REDIRECT :
 }
 String absoluteUrl = e.getLocation();
 HttpConnection conn = null;
 try {
 conn = (HttpConnection) Connector.open(absoluteUrl);
 } catch (IOException e1) {
 }
 BrowserContent browserField = getBrowserField(conn,

e.getOriginalEvent());
 _callbackApplication.displayBrowserField(browserField);
 break;
 }
 case Event.EVENT_CLOSE :
 // Close the appication.
 break;

 case Event.EVENT_TICK_CONTENT_READ : // No progress bar is supported.
 case Event.EVENT_SET_HEADER : // No cache support.
 case Event.EVENT_SET_HTTP_COOKIE : // No cookie support.
 case Event.EVENT_HISTORY : // No history support.
 case Event.EVENT_LOADING_IMAGES : // No progress bar is supported.
 case Event.EVENT_EXECUTING_SCRIPT : // No progress bar is supported.
 case Event.EVENT_FULL_WINDOW : // No full window support.
 case Event.EVENT_STOP : // No stop loading support.
 default :
 }
 return null;
 }
 /**
 * Retrieves the pixels of height available for provided browser content.
 * @param browserField Content for which to retrieve available pixels of

height.
 * @return Height available.
 */
 public int getAvailableHeight(BrowserContent browserField) {
 // Field has full screen.
 return Graphics.getScreenHeight();
 }
 /**
 * Retrieves the pixels of width available for provided browser content.
 */
 public int getAvailableWidth(BrowserContent browserField) {
 // Field has full screen.
 return Graphics.getScreenWidth();
 }
 /**
 * Retrieves the history position for provided browser content.
 */
55

BlackBerry Application Developer Guide
 public int getHistoryPosition(BrowserContent browserField) {
 // No history support.
 return 0;
 }
 /**
 * Retrieves cookies associated with a provided URL.
 */
 public String getHTTPCookie(String url) {
 // No cookie support.
 return null;
 }
 /**
 * Retrieves the specified resource.
 */
 public HttpConnection getResource(RequestedResource resource, BrowserContent

referrer) {
 if (resource == null) {
 return null;
 }
 // Check if this is cache-only request.
 if (resource.isCacheOnly()) {
 // No cache support.
 return null;
 }
 String url = resource.getUrl();
 if (url == null) {
 return null;
 }
 // If referrer is null, return the connection.
 if (referrer == null) {
 HttpConnection conn;
 try {
 return (HttpConnection) Connector.open(resource.getUrl());
 } catch (IOException e) {
 return null;
 }
 } else {
 // If referrer is provided, set up the connection on a
 // separate thread.
 Application.getApplication().invokeLater(
 new RetrieveThread(resource, referrer));
 }
 return null;
 }

 /**
 * Invokes the provided runnable object.
 */
 public void invokeRunnable(Runnable runnable) {
 (new Thread(runnable)).run();
 }
}
class RenderingThread implements Runnable {
 BrowserContent _browserField;
 RenderingThread(BrowserContent field) {
 _browserField = field;
56

5: BlackBerry Browser
 }
 public void run() {
 try {
 _browserField.finishLoading();
 } catch (RenderingException e) {
 }
 }
}

class RetrieveThread implements Runnable {
 BrowserContent _browserField;
 RequestedResource _resource;
 RetrieveThread(RequestedResource resource, BrowserContent referrer) {
 _browserField = referrer;
 _resource = resource;
 }
 public void run() {
 HttpConnection conn;
 try {
 conn = (HttpConnection) Connector.open(_resource.getUrl());
 } catch (IOException e) {
 return;
 }
 _resource.setHttpConnection(conn);
 _browserField.resourceReady(_resource);
 }
}
/**
 * BrowserFieldSampleApp.java
 * Copyright (C) 2002-2004 Research In Motion Limited.
 */

package com.rim.samples.docs.browser;

import net.rim.device.api.browser.field.BrowserContent;
import net.rim.device.api.system.Application;
import net.rim.device.api.ui.Manager;
import net.rim.device.api.ui.UiApplication;
import net.rim.device.api.ui.container.MainScreen;
import net.rim.device.api.ui.container.VerticalFieldManager;

import com.rim.samples.docs.browser.BasicRenderingApplication;
import com.rim.samples.docs.browser.BrowserFieldHandlerApplication;

public final class BrowserFieldSampleApp extends UiApplication implements
BrowserFieldHandlerApplication {

 VerticalFieldManager _vfm;

 // Constructor.
 BrowserFieldSampleApp() {
 MainScreen mainScreen = new MainScreen();
 _vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL |

Manager.VERTICAL_SCROLLBAR);
 mainScreen.add(_vfm);
 pushScreen(mainScreen);
57

BlackBerry Application Developer Guide

 // get and display the browser field on a separate thread
 this.invokeLater((new CreationThread(this)));
 }

 // Callback method for basic rendering application. Displays rendered browser
field.

 // @param browserField - browser field to display
 public void displayBrowserField(BrowserContent browserField) {
 synchronized (Application.getEventLock()) {
 _vfm.deleteAll();
 _vfm.add(browserField.getDisplayableContent());
 }
 }

 public static void main(String[] args) {
 BrowserFieldSampleApp app = new BrowserFieldSampleApp();
 app.enterEventDispatcher();
 }
}
class CreationThread extends Thread {
 BrowserFieldHandlerApplication _callBackApplication;
 BasicRenderingApplication _renderingApplication;
 public CreationThread(BrowserFieldHandlerApplication callBackApplication) {
 _callBackApplication = callBackApplication;
 }
 public void run() {
 _renderingApplication = new

BasicRenderingApplication(_callBackApplication);
 BrowserContent field =

_renderingApplication.getBrowserField("www.rim.com");
 _callBackApplication.displayBrowserField(field);
 }
}

Supporting additional MIME types
The browser page API, in the net.rim.device.api.browser.plugin package, enables third-party
applications to register themselves with the rendering library as rendering providers for specific MIME
types that are not currently supported by the BlackBerry Browser.

Register as rendering provider for a MIME type
To support additional MIME types, extend the BrowserContentProvider abstract class. To specify
display characteristics such as no scroll bar or full screen display, implement the BrowserPageContext
interface.

Note: The BrowserFieldProviderRegistry.register() method throws an exception if you try to register a MIME type
that is already supported by the BlackBerry Browser. For a list of supported MIME types, invoke
RenderingSession.getSupportedMimeType().
58

5: BlackBerry Browser
The rendering library invokes BrowserContentProvider.getAccept() and
BrowserContentProvider.getSupportedMimeTypes() to identify the MIME types the provider
renders.

List accepted MIME types
Implement getAccept() and getSupportedMimeTypes() to list the list of MIME types the provider
can accept given a set of rendering options. The getAccept() method considers the rendering options
that have been set; this example assumes that no rendering options are set. See RenderingOptions in
the API Reference for more information.

public String[] getAccept(RenderingOptions context) {
// Return subset of getSupportedMimeTypes() if accept depends in rendering
// options. For example HTML can be disabled in the rendering options, and
// HTMLConverter would remove html mime types.
return ACCEPT;

}
public String[] getSupportedMimeTypes() {

return ACCEPT;
}

Specify display characteristics
Implement the BrowserPageContext interface. If you do not implement this interface, default values
are used.

In this example, the properties are all integers. An application with Boolean, String, and Object
properties would implement the corresponding methods.

public boolean getPropertyWithBooleanValue(int id, boolean defaultValue) {
// TODO Auto-generated method stub
return false;

}
public int getPropertyWithIntValue(int id, int defaultValue) {

if (id == BrowserPageContext.DISPLAY_STYLE) {
// Disable the scroll bar.
return BrowserPageContext.STYLE_NO_VERTICAL_SCROLLBAR;

}
return 0;

}
public Object getPropertyWithObjectValue(int id, Object defaultValue) {

// TODO Auto-generated method stub
return null;

}
public String getPropertyWithStringValue(int id, String defaultValue) {

// TODO Auto-generated method stub
return null;

}

Retrieve a field to render the content

public BrowserContent getBrowserContent(BrowserContentProviderContext context)
throws RenderingException {

if (context == null) {
throw new RenderingException("No Context is passed into Provider");
59

BlackBerry Application Developer Guide
}

BrowserContentBaseImpl browserContentBaseImpl = new
BrowserContentBaseImpl(context.getHttpConnection().getURL(), null,
context.getRenderingApplication(),
context.getRenderingSession().getRenderingOptions(), context.getFlags());

VerticalFieldManager vfm = new VerticalFieldManager(Manager.VERTICAL_SCROLL);
vfm.add(new LabelField("Mime type: "));
vfm.add(new LabelField(ACCEPT[0]));
vfm.add(new SeparatorField());
vfm.add(new LabelField("Content of the resource file: \n"));
vfm.add(new SeparatorField());
try {

HttpConnection conn = context.getHttpConnection();
InputStream in = conn.openInputStream();
byte[] data = IOUtilities.streamToBytes(in);
vfm.add(new LabelField(new String(data)));

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
browserContentBaseImpl.setContent(vfm);
browserContentBaseImpl.setTitle(ACCEPT[0]);
// Set browser page context, this will tell the browser how to display this
// field.
browserContentBaseImpl.setBrowserPageContext(this);
return browserContentBaseImpl;

}

Register when the handheld starts
Create a library project and set its properties to auto-run on startup. In libMain(), invoke
BrowserFieldProviderRegistry.getInstance() and then invoke register().

public static void libMain(String[] args) {
BrowserContentProviderRegistry converterRegistry =
BrowserContentProviderRegistry.getInstance();
if (converterRegistry != null) {

converterRegistry.register(new BrowserPlugin());
}

}

Code example

Example: BrowserPlugin.java and LoaderApp.java

/**
 * LoaderApp.java
 * Copyright (C) 2004 Research In Motion Limited.
 */
package com.rim.samples.docs.browser;
import net.rim.device.api.browser.plugin.BrowserContentProviderRegistry;
60

5: BlackBerry Browser
final class LoaderApp {

 public static void libMain(String[] args) {
 BrowserContentProviderRegistry converterRegistry =

BrowserContentProviderRegistry.getInstance();
 if (converterRegistry != null) {
 converterRegistry.register(new BrowserPlugin());
 }
 }
}
/**
 * BrowserPlugin.java
 * Copyright (C) 2004 Research In Motion Limited.
 */
package com.rim.samples.docs.browser;

import java.io.IOException;
import java.io.InputStream;

import javax.microedition.io.HttpConnection;

import net.rim.device.api.browser.field.*;
import net.rim.device.api.browser.plugin.*;
import net.rim.device.api.ui.Manager;
import net.rim.device.api.ui.component.LabelField;
import net.rim.device.api.ui.component.SeparatorField;
import net.rim.device.api.ui.container.VerticalFieldManager;

/**
 * Create a file with xxtest extension and associate that type with
 * application/x-vnd.rim.xxxtest mime type on any server.
 */
public final class BrowserPlugin extends BrowserContentProvider implements

BrowserPageContext {

 private static final String[] ACCEPT = {"application/x-vnd.rim.xxxtest"};

 /**
 * Retrieves list of mime types this provider can accept given a set of rendering

options.
 * @param context Rendering options in place this provider should consider.
 * @return Array of mime types this provider will accept, given the provided

rendering options.
 */
 public String[] getAccept(RenderingOptions context) {
 // Return subset of getSupportedMimeTypes() if accept depends in rendering

options.
 // For example HTML can be disabled in the rendering options, and

HTMLConverter would remove
 // html MIME types.
 return ACCEPT;
 }
 /**
 * Retrieves a browser content capable of rendering the mime content this

provider can handle.
 * @param context Provider context object provided by rendering session.
61

BlackBerry Application Developer Guide
 * @return Browser content to render specialized content.
 */

 public BrowserContent getBrowserContent(BrowserContentProviderContext context)

throws RenderingException {

 if (context == null) {
 throw new RenderingException("No Context is passed into Provider");
 }

 BrowserContentBaseImpl browserContentBaseImpl = new

BrowserContentBaseImpl(context.getHttpConnection().getURL(),
 null, context.getRenderingApplication(),

context.getRenderingSession().getRenderingOptions(), context.getFlags());

 VerticalFieldManager vfm = new

VerticalFieldManager(Manager.VERTICAL_SCROLL);

 vfm.add(new LabelField("Mime type: "));
 vfm.add(new LabelField(ACCEPT[0]));
 vfm.add(new SeparatorField());
 vfm.add(new LabelField("Content of the resource file: \n"));
 vfm.add(new SeparatorField());

 try {
 HttpConnection conn = context.getHttpConnection();
 InputStream in = conn.openInputStream();
 int numBytes = in.available();
 byte[] data = new byte[numBytes];
 in.read(data, 0, numBytes);
 vfm.add(new LabelField(new String(data)));

 } catch (IOException e) {
 e.printStackTrace();
 }
 browserContentBaseImpl.setContent(vfm);
 browserContentBaseImpl.setTitle(ACCEPT[0]);
 // Set browser page context. This tells the browser how to display this

field.
 browserContentBaseImpl.setBrowserPageContext(this);

 return browserContentBaseImpl;
 }
 /**
 * Retrieves all the mime content types supported by this provider.
 * @return Mime types this converter supports.
 */

 public String[] getSupportedMimeTypes() {
 return ACCEPT;
 }

 /**
 * Retrieves value of specified property as a boolean value.
62

5: BlackBerry Browser
 * @param id ID of property to query.
 * @param defaultValue Expected default value of property.
 * @return Current value of property.
 */

 public boolean getPropertyWithBooleanValue(int id, boolean defaultValue) {
 return false;
 }
 /**
 * Retrieves value of specified property as an int.
 * @param id ID of property to query.
 * @param defaultValue Expected default value of property.
 * @return Current value of property.
 */
 public int getPropertyWithIntValue(int id, int defaultValue) {

 if (id == BrowserPageContext.DISPLAY_STYLE) {
 // Disable the scroll bar.
 return BrowserPageContext.STYLE_NO_VERTICAL_SCROLLBAR;
 }

 return 0;
 }
 /**
 * Retrieves value of specified property as an object.
 * @param id ID of property to query.
 * @param defaultValue Expected default value of property.
 * @return Current value of property.
 */

 public Object getPropertyWithObjectValue(int id, Object defaultValue) {
 return null;
 }
 /* Retrieves value of specified property as a String value.
 * @param id - ID of property to query.
 * @param defaultValue - Expected default value of property.
 * @return Current value of property.
 */
 public String getPropertyWithStringValue(int id, String defaultValue) {
 return null;
 }
}

63

BlackBerry Application Developer Guide
Registering as a HTTP filter
The HTTP filter API (net.rim.device.api.io.http) enables an application to register with the
browser as provider for a specific URL. When users type in the specified URL, the connection stack is
rerouted to the specified application.

Register as an HTTP filter
Invoke HttpFilterRegistry.registerFilter(). Provide as parameters the URL to intercept and the
package name of the application that defines interception behaviour.

HttpFilterRegistry.registerFilter("content.blackberry.com",
"com.rim.samples.device.httpfilterdemo.precanned");

Perform registration at startup
Create a library project and set its properties to auto-run on startup. Invoke registerFilter() in
libMain().

Code example
The following example consists of two files, PackageManager.java, which registers the filter on startup,
and Protocol.java, which defines the filter behavior.

Example: HTTP filter example

/**
 * PackageManager.java
 * Copyright (C) 2004 Research In Motion Limited. All rights reserved.
 */
package com.rim.samples.docs.httpfilterdemo;

import net.rim.device.api.io.http.HttpFilterRegistry;

/**
 * This class runs on startup of the device and registers the necessary http

filters.
 */
final class PackageManager
{
 public static void libMain(String[] args) {
 HttpFilterRegistry.registerFilter("www.blackberry.com",

"com.rim.samples.docs.httpfilterdemo.filter");
 }
}
/**
 * Protocol.java
 * Copyright (C) 2004 Research In Motion Limited. All rights reserved.
 */
package com.rim.samples.docs.httpfilterdemo.filter;

Note: Check for a ControlledAccessException when your application first accesses the HTTP filter API. This runtime
exception is thrown if the system administrator restricts access to the HTTP filter API using application control. See
�Application control� on page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more
information.
64

5: BlackBerry Browser
import net.rim.device.api.io.FilterBaseInterface;
import java.io.*;
import javax.microedition.io.*;

/**
 * This class implements a simple pass through mechanism that writes out the http

response headers to System.out.
 */
public final class Protocol implements FilterBaseInterface, HttpConnection {
 private HttpConnection _subConnection;

 /**
 * Defined by FilterBaseInterface.
 * This method opens a filtered Http Connection.
 */
 public Connection openFilter(String name, int mode, boolean timeouts) throws

IOException {
 _subConnection = (HttpConnection)Connector.open("http:" + name +

";usefilter=false", mode, timeouts);
 if (_subConnection != null) {
 return this;
 }

 // Filed to open the sub connection; so let us fail too.
 return null;
 }

 // Return a string representation of the URL for this connection.
 public String getURL() {
 return _subConnection.getURL();
 }

 // Returns the protocol name of the URL of this HttpConnection. e.g., http or
https.

 public String getProtocol() {
 return _subConnection.getProtocol();
 }

 // Returns the host information of the URL of this HttpConnection. e.g. host
name or IPv4 address.

 public String getHost() {
 return _subConnection.getHost();
 }

 // Returns the file portion of the URL of this HttpConnection.
 public String getFile() {
 return _subConnection.getFile();
 }

 /**
 * Returns the ref portion of the URL of this HttpConnection.
 * RFC2396 specifies the optional fragment identifier as the the text after the

crosshatch (#)
 * character in the URL. This information may be used by the user agent as

additional
65

BlackBerry Application Developer Guide
 * reference information after the resource is successfully retrieved. The
format and

 * interpretation of the fragment identifier is dependent on the media
type[RFC2046] of

 * the retrieved information.
 */
 public String getRef() {
 return _subConnection.getRef();
 }

 // Returns the network port number of the URL for this HttpConnection.
 public int getPort() {
 return _subConnection.getPort();
 }

 // Returns the query portion of the URL of this HttpConnection.
 // RFC2396 defines the query component as the text after the first
 // question-mark (?) character in the URL.
 public String getQuery() {
 return _subConnection.getQuery();
 }

 // Get the current request method. e.g. HEAD, GET, POST The default value is
GET.

 public String getRequestMethod() {
 return _subConnection.getRequestMethod();
 }

 // Set the method for the URL request, one of: GET, POST, HEAD, subject to
protocol restrictions. The default method is GET.

 public void setRequestMethod(String method) throws IOException {
 _subConnection.setRequestMethod(method);
 }

 // Returns the value of the named general request property for this connection.
 public String getRequestProperty(String key) {
 return _subConnection.getRequestProperty(key);
 }

 // Sets the general request property. If a property with the key already
exists, overwrite its value with the new value.

 // Note: HTTP requires all request properties which can legally have multiple
instances with the

 // same key to use a comma-separated list syntax which enables multiple
properties to be appended into a single property.

 public void setRequestProperty(String key, String value) throws IOException {
 System.out.println("Request property <key, value>: " + key + ", " + value);
 _subConnection.setRequestProperty(key, value);
 }

 // Returns the HTTP response status code.
 public int getResponseCode() throws IOException {
 return _subConnection.getResponseCode();
 }
66

5: BlackBerry Browser
 // Gets the HTTP response message, if any, returned along with the response
code from a server.

 public String getResponseMessage() throws IOException {
 return _subConnection.getResponseMessage();
 }

 // Returns the value of the expires header field.
 public long getExpiration() throws IOException {
 return _subConnection.getExpiration();
 }

 // Returns the value of the date header field.
 public long getDate() throws IOException {
 return _subConnection.getDate();
 }

 // Returns the value of the last-modified header field. The result is the
number of milliseconds since January 1, 1970 GMT.

 public long getLastModified() throws IOException {
 return _subConnection.getLastModified();
 }

 // Returns the value of the named header field.
 public String getHeaderField(String name) throws IOException
 {
 String value = _subConnection.getHeaderField(name);
 System.out.println("Response property <key, value>: " + name + ", " + value

);
 return value;
 }

 // Returns the value of the named field parsed as a number.
 public int getHeaderFieldInt(String name, int def) throws IOException {
 return _subConnection.getHeaderFieldInt(name, def);
 }

 // Returns the value of the named field parsed as date. The result is the
 // number of milliseconds since January 1, 1970 GMT represented by the named

field.
 public long getHeaderFieldDate(String name, long def) throws IOException {
 return _subConnection.getHeaderFieldDate(name, def);
 }

 // Gets a header field value by index.
 public String getHeaderField(int n) throws IOException {
 return _subConnection.getHeaderField(n);
 }

 // Gets a header field key by index.
 public String getHeaderFieldKey(int n) throws IOException {
 return _subConnection.getHeaderFieldKey(n);
 }

 // Returns the type of content that the resource connected to is providing.
 public String getType() {
67

BlackBerry Application Developer Guide
 return _subConnection.getType();
 }

 // Returns a string describing the encoding of the content which the resource
connected to is providing.

 public String getEncoding() {
 return _subConnection.getEncoding();
 }

 // Returns the length of the content which is being provided.
 public long getLength() {
 return _subConnection.getLength();
 }

 // Opens and returns an input stream for a connection.
 public InputStream openInputStream() throws IOException {
 return _subConnection.openInputStream();
 }

 // Opens and returns a data input stream for a connection.
 public DataInputStream openDataInputStream() throws IOException {
 return _subConnection.openDataInputStream();
 }

 // Opens and returns an output stream for a connection.
 public OutputStream openOutputStream() throws IOException {
 return _subConnection.openOutputStream();
 }

 // Opens and returns a data output stream for a connection.
 public DataOutputStream openDataOutputStream() throws IOException {
 return _subConnection.openDataOutputStream();
 }

 // Closes the connection.
 public void close() throws IOException {
 _subConnection.close();
 }
}

68

 6
Accessing the phone
application

Using the phone API
The phone API (net.rim.blackberry.api.phone) provides access to advanced features of the phone
application, such as enabling applications to inject DTMF tones into active calls.

Retrieve a phone call
To retrieve the active phone call, invoke Phone.getActiveCall(). To retrieve a phone call by call ID,
invoke Phone.getCall().

PhoneCall call = Phone.getActiveCall();

Retrieve phone call information
The PhoneCall class provides methods that enable applications to retrieve information about phone
calls. For example, the following code sample checks the length of the call, the status of the call, and
whether it is outgoing before displaying a message that includes the display phone number.

int threshold = 120; // Alert user if outgoing calls last longer than threshold.
int elapsedTime = call.getElapsedTime();
// Use getStatusString() to retrieve status as an string.
int status = call.getStatus();
if ((status == PhoneCall.STATUS_CONNECTED || status ==

PhoneCall.STATUS_CONNECTING) && call.isOutGoing() && elapsedTime > threshold) {
// Use getCallId() to retrieve the caller ID as as an integer.
String phoneNumber = call.getDisplayPhoneNumber();
Status.show("Your call to " + phoneNumber + " has lasted more than " +

(String)threshold + ".");
}

� Using the phone API
� Listening for phone events
� Accessing and managing phone logs

Tip: To simply invoke the phone application and place a phone call, use the invocation API
(net.rim.blackberry.api.invoke). See "Starting BlackBerry applications" on page 75 for more information.

Note: Check for a ControlledAccessException when your application first accesses the phone API. This runtime
exception is thrown if the system administrator restricts access to the phone API using application control. See �Application
control� on page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more information.

BlackBerry Application Developer Guide
Add DTMF tones
To add a single Dual Tone Multi Frequency (DTMF, or touch-tone) tone to the send queue, invoke
sendDTMFTone(). To add multiple tones to the send queue, invoke sendDTMFTones().

Retrieve the send queue for the current call
Invoke getDTMFTones().

Listening for phone events
Implement the PhoneListener interface and then invoke Phone.addPhoneListener() to register the
phone listener with the system.

To de-register a phone listener, invoke removePhoneListener().

To act on a particular event, implement one of the following methods.

Accessing and managing phone logs
The phone logs API (net.rim.blackberry.api.phone.phonelogs) enables applications to access the
phone application log files. The phone call history consists of call logs, which represent individual phone
calls, grouped into a phone log.

Note: Handhelds play DTMF tones as soon as no other tones are pending, overriding conversations.

Method Description

callAdded(int callId) This method is invoked when a call is added to a conference call.

callAnswered(int callId) This method is invoked when a user answers a call (user driven).

callConferenceCallEstablished(int callId) This method is invoked when a conference call is established.

callConnected(int callId) This method is invoked when the network indicates a connected event
(network driven).

callDirectConnectConnected(int callId) This method is invoked when a direct-connect call is connected.

callDirectConnectDisconnected(int callId) This method is invoked when a direct-connect call is disconnected.

callDisconnected(int callId) This method is invoked when a call is disconnected.

callEndedByUser(int callId) This method is invoked when a user ends the call.

callFailed(int callId, int reason) This method is invoked when a call fails.

callHeld(int callId) This method is invoked when a call goes on hold.

callIncoming(int callId) This method is invoked when a new call arrives.

callInitiated(int callid) This method is invoked when an outgoing call is initiated by the handheld.

callRemoved(int callId) This method is invoked when a call is removed from a conference call.

callResumed(int callId) This method is invoked when a held call resumes.

callWaiting(int callid) This method is invoked when a call is waiting.

conferenceCallDisconnected(int callId) This method is invoked when a conference call is ended (all members are
disconnected).
70

6: Accessing the phone application
Retrieve phone logs
The PhoneLogs class represents the phone call history. It provides method that enables you to open,
add, delete, or swap call logs.

To retrieve a phone log, invoke PhoneLogs.getInstance().

PhoneLogs _logs = PhoneLogs.getInstance();

Retrieve the number of calls in a folder
The phone logs are divided into two folders: FOLDER_NORMAL_CALLS and FOLDER_MISSED_CALLS. To
retrieve the number of calls in a folder, invoke numberOfCalls().

int numberOfCalls = _logs.numberOfCalls(FOLDER_NORMAL_CALLS);

Retrieve a call log
Invoke PhoneLogs.callAt().

You can instantiate two types of call logs: PhoneCallLog objects, which can only have one participant,
and ConferencePhoneCallLog objects, which have two or more participants. These objects enable you
to retrieve or change call log information, such as the participants or the date of the call.

PhoneCallLog phoneLog = (PhoneCallLog)_logs.callAt(0);

Retrieve a call participant
The PhoneCallLogID class identifies participants in phone call log by phone number. Invoke
PhoneCallLog.getParticipant() or ConferencePhoneCallLog.getParticipantAt() to retrieve
a participant.

PhoneCallLogID participant = phoneLogs.getParticipant();

Add a call log

To create a new phone or conference call log, invoke the PhoneCallLog() or
ConferencePhoneCallLog() constructor. Provide as parameters the date, duration, participants and
notes for the call.

Date date = new Date("1000"); // date of call
int duration = 60; // duration of call
PhoneCallLogID caller1 = new PhoneCallLogID("555-1234"); // first participant
PhoneCallLogID caller2 = new PhoneCallLogID("555-1235"); // second participant
String notes = "New call."; // notes
ConferencePhoneCallLog conferenceCall = new ConferencePhoneCallLog(date, duration,

PhoneLogs.FOLDER_NORMAL_CALLS, caller1, caller2, notes);

To add this object to the phone log at the next available index, invoke PhoneLogs.addCall().

Tip: The PhoneCallLogID constructor strips dashes and other non-numeric characters from phone numbers.
71

BlackBerry Application Developer Guide
_logs.addCall(conferenceCall);

To replace the call log at a given index with a new call log, invoke PhoneLogs.swapCall().

_logs.swapCall(conferenceCall, 0, FOLDER_NORMAL_CALLS);

Delete a call log
Invoke PhoneLogs.deleteCall().

_logs.deleteCall(0);

Code example
The following code example calculates the time spent on the phone with a given participant.

Example: PhoneLogsDemo.java

/**
 * PhoneLogsDemo.java
 * Copyright (C) 2001-2004 Research In Motion Limited. All rights reserved.
 */
package com.rim.samples.docs.phonelogs;

import net.rim.blackberry.api.phone.phonelogs.*;
import java.lang.*;

public class PhoneLogsDemo {
 private PhoneLogs _logs;
 static public void main(String[] args) {
 PhoneLogsDemo phoneLogsDemo = new PhoneLogsDemo();
 PhoneCallLogID participant = new PhoneCallLogID("5551234");
 int timeSpokenTo = phoneLogsDemo.findTimeSpokenTo(participant,
 PhoneLogs.FOLDER_NORMAL_CALLS);
 }
 private PhoneLogsDemo() {
 _logs = PhoneLogs.getInstance();
 }
 public void close() {
 }
 // Returns the number of seconds spent on the phone with a participant.
 public int findTimeSpokenTo(PhoneCallLogID participant,
 long folder) {
 int numberOfCalls = this._logs.numberOfCalls(folder);
 int timeSpokenTo = 0;
 PhoneCallLog phoneCallLog;
 ConferencePhoneCallLog conferencePhoneCallLog;
 for (int i = 0; i < numberOfCalls; i++) {
 Object o = _logs.callAt(i, folder);
 if (o instanceof PhoneCallLog) {

Note: The swapCall() method deletes the call at the given index.
72

6: Accessing the phone application
 phoneCallLog = (PhoneCallLog)_logs.callAt(i, folder);
 if (phoneCallLog.getParticipant() == participant)
 timeSpokenTo += phoneCallLog.getDuration();
 } else {
 conferencePhoneCallLog = (ConferencePhoneCallLog)_logs.callAt(i,

folder);
 int participants = conferencePhoneCallLog.numberOfParticipants();
 for (int j = 0; j < participants; j++)
 if (conferencePhoneCallLog.getParticipantAt(j) == participant) {
 timeSpokenTo += conferencePhoneCallLog.getDuration();
 j = participants;
 }
 }
 }
 return timeSpokenTo;
 }
}

73

BlackBerry Application Developer Guide
74

 7
Communicating with
BlackBerry applications

Starting BlackBerry applications
The invocation APIs (net.rim.blackberry.api.invoke) enable applications to start standard
BlackBerry applications.

To start an application, call Invoke.invokeApplication() with the appropriate constant and an
object of the appropriate ApplicationArguments subclass.

The following excerpt from the Restaurants.java code example creates a menu item that invokes the
phone application to call a restaurant.

private MenuItem phoneItem = new MenuItem(_resources.getString(MENUITEM_PHONE),
110, 12) {
public void run() {

synchronized(store) {
String phoneNumber = phonefield.getText();
if (phoneNumber.length == 0) {

Dialog.alert(_resources.getString(ALERT_NO_PHONENUMBER));
} else {

PhoneArguments call = new PhoneArguments(PhoneArguments.ARG_CALL,
phoneNumber);

� Starting BlackBerry applications
� Adding menu items to BlackBerry applications
� Code example

Note: Check for a ControlledAccessException if your application invokes the phone. This runtime exception is thrown
if the system administrator restricts access to the phone application using application control. See �Application control� on
page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more information.

Note: Calling Invoke.invokeApplication() results in a process context switch. When the BlackBerry application is
started, your application loses control. When the started application session ends, context might not return to your
application.

Application Constant Class

Address book APP_TYPE_ADDRESSBOOK AddressBookArguments

Calendar APP_TYPE_CALENDAR CalendarArguments

Memo pad APP_TYPE_MEMOPAD MemoArguments

Messages APP_TYPE_MESSAGES MessageArguments

Phone APP_TYPE_PHONE PhoneArguments

Tasks APP_TYPE_TASKS TaskArguments

Tips: The BlackBerry Browser is invoked from the browser application API (net.rim.blackberry.api.browser). See
"Display web content in the browser" on page 47 for more information.

The phone API (net.rim.blackberry.api.phone) provides access to advanced features of the phone application. See
"Using the phone API" on page 65 for more information.

BlackBerry Application Developer Guide
Invoke.invokeApplication(Invoke.APP_TYPE_PHONE, call);
}

}
}

};

Adding menu items to BlackBerry
applications

The application menu item API, in the net.rim.blackberry.api.menuitem package, enables you to
add menu items to BlackBerry applications.

For example, to integrate a customer relationship management application with the BlackBerry address
book application, add a View Sales Order menu item. When users click the View Sales Order menu item,
the application opens with a list of sales orders that the contact has placed.

The ApplicationMenuItemRepository class enables you to add or remove application menu items. It
provides constants that define the application contexts in which a menu item can appear. For example,
the ApplicationMenuItemRepository.MENUITEM_MESSAGE_LIST constant specifies that the menu item
appears when the messages screen is open.

The abstract ApplicationMenuItem class defines an item that appears in an application menu. To create
a menu item, extend the ApplicationMenuItem class.

Create an application menu item
To create an application menu item, extend the abstract ApplicationMenuItem class.

public class SampleMenuItem extends ApplicationMenuItem { ... }

Specify the position of the menu item in the menu
You can optionally override the constructor. In the following code sample, the constructor invokes
ApplicationMenuItem() with an integer that specifies the relative order of the item in the menu (a
higher number means that the menu item appears lower in the menu).

SampleMenuItem() {
super(20);

}

Specify the menu item text

To specify the text that appears on the menu, implement toString().

public String toString() {
return "Open the Contacts Demo application";

}

Specify menu item behavior
To specify the behavior of the menu item, implement run().

public Object run(Object context) {
Contact c = (Contact)context; //an error if this doesn't work
76

7: Communicating with BlackBerry applications
if (c ! null) {
new ContactsDemo().enterEventDispatcher();

} else {
throw new IllegalStateException("Context is null, expected a Contact

instance");
}
Dialog.alert("Viewing an email message in the email view");
return null;

}

Register the application menu item
Retrieve the application menu item repository
Invoke ApplicationMenuItemRepository.getInstance().

ApplicationMenuItemRepository repository =
ApplicationMenuItemRepository.getInstance();

Define a unique ID
Use the hash of the package name as the unique long ID for the application menu item repository.

long ID = 0x7cab1e23b72a0033L; //hash of com.rim.samples.docs.menuitem

Create your application menu item
Invoke the constructor.

TestApplicationMenuItem tami = new TestApplicationMenuItem();

Add the menu item to the repository
Invoke addMenuItem().

repository.addMenuItem(ApplicationMenuItemRepository.MENUITEM_ADDRESSCARD_VIEW,
tami);

Code example
The following code example creates a menu item that appears when a user views a contact in the
address book. When a user clicks the menu item, the Contacts Demo application appears.

Example: DemoAppMenuItem.java

/**
 * DemoApplicationMenuItem.java
 * Copyright (C) 2003 Research In Motion Limited.
*/

package com.rim.samples.docs.menuitem;
import net.rim.device.api.system.*;
import net.rim.device.api.ui.component.Dialog.*;
import net.rim.blackberry.api.menuitem.*;
import javax.microedition.pim.*;
77

BlackBerry Application Developer Guide
import com.rim.samples.docs.contactsdemo.*;

public final class DemoAppMenuItem extends Application {
 private static long ID = 0x7cab1e23b72a0033L;
 //com.rim.samples.docs.menuitem

 public static void main(String[] args) {
 DemoAppMenuItem app = new DemoAppMenuItem();
 app.enterEventDispatcher();
 }

 DemoAppMenuItem() {
 ApplicationMenuItemRepository amir =
 ApplicationMenuItemRepository.getInstance();
 amir.addMenuItem(ApplicationMenuItemRepository.MENUITEM_ADDRESSCARD_VIEW,
 new SampleMenuItem());
 }

 private static class SampleMenuItem extends ApplicationMenuItem {
 SampleMenuItem() {
 super(20);
 }

 public String toString() {
 return "Open the Contacts Demo";
 }

 public Object run(Object context) {
 Contact c = (Contact)context; //an error if this doesn’t work
 if (c != null) {
 new ContactsDemo().enterEventDispatcher();
 } else {
 throw new IllegalStateException("Context is null, expected a

Contact instance");
 }
 net.rim.device.api.ui.component.Dialog.alert("Viewing an email message

in the email view");
 return null;
 }
 }
}

78

 8
Storing persistent data

Storage options
Store data on the handheld in one of the following ways:

� using Mobile Information Device Profile (MIDP) record stores

� using the BlackBerry persistence model

Use the MIDP implementation if you want your application to be portable across multiple devices that
are compatible with the Java� 2 Platform, Micro Edition (J2ME). If you are writing an application
specifically for BlackBerry handhelds, use the BlackBerry persistence model because it provides a more
flexible and efficient way to store data.

MIDP record store
The javax.microedition.rms package provides the MIDP record store implementation. Persistent
data is stored in RecordStore objects. A record store can be a maximum of 64 KB.

Discrete units of data are called records. A record is an array of bytes that is assigned a unique
identification number.

Create a record store
Invoke openRecordStore(). Specify true to indicate that the record store should be created if it does
not exist.

RecordStore store = RecordStore.openRecordStore("Contacts", true);

Add a record
Invoke addRecord().

int id = store.addRecord(_data.getBytes(), 0, data.length());

Retrieve a record
To retrieve a record, invoke getRecord(). Provide the record ID as parameter.

byte[] data = new byte[store.getRecordSize(id)];
store.getRecord(id, data, 0);
String dataString = new String(data);

� Storage options
� Managing persistent data
� Managing custom objects

Notes: When an application is deleted from a handheld, all record stores created by that application are also deleted.

Each record store has a unique name within a MIDlet suite. A MIDlet can only access record stores that are created by a
MIDlet in the same suite.

BlackBerry Application Developer Guide
Retrieve all records
Open the record store and then retrieve the enumeration.

RecordStore store = RecordStore.openRecordStore("Contacts", false);
RecordEnumeration e = store.enumerateRecords(null, null, false);

The enumerateRecords(RecordFilter filter, RecordComparator comparator, Boolean
keepUpdated) method accepts the following parameters:

BlackBerry persistent storage
There are two main differences between the MIDP record store (RecordStore) and the BlackBerry
persistence model (PersistentStore):

� Data storage: MIDP records store data only as byte arrays. In contrast, the BlackBerry APIs enable
you to save any object format in the persistent store. As a result, searching for stored data is much
faster than in the record model. To store custom object types, the class must implement the
Persistable interface.

� Data sharing: In MIDP, each RecordStore belongs to a single MIDlet suite and a MIDlet can only
access record stores that are created by a MIDlet in the same suite. In the BlackBerry persistence
model, however, data can be shared between applications, at the discretion of the application that
creates the data. Code signing ensures that only authorized applications can access the data.

Conserving storage space
BlackBerry handhelds have limited storage space. You should design your application carefully to
minimize the amount of memory that is required to store persistent data.

On a typical BlackBerry handheld, the storage space not required for standard BlackBerry applications
must be shared between all applications to store user data, including calendar appointments, contacts,
and email messages.

If the handheld is operating with low memory, it might perform the following actions to free memory
space:

� delete old email messages from the handheld

� delete calendar appointments that are more than 1 week old from the handheld (if wireless calendar
synchronization is enabled)

If the handheld deletes email messages or calendar appointments because of low memory, the data is
not deleted from the desktop email program.

Parameter Description

filter This parameter specifies a RecordFilter object to retrieve a subset of record store records (if null, all
record store records are returned).

comparator This parameter specifies a RecordComparator object to determine the order in which records are
returned (if null, records are returned in an undefined order).

keepUpdated This parameter determines whether the enumeration is kept current with changes to the record store.

Note: The BlackBerry persistence API is available only with BlackBerry handheld software version 3.6 or later. For earlier
versions of handheld software, you must use the MIDP record store.

Tip: Users can view the current amount of available data storage by clicking Status in the handheld options.
80

8: Storing persistent data
Backup and restore
The synchronization API, in the net.rim.device.api.synchronization package, enables you to
back up and restore custom persistent data on the handheld. See "Adding support for backing up data"
on page 94 for more information.

Security
By default, applications on the handheld that have been digitally signed by RIM can access your data in
the persistent store. Contact RIM for information on how to control access to your data.

Administrative control
With the BlackBerry Enterprise Server version 3.5 Service Pack 2 or later for Microsoft® Exchange or
BlackBerry Enterprise Server version 2.2 or later for IBM® Lotus® Domino®, system administrators can
use IT policies to control the use of persistent storage by third-party applications.

Administrators can set the IT policy item ALLOW_USE_PERSISTENT_STORE to TRUE or FALSE. By default,
third-party applications are allowed to use persistent storage (ALLOW_USE_PERSISTENT_STORE is TRUE).

Data integrity
To maintain the integrity of data in persistent storage, partial updates are not made if an error occurs
during a commit.

Managing persistent data

Persistent data types
A custom data type can be stored persistently if its class implements the Persistable interface.

The following native data types can also be stored persistently.

� java.lang.Boolean

� java.lang.Byte

� java.lang.Character

� java.lang.Integer

� java.lang.Long

� java.lang.Object

� java.lang.Short

� java.lang.String

� java.util.Vector

� java.util.Hashtable

Note: This policy item does not affect the use of the MIDP record store.

Note: Data integrity can be compromised when the VM performs an emergency garbage collection due to low memory. In
this case, outstanding transactions are committed immediately. If the handheld fails during this operation, the partially
completed transactions are committed when the handheld starts. Outstanding transactions are not committed during
normal garbage collection.

Note: When you persist an object, any persistable objects that it refers to are also persisted.
81

BlackBerry Application Developer Guide
Create a persistent database
Each application typically creates a single PersistentObject. This object is the root database of
persistent data and indexes for the application. The application saves data into this PersistentObject.

Each PersistentObject is identified by a unique long key. This key is typically a hash of the fully
qualified package name.

Create a unique long key
1. In the IDE, type a string value, such as com.rim.samples.docs.userinfo.

2. Select this string.

3. Right-click and click Convert 'com.rim.samples.docs.userinfo' to long. The long value appears.

static PersistentObject store;
static {

store = PersistentStore.getPersistentObject(0xa1a569278238dad2L);
}

Store data persistently
To save data to the persistent store, invoke setContents() on a PersistentObject. This method
replaces existing content with the new content. Invoke commit() to save to the persistent store.

String[] userinfo = {username, password};
synchronized(store) {

store.setContents(userinfo);
store.commit();

}

If you have a number of objects that you want to commit to the store, you can commit them in a batch
transaction. To do this, invoke PersistentStore.getSynchObject() to retrieve the persistent store
monitor locking object. Then synchronize on that object, and invoke commit() as necessary. When you
release the synchronization on the monitor object, all your transactions are committed at once. If any
commit in the batch fails, then the entire batch transaction fails. If you invoke forceCommit() while
synchronized on the monitor object, this object is immediately committed and is not part of the batch
transaction.

Retrieve persistent data
Invoke getContents() on a PersistentObject.

Perform an explicit cast on the object that is returned by PersistentObject.getContents() to
convert it to your desired format.

Tip: Use a static constructor so that the PersistentObject is created only once, the first time that an object of this class
is created. Each time a process starts, the static blocks that it contains are run again.

Note: When an application is deleted from a handheld, all persistent objects created by that application are also deleted.

Tip: Include a comment in your code to indicate the string used to generate the long key.

Note: If an error occurs during a commit, partial updates are not committed. Data in the PersistentObject retains the
values from the last commit in order to preserve data integrity.
82

8: Storing persistent data
synchronized(store) {
String[] currentinfo = (String[])store.getContents();
if(currentinfo == null) {

Dialog.alert(_resources.getString(APP_ERROR));
} else {

currentusernamefield.setText(currentinfo[0]);
currentpasswordfield.setText(currentinfo[1]);

}
}

Delete a database
To delete a database, invoke PersistentStore.destroyPersistentObject(). Provide a unique key
for the PersistentObject as a parameter.

To delete individual data, simply treat the data as normal objects and remove references to it. The data is
garbage collected automatically.

Code example
The UserInfo.java example demonstrates how to create an application for users to view their current user
name and password, type a new user name and password, and save changes.

Example: UserInfo.java

/**
 * UserInfo.java
 * Copyright (C) 2001-2004 Research In Motion Limited. All rights reserved.
 */

package com.rim.samples.docs.userinfo;

import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import java.util.*;
import net.rim.device.api.i18n.*;
import com.rim.samples.docs.baseapp.*;

public class UserInfo extends BaseApp implements UserInfoResource,
 KeyListener, TrackwheelListener {

 private static PersistentObject store;

Tip: When an application first accesses a database, it should verify the order of any indexes and recreate the index if a
problem exists. Applications should also be able to identify and correct any problems with corrupt or missing data. See
"Data integrity" on page 81 for more information.

Notes: The PersistentObject is used as the root database for the application. By deleting it, you permanently remove
all persistent data that the application has stored.

If the .cod file that defines a PersistentStore is deleted, all persistent objects created by that .cod are also deleted.
83

BlackBerry Application Developer Guide
 private static ResourceBundle _resources;
 private AutoTextEditField usernamefield;
 private PasswordEditField passwordfield;
 private AutoTextEditField currentusernamefield;
 private AutoTextEditField currentpasswordfield;

 static {
 _resources = ResourceBundle.getBundle(
 UserInfoResource.BUNDLE_ID, UserInfoResource.BUNDLE_NAME);
 store = PersistentStore.getPersistentObject(0xa1a569278238dad2L);
 }

 private MenuItem saveItem = new MenuItem(_resources.getString(MENUITEM_SAVE),
110, 10) {

 public void run() {
 String username = usernamefield.getText();
 String password = passwordfield.getText();
 String[] userinfo = {username, password};
 synchronized(store) {
 store.setContents(userinfo);
 store.commit();
 }

 Dialog.inform(_resources.getString(APP_SUCCESS));

 usernamefield.setText(null);
 passwordfield.setText(null);
 }
 };

 private MenuItem getItem = new MenuItem(_resources.getString(MENUITEM_GET),
110, 11) {

 public void run() {
 synchronized(store) {
 String[] currentinfo = (String[])store.getContents();
 if(currentinfo == null) {
 Dialog.alert(_resources.getString(APP_ERROR));
 } else {
 currentusernamefield.setText(currentinfo[0]);
 currentpasswordfield.setText(currentinfo[1]);
 }
 }
 }
 };

 public static void main(String[] args) {
 UserInfo app = new UserInfo();
 app.enterEventDispatcher();
 }

 public UserInfo() {
 MainScreen mainScreen = new MainScreen();
 mainScreen.setTitle(new LabelField(
 _resources.getString(APPLICATION_TITLE)));

 usernamefield = new AutoTextEditField(
84

8: Storing persistent data
 _resources.getString(FIELD_NAME), "");
 passwordfield = new PasswordEditField(
 _resources.getString(FIELD_PASSWORD), "");
 currentusernamefield = new AutoTextEditField(
 _resources.getString(FIELD_CURRENTNAME), "");
 currentpasswordfield = new AutoTextEditField(
 _resources.getString(FIELD_CURRENTPASSWORD), "");

 SeparatorField separator = new SeparatorField();

 mainScreen.add(usernamefield);
 mainScreen.add(passwordfield);
 mainScreen.add(separator);
 mainScreen.add(currentusernamefield);
 mainScreen.add(currentpasswordfield);
 mainScreen.addKeyListener(this);
 mainScreen.addTrackwheelListener(this);
 pushScreen(mainScreen);
 }
 public void makeMenu(Menu menu, int instance) {
 menu.add(saveItem);
 menu.add(getItem);
 super.makeMenu(menu, 0);
 }
 public void onExit() {
 Dialog.alert(_resources.getString(APP_EXIT));
 }
}

Managing custom objects

Create a database
Create a Vector object to store multiple objects. Create a PersistentObject as the root database of
your application.

private static Vector _data;
PersistentObject store;
static {

store = PersistentStore.getPersistentObject(0xdec6a67096f833cL);
//key is hash of test.samples.restaurants
_data = (Vector)store.getContents();
synchronized (store) {

if (_data == null) {
_data = new Vector();
store.setContents(_data);
store.commit();

}
}

}

85

BlackBerry Application Developer Guide
Store data persistently
Objects that implement the Persistable interface are persistent.

The following code sample implements the Persistable interface as an inner class. It defines an
Object array with four elements to store a restaurant name, address, phone number, and specialty, and
methods to retrieve and set values for Object elements.

private static final class RestaurantInfo implements Persistable {
private String[] _elements;
public static final int NAME = 0;
public static final int ADDRESS = 1;
public static final int PHONE = 2;
public static final int SPECIALTY = 3;
public RestaurantInfo() {

_elements = new String[4];
for (int i = 0; i < _elements.length; ++i) {

_elements[i] = new String("");
}

}
public String getElement(int id) {

return _elements[id];
}
public void setElement(int id, String value) {

_elements[id] = value;
}

}

Create expandable objects
Use the following strategies to allow you to add fields to your objects:

� Store Boolean values as bits in an int. Reserve extra bits for future use.

� Store Strings directly, but use a vector or hashtable of key/value pairs so that additional (or
seldom-used fields) can be added.

� If you have indexes on a table, store them in a vector or array so that you can add further indexes.

Save an object
Define an object
The following code sample creates a RestaurantInfo object, and uses its set methods to define its
components.

RestaurantInfo info = new RestaurantInfo();
info.setElement(RestaurantInfo.NAME, namefield.getText());
info.setElement(RestaurantInfo.ADDRESS,addressfield.getText());
info.setElement(RestaurantInfo.PHONE, phonefield.getText());
info.setElement(RestaurantInfo.SPECIALTY, specialtyfield.getText());

Note: A class must explicitly implement Persistable for objects of the class to be saved persistently. This requirement
applies even to subclasses. For example, if class A implements Persistable, and it has a subclass B, objects of subclass B
cannot be stored persistently unless class B also implements Persistable.
86

8: Storing persistent data
Add the object to a vector
Invoke addElement().

_data.addElement(info);

Save the updated data
Invoke setContents() and commit() on the PersistentObject to save the updated data.

synchronized(store) {
store.setContents(_data);
store.commit();

}

Retrieve an object
To retrieve the most recently saved object, invoke _data.lastElement() .

public void run() {
synchronized(store) {

_data = (Vector)store.getContents();
if (!_data.isEmpty()) { RestaurantInfo info =

(RestaurantInfo)_data.lastElement();
namefield.setText(info.getElement(RestaurantInfo.NAME));
addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));
phonefield.setText(info.getElement(RestaurantInfo.PHONE));
specialtyfield.setText(info.getElement(
RestaurantInfo.SPECIALTY));

}
}

}

Code example
The Restaurants.java code example demonstrates how to create an application that enables users to
store information about a favorite restaurant.

This code example enables users to save information about multiple restaurants and view information
about the most recently saved restaurant.

Example: Restaurants.java

 /**
 * Restaurants.java
 * Copyright (C) 2004 Research In Motion Limited.
 */

package com.rim.samples.docs.restaurants;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.*;

Tip: Synchronize on the persistent object when you make changes so that other threads cannot make changes to the object
at the same time.
87

BlackBerry Application Developer Guide
import net.rim.device.api.util.*;
import java.util.*;
import net.rim.device.api.i18n.*;
import net.rim.blackberry.api.invoke.*;
import net.rim.blackberry.api.browser.*;
import com.rim.samples.docs.baseapp.*;

public class Restaurants extends BaseApp implements RestaurantResource,
 KeyListener, TrackwheelListener {

 private AutoTextEditField namefield;
 private AutoTextEditField addressfield;
 private EditField phonefield;
 private EditField websitefield;
 private EditField specialtyfield;

 private static Vector _data;
 private static PersistentObject store;
 private static ResourceBundle _resources;

 private MenuItem saveItem = new MenuItem(_resources.getString(MENUITEM_SAVE),

110, 10) {
 public void run() {
 RestaurantInfo info = new RestaurantInfo();

 info.setElement(RestaurantInfo.NAME, namefield.getText());
 info.setElement(RestaurantInfo.ADDRESS, addressfield.getText());
 info.setElement(RestaurantInfo.PHONE, phonefield.getText());
 info.setElement(RestaurantInfo.WEBSITE, phonefield.getText());
 info.setElement(RestaurantInfo.SPECIALTY,
 specialtyfield.getText());

 _data.addElement(info);

 synchronized(store) {
 store.setContents(_data);
 store.commit();
 }
 Dialog.inform(_resources.getString(APP_SUCCESS));
 namefield.setText(null);
 addressfield.setText(null);
 phonefield.setText("");
 websitefield.setText("");
 specialtyfield.setText("");
 }
 };

 private MenuItem getItem = new MenuItem(_resources.getString(MENUITEM_GET),

110, 11) {
 public void run() {
 synchronized(store) {
 _data = (Vector)store.getContents();
 if (!_data.isEmpty()) {
 RestaurantInfo info = (RestaurantInfo)_data.lastElement();
 namefield.setText(info.getElement(RestaurantInfo.NAME));
 addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));
88

8: Storing persistent data
 phonefield.setText(info.getElement(RestaurantInfo.PHONE));
 websitefield.setText(info.getElement(RestaurantInfo.WEBSITE));

specialtyfield.setText(info.getElement(RestaurantInfo.SPECIALTY));
 }
 }
 }
 };

 private MenuItem phoneItem = new MenuItem(_resources.getString(MENUITEM_PHONE),

110, 12) {
 public void run() {
 synchronized(store) {
 String phoneNumber = phonefield.getText();
 if (phoneNumber.length() == 0) {
 Dialog.alert(_resources.getString(ALERT_NO_PHONENUMBER));
 } else {
 PhoneArguments call = new

PhoneArguments(PhoneArguments.ARG_CALL, phoneNumber);
 Invoke.invokeApplication(Invoke.APP_TYPE_PHONE, call);
 }
 }
 }
 };
 private MenuItem browserItem = new

MenuItem(_resources.getString(MENUITEM_BROWSER), 110, 12) {
 public void run() {
 synchronized(store) {
 String websiteUrl = websitefield.getText();
 if (websiteUrl.length() == 0) {
 Dialog.alert(_resources.getString(ALERT_NO_WEBSITE));
 } else {
 BrowserSession visit = Browser.getDefaultSession();
 visit.displayPage(websiteUrl);
 }
 }
 }
 };
 static {
 _resources = ResourceBundle.getBundle(
 RestaurantResource.BUNDLE_ID,
 RestaurantResource.BUNDLE_NAME);
 store = PersistentStore.getPersistentObject(0xdec6a67096f833cL);
 // Key is hash of test.samples.restaurants.
 synchronized (store) {
 _data = (Vector)store.getContents();
 if (_data == null) {
 _data = new Vector();
 store.setContents(_data);
 store.commit();
 }
 }

 }

 public static void main(String[] args) {
89

BlackBerry Application Developer Guide
 Restaurants app = new Restaurants();
 app.enterEventDispatcher();
 }
 private static final class RestaurantInfo implements Persistable {

 // Data.
 private String[] _elements;

 // Fields.
 public static final int NAME = 0;
 public static final int ADDRESS = 1;
 public static final int PHONE = 2;
 public static final int WEBSITE = 3;
 public static final int SPECIALTY = 4;

 public RestaurantInfo() {
 _elements = new String[4];
 for (int i = 0; i < _elements.length; ++i) {
 _elements[i] = new String("");
 }
 }

 public String getElement(int id) {
 return _elements[id];
 }

 public void setElement(int id, String value) {
 _elements[id] = value;
 }
 }

 public Restaurants() {
 MainScreen mainScreen = new MainScreen();
 mainScreen.setTitle(new LabelField(
 _resources.getString(APPLICATION_TITLE)));
 namefield = new AutoTextEditField(
 _resources.getString(FIELD_NAME), "");
 addressfield = new AutoTextEditField(
 _resources.getString(FIELD_ADDRESS), "");
 phonefield = new EditField(
 _resources.getString(FIELD_PHONE), "", Integer.MAX_VALUE,
 BasicEditField.FILTER_PHONE);
 websitefield = new EditField(
 _resources.getString(FIELD_WEBSITE), "", Integer.MAX_VALUE,
 BasicEditField.FILTER_URL);
 specialtyfield = new EditField(
 _resources.getString(FIELD_SPECIALTY), "",
 Integer.MAX_VALUE, BasicEditField.FILTER_DEFAULT);

 mainScreen.add(namefield);
 mainScreen.add(addressfield);
 mainScreen.add(phonefield);
 mainScreen.add(websitefield);
 mainScreen.add(specialtyfield);
 mainScreen.addKeyListener(this);
90

8: Storing persistent data
 mainScreen.addTrackwheelListener(this);
 pushScreen(mainScreen);
 }

 public void makeMenu(Menu menu, int instance) {
 menu.add(saveItem);
 menu.add(getItem);
 menu.add(phoneItem);
 menu.add(browserItem);
 super.makeMenu(menu, instance);
 }

 public void onExit() {
 Dialog.alert(_resources.getString(APP_EXIT));
 }
}

91

BlackBerry Application Developer Guide
92

 9
Backing up and restoring
persistent data

Synchronization API
The synchronization API, in the net.rim.device.api.synchronization package, enables your
application to integrate with the BlackBerry Desktop Software to perform two tasks:

� back up a database to a desktop file and restore it later

� synchronize data with a desktop application

Data backup
The BlackBerry Desktop Software provides a Backup and Restore tool that enables users to save
handheld data to a file on their desktop, and use this file to restore data to the handheld.

When an application implements the synchronization API, the desktop software backs up and restores
the application database along with the other handheld databases. You can also use the synchronization
API to create data archives or to populate application databases when the handheld first connects to the
computer.

Data synchronization
The desktop software provides an Intellisync tool to synchronize the handheld with the applications on
the user computer.

Where backup and restore performs a bulk load of data between the handheld and a desktop backup
file, synchronization compares the data that exists in a desktop application with the data on the
handheld to merge the data.

To synchronize data with a desktop application, write a plug-in for the desktop software using the
BlackBerry Desktop API. The BlackBerry JDE also includes a sample synchronization application with a
desktop plug-in.

� Synchronization API
� Adding support for backing up data

Tip: The BlackBerry Desktop Software requires that backup data use the following format:

Length<2> Type<1> Data<n>

To ensure that the data is in the appropriate format, use one of the write methods in the
net.rim.device.api.synchronization.ConverterUtilities class.

Tip: There are no restrictions on the format that you use to store data for backup. The only requirement is that your
handheld application must read and write data in the same format that is used by your desktop plug-in application.

BlackBerry Application Developer Guide
Synchronization API overview
Implement the following interfaces provided by the synchronization API:

The SerialSyncManager class provides access to the handheld synchronization manager, in particular
to register new objects for synchronization.

Adding support for backing up data
To support backup, modify a class that implements the Persistable interface to implement the
SyncObject interface.

Modify the main class for your application to implement the SyncCollection and SyncConverter
interfaces.

Define a unique ID
Define a _uid variable and implement getUID() to return a unique ID to use for synchronization
operations.

Define a constructor
Define a constructor that accepts a unique ID as a parameter and sets the _uid variable to this value.

Register a synchronization collection
In main(), register your SyncCollection with the handheld synchronization manager. Create a
separate project to pass in the init argument when the handheld first starts. See "Create an
initialization project" on page 95 for more information.

public static void main(String[] args) {
boolean startup = false;
for (int i=0; i<args.length; ++i) {

if (args[i].startsWith("init")) {
startup = true;

}
}

Interface Description

SyncConverter converts data between the SyncObject format required on the handheld and a serialized format required
on the desktop

SyncCollection represents the collection of synchronization objects for an application

SyncObject represents an object that can be backed up and restored to the user computer

Note: To back up and restore a very small amount of data, such as application configuration options, you can extend the
SyncItem class and implement its abstract methods. The SyncItem class implements the SyncCollection,
SyncConverter, and SyncObject interfaces for you.

Note: The SyncCollection and SyncConverter interfaces can be implemented by the same class or by separate classes,
depending on the design of your application. The following sections explain how to implement these interfaces in the same
class.

Note: Each synchronization object that is stored on the handheld must have an associated ID that is unique to its
application. The UIDGenerator sets this value ID by default.
94

9: Backing up and restoring persistent data
if (startup) {
//enable application for synchronization on startup
SerialSyncManager.getInstance().enableSynchronization(new
RestaurantsSync());

} else {
RestaurantsSync app = new RestaurantsSync();
app.enterEventDispatcher();

}
}

Create an initialization project
To register a synchronization collection when the handheld starts, create a separate project that acts as
an alternate entry point to your main application. This passes an argument to your application the first
time that the handheld starts so that your application registers only once.

1. In the IDE, create a project.

2. Right-click the project and click Properties.

3. Click the Application tab.

4. In the Project type drop-down list, click Alternate CLDC Application Entry Point.

5. In the Alternate entry point for drop-down list, click the project that implements synchronization.

6. In the Arguments passed to field, type init.

7. Select the Auto-run on startup option.

8. Select the System module option.

9. Click OK.

Code example
The RestaurantsSync.java code example demonstrates how to enable desktop software to back up and
restore persistent data for your application. This example modifies the Restaurants.java code example to
implement the synchronization API.

Example: RestaurantsSync.java

/**
 * RestaurantsSync.java
 * Copyright (C) 2001-2004 Research In Motion Limited. All rights reserved.
 */

package com.rim.samples.docs.restaurantssync;

import java.io.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;

Note: Arguments can be passed to BlackBerry CLDC applications on startup, however, this functionality does not exist
for MIDLet applications.
95

BlackBerry Application Developer Guide
import java.util.*;
import net.rim.device.api.i18n.*;
import net.rim.device.api.synchronization.*;

import com.rim.samples.docs.baseapp.*;

public class RestaurantsSync extends BaseApp implements RestaurantsSyncResource,
 SyncCollection, SyncConverter, KeyListener, TrackwheelListener {

 private static final long KEY = 0xdec6a67096f833cL;

 private AutoTextEditField namefield;
 private AutoTextEditField addressfield;
 private EditField phonefield;
 private EditField specialtyfield;

 private static PersistentObject store;
 private static Vector _data;
 private static ResourceBundle _resources;
 private static final int FIELDTAG_NAME = 1;
 private static final int FIELDTAG_PHONE = 2;
 private static final int FIELDTAG_ADDRESS = 3;
 private static final int FIELDTAG_SPECIALTY = 4;

 private static RestaurantsSync _instance;

 private MenuItem saveItem = new MenuItem(_resources, MenuItem.SAVE_CLOSE, 110,

10) {
 public void run() {
 RestaurantInfo info = new RestaurantInfo();
 info.setElement(RestaurantInfo.NAME, namefield.getText());
 info.setElement(RestaurantInfo.ADDRESS, addressfield.getText());
 info.setElement(RestaurantInfo.PHONE, phonefield.getText());
 info.setElement(RestaurantInfo.SPECIALTY, specialtyfield.getText());
 _data.addElement(info);

 synchronized(store) {
 store.setContents(_data);
 store.commit();
 }
 Dialog.inform(_resources.getString(APP_SUCCESS));
 namefield.setText(null);
 addressfield.setText(null);
 phonefield.setText("");
 specialtyfield.setText("");
 }
 };
 private MenuItem getItem = new MenuItem("Get", 110, 11) {
 public void run() {
 synchronized(store) {
 _data = (Vector)store.getContents();
 if (!_data.isEmpty()) {
 RestaurantInfo info = (RestaurantInfo)_data.lastElement();
 namefield.setText(info.getElement(RestaurantInfo.NAME));
 addressfield.setText(info.getElement(RestaurantInfo.ADDRESS));
 phonefield.setText(info.getElement(RestaurantInfo.PHONE));
96

9: Backing up and restoring persistent data
 specialtyfield.setText(info.getElement(
 RestaurantInfo.SPECIALTY));
 }
 }
 }
 };

 static {
 _resources = ResourceBundle.getBundle(RestaurantsSyncResource.BUNDLE_ID,
 RestaurantsSyncResource.BUNDLE_NAME);
 store = PersistentStore.getPersistentObject(KEY);
 synchronized (store) {
 _data = (Vector)store.getContents();
 if (_data == null) {
 _data = new Vector();
 store.setContents(_data);
 store.commit();
 }
 }

 }
 public static void main(String[] args) {
 boolean startup = false;
 for (int i=0; i<args.length; ++i) {
 if (args[i].startsWith("init")) {
 startup = true;
 }
 }

 if (startup) {
 // Enable application for synchronization on startup.
 SyncManager.getInstance().enableSynchronization(
 RestaurantsSync.getInstance());
 } else {
 RestaurantsSync app = new RestaurantsSync();
 app.enterEventDispatcher();
 }
 }

 public static RestaurantsSync getInstance() {
 if (_instance == null) {
 _instance = new RestaurantsSync();
 }
 return _instance;
 }

 private static final class RestaurantInfo implements Persistable, SyncObject {
 private String[] _elements; // Data.
 public static final int NAME = 0;
 public static final int ADDRESS = 1;
 public static final int PHONE = 2;
 public static final int SPECIALTY = 3;
 private int _uid;

 public int getUID() {
97

BlackBerry Application Developer Guide
 return _uid;
 }

 public RestaurantInfo() {
 _elements = new String[4];
 for (int i = 0; i < _elements.length; ++i) {
 _elements[i] = "";
 }
 }
 public RestaurantInfo(int uid) {
 _elements = new String[4];
 for (int i = 0; i < _elements.length; ++i) {
 _elements[i] = "";
 }
 _uid = uid;
 }

 public String getElement(int id) {
 return _elements[id];
 }

 public void setElement(int id, String value) {
 _elements[id] = value;
 }
 }

 // SyncConverter methods.
 public SyncObject convert(DataBuffer data, int version, int UID) {
 try {
 RestaurantInfo info = new RestaurantInfo(UID);
 while(data.available() > 0) {
 int length = data.readShort();
 byte[] bytes = new byte[length];
 switch (data.readByte()) {
 case FIELDTAG_NAME:
 data.readFully(bytes);
 //trim null-terminator
 info.setElement(RestaurantInfo.NAME,
 new String(bytes).trim());
 break;
 case FIELDTAG_PHONE:
 data.readFully(bytes);
 info.setElement(RestaurantInfo.PHONE,
 new String(bytes).trim());
 break;
 case FIELDTAG_ADDRESS:
 data.readFully(bytes);
 info.setElement(RestaurantInfo.ADDRESS,
 new String(bytes).trim());
 break;
 case FIELDTAG_SPECIALTY:
 data.readFully(bytes);
 info.setElement(RestaurantInfo.SPECIALTY,
 new String(bytes).trim());
 break;
98

9: Backing up and restoring persistent data
 default:
 data.readFully(bytes);
 break;
 }
 }
 return info;
 } catch (EOFException e) {
 System.err.println(e.toString());
 }
 return null;
 }

 public boolean convert(SyncObject object, DataBuffer buffer, int version) {
 if (version == getSyncVersion()) {
 if (object instanceof RestaurantInfo)
 {
 String name = ((RestaurantInfo)object).getElement(
 RestaurantInfo.NAME);
 String phone = ((RestaurantInfo)object).getElement(
 RestaurantInfo.PHONE);
 String address = ((RestaurantInfo)object).getElement(
 RestaurantInfo.ADDRESS);
 String specialty = ((RestaurantInfo)object).getElement(
 RestaurantInfo.SPECIALTY);
 buffer.writeShort(name.length()+1);
 buffer.writeByte(FIELDTAG_NAME);
 buffer.write(name.getBytes());
 buffer.writeByte(0);
 buffer.writeShort(phone.length()+1);
 buffer.writeByte(FIELDTAG_PHONE);
 buffer.write(phone.getBytes());
 buffer.writeByte(0);
 buffer.writeShort(address.length()+1);
 buffer.writeByte(FIELDTAG_ADDRESS);
 buffer.write(address.getBytes());
 buffer.writeByte(0);
 buffer.writeShort(specialty.length()+1);
 buffer.writeByte(FIELDTAG_SPECIALTY);
 buffer.write(specialty.getBytes());
 buffer.writeByte(0);
 return true;
 }
 }
 return false;
 }
 public void beginTransaction() {
 store = PersistentStore.getPersistentObject(KEY);
 _data = (Vector)store.getContents();
 }
 public void endTransaction() {
 store.setContents(_data);
 store.commit();
 }
 public SyncConverter getSyncConverter() {
 return this;
99

BlackBerry Application Developer Guide
 }
 public String getSyncName() {
 return "Restaurant Synchronization Demo";
 }
 public String getSyncName(Locale locale) {
 return getSyncName();
 }
 public int getSyncObjectCount() {
 store = PersistentStore.getPersistentObject(KEY);
 _data = (Vector)store.getContents();
 return _data.size();
 }
 public SyncObject[] getSyncObjects() {
 SyncObject[] array = new SyncObject[_data.size()];
 for (int i = _data.size() - 1; i >= 0; --i) {
 array[i] = (SyncObject)_data.elementAt(i);
 }
 return array;
 }
 public SyncObject getSyncObject(int uid) {
 for (int i = _data.size() -1; i>= 0; --i) {
 SyncObject so = (SyncObject)_data.elementAt(i);
 if (so.getUID() == uid) return so;
 }
 return null;
 }
 public int getSyncVersion() {
 return 1;
 }
 public boolean addSyncObject(SyncObject object) {
 _data.addElement(object);
 return true;
 }
 public boolean removeAllSyncObjects() {
 _data.removeAllElements();
 return true;
 }
 public void clearSyncObjectDirty(SyncObject object) {
 // Not applicable.
 }
 public boolean isSyncObjectDirty(SyncObject object) {
 return false;
 }
 public boolean removeSyncObject(SyncObject object) {
 return false;
 }
 public void setSyncObjectDirty(SyncObject object) {
 }
 public boolean updateSyncObject(SyncObject oldObject, SyncObject newObject) {
 return false;
 }
 public RestaurantsSync() {
 MainScreen mainScreen = new MainScreen();
 mainScreen.setTitle(new LabelField(

_resources.getString(APPLICATION_TITLE)));
 namefield = new AutoTextEditField(_resources.getString(FIELD_NAME), "");
100

9: Backing up and restoring persistent data
 addressfield = new AutoTextEditField(_resources.getString(FIELD_ADDRESS),
"");

 phonefield = new EditField(
_resources.getString(FIELD_PHONE), "", Integer.MAX_VALUE,
BasicEditField.FILTER_PHONE);

 specialtyfield = new EditField(_resources.getString(FIELD_SPECIALTY), "",
Integer.MAX_VALUE, BasicEditField.FILTER_DEFAULT);

 mainScreen.add(namefield);
 mainScreen.add(addressfield);
 mainScreen.add(phonefield);
 mainScreen.add(specialtyfield);
 mainScreen.addKeyListener(this);
 mainScreen.addTrackwheelListener(this);
 pushScreen(mainScreen);
 }
 public void makeMenu(Menu menu, int instance) {
 menu.add(saveItem);
 menu.add(getItem);
 super.makeMenu(menu, instance);
 }
 public void onExit() {
 Dialog.alert(_resources.getString(APP_EXIT));
 }
}

101

BlackBerry Application Developer Guide
102

10
Accessing setup and
configuration information

Service book API
The service book API (net.rim.device.api.servicebook) enables handheld applications to interact
with the BlackBerry infrastructure. The service book consists of service records, each of which defines a
service that can be enabled on a handheld.

Service records define the communication protocol (WAP or IPPP), network gateway, and configuration
information such as browser settings.

The service book API enables applications to perform the following functions:

� Manage Mobile Data Service connections: The browser application API can connect to the wireless
network using any ServiceBook entry with a UID of BrowserConfig. For example, the Browser
class uses the service book to retrieve a BrowserSession. Browser.getTransportUid() queries
the service book to retrieve the UID associated with a given service record.

� Manage mail information: The mail API enables applications to specify a channel through which to
send e-mail by referencing the appropriate service record. For example, applications can choose to
send email via a BlackBerry Enterprise Server or a BlackBerry Internet Email Service. See "BlackBerry
mail API" on page 11 for more information.

To view the service book on handhelds, users click Service Book under the handheld options.

The ServiceBook class maintains a collection of ServiceRecord objects. Each ServiceRecord object
is identified by a unique ID (UID) and connection ID (CID).

� Service book API

CID Description

CMIME The compressed multipurpose mail extensions (CMIME) CID defines email connections.

ALP The address lookup protocol (ALP) CID defines connections for wireless Global Address List searches.

IPPP The IP Proxy Protocol (IPPP) CID defines HTTP connections using Mobile Data Service.

BrowserConfig The browser configuration (BrowserConfig) CID defines BlackBerry and WAP browser connections.

Sync The data synchronization (Sync) CID defines connections for wireless data synchronization.

WAP The wireless application protocol (WAP) CID defines WAP gateway connections.

CICAL The compressed iCalendar (CICAL) CID defines connections for wireless calendar synchronization.

Service record Description

Desktop [CMIME] This service record contains information required to send email messages using the desktop and
perform other functions, such as wireless email reconciliation.

Desktop [ALP] This service record contains information required to perform wireless Global Address Book searches.

Desktop [IPPP] This service record contains information that is required to use and browse the Internet using
Mobile Data Service.

Desktop [CICAL] This service record contains information that is required to perform wireless calendar operations.

BlackBerry Application Developer Guide
Listen for service book events
Implement the GlobalEventListener interface (in the net.rim.device.api.system package). To
specify the actions to perform when a global event is received, implement
GlobalEventListener.eventOccurred().

To register the global event listener, invoke
Application.addGlobalEventListener(GlobalEventListener).

The ServiceBook class defines the following global events, identified by global unique identifiers
(GUID).

Desktop [BrowserConfig] This service record contains configuration information for the BlackBerry Browser.

Web Client [CMIME] This service record contains information required to send messages and perform functions (for
example, wireless email reconciliation) using the BlackBerry Internet Email Service.

WAP Secure Transport
[WAP]

This service record contains information that is required to connect to a service provider�s Wireless
Application Protocol (WAP) gateway.

WAP Browser
[BrowserConfig]

This service record contains configuration information for the WAP Browser.

Desktop [Sync] This service record contains information that is required to perform data synchronization.

GUID Description

GUID_SB_ADDED The GUID for the global event that is sent when a service book is added.

GUID_SB_BR_END The GUID for the global event that is sent when service book backup-restore ends.

GUID_SB_BR_START The GUID for the global event that is sent when service book backup-restore starts.

GUID_SB_CHANGED The GUID for the global event that is sent when a service book is changed.

GUID_SB_OTA_SWITCH The GUID for the global event that is sent when all service records are inserted due to a move
BlackBerry Enterprise Server command over the air.

GUID_SB_OTA_UPDATE The GUID for the global event that is sent when all service records are updated for a UID over the
air.

GUID_SB_REMOVED The GUID for the global event that is sent when a service book is deleted.

Service record Description
104

 11
Managing notifications

Notification API
The notification API (net.rim.device.api.notification) enables you to add custom events for your
application and define the type of notification that users receive when custom events occur.

There are two types of notification events:

� Immediate events: system notification, such as flashing LED, vibration, or tune

� Deferred events: application-specific notification, such as a user interface

With immediate events, the handheld provides notification to the user as soon as the event occurs, using
a system notification, such as a flashing LED, vibration, or tune. An application cannot request a specific
type of notification. In the handheld profiles list, users control how they receive notification of
immediate events by choosing an active profile and setting profile options. To add custom system
notifications for immediate events, implement the Consequence interface.

With deferred events, the handheld schedules events in a queue according to their priority. When the
event occurs, applications that are affected by the event can provide a custom notification to the user,
typically by displaying a user interface element such as a dialog box. To listen for deferred events,
implement the NotificationsEngineListener interface. The handheld does not provide system-wide
notification for deferred events.

Adding events

Register a new event source
Create a unique long ID
Define a long ID for each notification event.

public static final long ID_1 = 0xdc5bf2f81374095L;

� Notification API
� Adding an event
� Responding to events
� Customizing system notifications

Note: Check for a ControlledAccessException when your application first accesses the notification API. This runtime
exception is thrown if the system administrator restricts access to the notification API using application control. See
�Application control� on page 12 of the BlackBerry Application Developer Guide Volume 1: Fundamentals for more
information.

Tip: Use the IDE to convert a String to a long to create a similar identifier for your application:

1. In the IDE text pane, type a string.

2. Select the string, right-click and click Convert �string� to Long.

BlackBerry Application Developer Guide
Define a source object
Define an object that provides the source for the event. This object must implement toString(), which
returns the string to display in the profiles list.

Object event = new Object() {
public String toString() {

return "Notification Demo";
}

}

Register your application as a notification source
To add your application to the handheld profiles list as the source of an event, invoke
NotificationsManager.registerSource(). In this method, specify a unique event ID, the source
object, and the notification level.

Notification level sets the priority of the event, which determines the order in which deferred events
occur. The levels, in order from highest to lowest priority, are as follows:

� NotificationsConstants.CRITICAL

� NotificationsConstants.SENSITIVE

� NotificationsConstants.IMPORTANT

� NotificationsConstants.DEFAULT_LEVEL

� NotificationsConstants.CASUAL

Create a library project
To register an event source, create a library project with libMain() to perform the registration when the
handheld starts.

1. In the IDE, create a project.

2. Right-click the project and click Properties.

3. Click the Application tab.

4. In the Project type drop-down list, click Library.

5. Select the Auto-run on startup option.

6. Click OK.

7. Define libMain().

public static final long ID_1 = 0xdc5bf2f81374095L;
public static final Object event = new Object() {

public String toString() { return "Sample Notification Event #1"; }
};
public static void libMain(String[] args) {

NotificationsManager.registerSource(ID_1, event,
NotificationsConstants.CASUAL);

}

Note: The priority level applies to deferred events only. Immediate events occur as soon as they are triggered.

When you trigger a deferred event, you specify an expiry time. The user might not receive notification of a lower-priority
event, if the event expires before higher-priority events complete.
106

11: Managing notifications
Trigger an immediate event
Invoke triggerImmediateEvent(). Immediate events are indicated by standard system notifications,
such as tune, vibration, or LED.

NotificationsManager.triggerImmediateEvent(ID_1, 0, this, null);

The triggerImmediateEvent method accepts the following parameters:

In most cases, do not use immediate events because the handheld event notification does not
adequately indicate to the user what has happened. For example, if the handheld vibrates, it would be
difficult for the user to know whether an event has occurred in your application, or whether a new email
message has arrived. If you do use immediate events, consider implementing a custom notification, such
as a particular tune, to distinguish your application events from other handheld events. See
"Customizing system notifications" on page 112 for more information.

Trigger a deferred event
Invoke negotiateDeferredEvent(). A deferred event enables your application to notify the user with
a user interface element, such as a dialog box.

NotificationsManager.negotiateDeferredEvent(ID_1, 0, this, -1,
NotificationsConstants.MANUAL_TRIGGER, null);

The negotiateDeferredEvent() method accepts the following parameters:

If you invoke negotiateDeferredEvent(), your application must implement the
NotificationEventListener to receive events and respond appropriately. See "Responding to
events" on page 110 for more information.

Cancel an event
Cancel an immediate event
Invoke cancelImmediateEvent(), and specify the source and event IDs.

Parameter Description

sourceID identifier of the application that starts the event (as specified when you invoked registerSource())

eventID application-specific event identifier

eventReference application-specific event cookie

context optional context object

Parameter Description

sourceID identifier of the application that starts the event (as specified when you invoked registerSource())

eventID application-specific event identifier

eventReference application-specific event cookie

timeout event expiry time, in milliseconds, relative to time when the method is invoked (the timeout is ignored
unless the trigger is OUT_OF_HOLSTER_TRIGGER)

trigger either NotificationsConstants.OUT_OF_HOLSTER_TRIGGER, which specifies that the event occurs when
the handheld is disconnected from the computer; or NotificationsConstants.MANUAL_TRIGGER, which
specifies that the application itself triggers this event

context optional object that can store additional, arbitrary parameters to control the state or behavior of an event
notification
107

BlackBerry Application Developer Guide
NotificationsManager.cancelImmediateEvent(ID_1, 0, this, null);

Cancel a deferred event
Invoke cancelDeferredEvent() and specify the source and event ID.

NotificationsManager.cancelDeferredEvent(ID_1, 0, this,
NotificationsConstants.MANUAL_TRIGGER, null);

Cancel all deferred events
Invoke cancelAllDeferredEvents() to cancel all deferred events that your application started.

NotificationsManager.cancelAllDeferredEvents(ID_1,
NotificationsConstants.MANUAL_TRIGGER, null);

Code example

Example: NotificationDemo.java

/**
 * NotificationsDemo.java
 * Copyright (C) 2001-2004 Research In Motion Limited. All rights reserved.
 */

package com.rim.samples.docs.notifications;

import net.rim.device.api.notification.*;
import net.rim.device.api.ui.*;
import net.rim.device.api.ui.component.*;
import net.rim.device.api.ui.container.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import com.rim.samples.docs.baseapp.*;

public class NotificationsDemo extends BaseApp {

 public static final long ID_1 = 0xdc5bf2f81374095L;
 private long _eventIdGenerator;
 private static Object er;

 public static final Object event = new Object() {
 public String toString() {
 return "Sample Notification Event #1";
 }
 };

 public static void main(String[] args) {
 NotificationsManager.registerSource(ID_1, event,

NotificationsConstants.CASUAL);
 NotificationsManager.registerConsequence(ConsequenceDemo.ID, new

ConsequenceDemo());
 NotificationsDemo app = new NotificationsDemo();

Tip: If you invoke negotiateDeferredEvent() and do not specify a timeout, you must invoke cancelDeferredEvent()
to cancel the event, or the event never expires.
108

11: Managing notifications
 app.enterEventDispatcher();
 }

 public NotificationsDemo() {
 MainScreen mainScreen = new MainScreen();
 mainScreen.setTitle("Notification Demo App");
 mainScreen.addKeyListener(this);
 mainScreen.addTrackwheelListener(this);
 NotificationsManager.registerNotificationsEngineListener(ID_1,
 new NotificationsEngineListenerImpl(this));
 pushScreen(mainScreen);
 }

 private MenuItem triggerItem = new MenuItem(null, 0, 100, 10) {
 public void run() {
 NotificationsManager.triggerImmediateEvent(ID_1, 0, this, null);
 }
 public String toString() {
 return "Trigger event";
 }
 };

 private MenuItem deferItem = new MenuItem(null, 0, 100, 10) {
 public void run() {
 long timeout = -1; // Ignored unless trigger is OUT_OF_HOLSTER_TRIGGER.
 int trigger = NotificationsConstants.MANUAL_TRIGGER;
 Object er = new Object();
 NotificationsManager.negotiateDeferredEvent(ID_1, ++_eventIdGenerator,
 er, timeout, trigger, null);
 }
 public String toString() {
 return "Start deferred event";
 }
 };
 private MenuItem cancelItem = new MenuItem(null, 0, 100, 10) {
 public void run() {
 int trigger = NotificationsConstants.MANUAL_TRIGGER;
 NotificationsManager.cancelDeferredEvent(ID_1, _eventIdGenerator, er,
 trigger, null);
 }
 public String toString() {
 return "Cancel deferred event";
 }
 };

 public void makeMenu(Menu menu, int instance) {
 menu.add(triggerItem);
 menu.add(deferItem);
 menu.add(cancelItem);
 super.makeMenu(menu, instance);
 }

 public void onExit() {
 System.exit(0);
 }
109

BlackBerry Application Developer Guide

 private static class NotificationsEngineListenerImpl implements
 NotificationsEngineListener {
 private UiApplication _app;
 public NotificationsEngineListenerImpl(UiApplication app) {
 _app = app;
 }

 public void deferredEventWasSuperseded(long sourceID, long eventID,
 Object eventReference, Object context) {
 final long _eventID = eventID;
 er = eventReference;
 _app.invokeLater(new Runnable() {
 public void run() {
 NotificationsManager.cancelDeferredEvent(ID_1, _eventID, er,
 NotificationsConstants.MANUAL_TRIGGER, null);
 }
 });
 }
 public void notificationsEngineStateChanged(int stateInt, long sourceID,
 long eventID, Object eventReference, Object context) {
 if(stateInt == NotificationsConstants.OUT_OF_HOLSTER_ENGINE_STATE) {
 // Perform some action if handheld is removed from holster.
 }
 if(stateInt == NotificationsConstants.IN_HOLSTER_ENGINE_STATE) {
 // Perform some action if handheld is inserted into holster.
 }
 }
 public void proceedWithDeferredEvent(long sourceID, long eventID,
 Object eventReference, Object context) {
 final long _eventID = eventID;
 _app.invokeLater(new Runnable() {
 public void run() {
 String s = "This event has occurred: " + _eventID;
 Dialog d = new Dialog(Dialog.D_OK, s, Dialog.OK,
 Bitmap.getPredefinedBitmap(Bitmap.INFORMATION), 0);
 d.show();
 }
 });
 }
 }
}

Responding to events
To define custom notification, implement NotificationsEngineListener and then register it by
invoking negotiateDeferredEvent(). You do not need to implement the listener if you trigger
immediate events, for which the handheld provides standard system notification.
110

11: Managing notifications
Provide a custom UI notification for deferred events
Implement the NotificationsEngineListener interface. See the BlackBerry Application Developer
Guide Volume 1: Fundamentals for more information on creating user interfaces.

private static class ListenerImpl implements NotificationsEngineListener {...}

Define behaviour if an event is superseded
Implement deferredEventWasSuperseded(). This method is invoked when the event is superseded by
another event at the same or higher priority level. For example, you could cancel the event if it is
superseded.

public void deferredEventWasSuperseded(long sourceID, long eventID, Object
eventReference, Object context) {

final long _eventID = eventID;
er = eventReference;
_app.invokeLater(new Runnable() {
public void run() {

NotificationsManager.cancelDeferredEvent(ID_1, _eventID, er,
NotificationsConstants.MANUAL_TRIGGER, null);

}
});

}

Define holstering behaviour
Implement notificationsEngineStateChanged(). This method is invoked when the handheld is
inserted in, or removed from, the holster. For example, you could perform a specific action when a
deferred event is scheduled and the handheld is connected to, or disconnected from, the computer.

public void notificationsEngineStateChanged(int stateInt, long sourceID, long
eventID, Object eventReference, Object context) {
if(stateInt == otificationsConstants.OUT_OF_HOLSTER_ENGINE_STATE) {

// perform action if handheld is removed from holster
}
if(stateInt == NotificationsConstants.IN_HOLSTER_ENGINE_STATE) {

// perform action if handheld is inserted into holster
}

}

Define notification
Implement proceedWithDeferredEvent() to define how to notify the user when the event occurs,
such as by displaying a dialog box. This method is invoked when the listener proceeds with the event (no
other higher priority events are in the queue).

public void proceedWithDeferredEvent(long sourceID, long eventID, Object
eventReference, Object context) {

final long _eventID = eventID;
_app.invokeLater(new Runnable() {

public void run() {
String s = "This event has occurred: " + _eventID;
Dialog d = new Dialog(Dialog.D_OK, s, Dialog.OK,
Bitmap.getPredefinedBitmap(Bitmap.INFORMATION), 0);
d.show();
111

BlackBerry Application Developer Guide
_eventHashtable.put(_eventID, d);
}

});
}

Register the notifications listener
Register your listener with the NotificationsManager. Provide as parameters the event source ID of
your application and an instance of the class that implements the NotificationsEngineListener
interface.
NotificationsManager.registerNotificationsEngineListener(ID_1, new

ListenerImpl(this));

Customizing system notifications
Implement the Consequence interface to create custom system notifications, such as a particular tune,
for immediate events or to perform other actions when events occur, such as creating a log that counts
the number of notifications received.

Provide an application on the handheld Home screen to enable users to set notification options.

Respond to notification events
Implement the Consequence and SyncConverter interfaces to respond to notification events. The
Consequence interface defines an application response to notification events. The SyncConverter
interface defines the functionality required to convert data from object to serialized format. It is required
to enable the handheld to back up and restore profile configurations. See "Backing up and restoring
persistent data" on page 89 for more information.

private static class ConsequenceImpl implements Consequence,SyncConverter {...}

Define a unique ID
Define a unique ID for this consequence.

public static final long ID = 0xbd2350c0dfda2a51L;

Define constants
Declare DATA and TYPE constants for the application. These constants are used when identifying the
type of incoming data from the SyncConverter when convert() is invoked. They are arbitrary
identifiers for data that is appropriate to this application.

private static final int TYPE = 'n' << 24 | 'o' << 16 | 't' << 8 | 'd';

Note: You can only register one NotificationsEngineListener for each application.

Note: The Consequence interface is used only for immediate events that require system notification. Deferred events
require your application to implement the NotificationsEngineListener and respond with an application-specific
response.
112

11: Managing notifications
private static final byte[] DATA = new byte[] {'m', 'y', '-', 'c',
'o', 'n', 'f', 'i', 'g', '-', 'o', 'b', 'j', 'e', 'c', 't'};
private static final Configuration CONFIG = new Configuration(DATA);

Create a tune
Create a tune to be played as part of the consequence for event notifications.

private static final short BFlat = 466; //466.16
private static final short TEMPO = 125;
private static final short d16 = 1 * TEMPO;
private static final short dpause = 10; //10 millisecond pause
private static final short[] TUNE = new short[] {BFlat, d16, pause, BFlat};
private static final int VOLUME = 80; //percentage volume

Play a tune from a supported audio format
On handhelds that support standard audio formats, you can also play back an audio file in one of the
following supported formats:

� audio/adpcm

� audio/midi

� audio/x-midi

� audio/mid

BlackBerry handhelds use the Mobile Media API (javax.microedition.media) to support standard
audio formats.

To determine the supported audio formats at runtime, invoke
Manager.getSupportedContentTypes().

See the javax.microedition.media package in the API Reference for information.

Define a notification
Implement startNotification() to define the notification for this consequence. In the following
code sample, the LED flashes and a tune is played.
public void startNotification(long consequenceID, long sourceID, long eventID,

Object configuration, Object context) {
LED.setConfiguration(500, 250, LED.BRIGHTNESS_50);
LED.setState(LED.STATE_BLINKING);
Alert.startAudio(TUNE, VOLUME);
Alert.startBuzzer(TUNE, VOLUME);

}

Stop a notification
Implement stopNotification() to stop notification for this consequence.

public void stopNotification(long consequenceID, long sourceID,
long eventID, Object configuration, Object context) {
113

BlackBerry Application Developer Guide
LED.setState(LED.STATE_OFF);
Alert.stopAudio();
Alert.stopBuzzer();

}

Store user profile settings
Implement newConfiguration() to create a new configuration object that stores user profile settings.
This object is passed to the consequence implementation to determine whether the type of consequence
that the user specified is appropriate for the event. The following code sample returns the CONFIG object
that you defined earlier.

public Object newConfiguration(long consequenceID, long sourceID,
byte profileIndex, int level, Object context) {

return CONFIG;
}

Enable handheld data backup
Implement SyncConverter.convert(). This method is invoked when data is backed up from the
handheld to the user computer. The following sample implementation reads incoming data from the
DataBuffer and applies a four-byte type and length to the raw data.

public SyncObject convert(DataBuffer data, int version, int UID) {
try {

int type = data.readInt();
int length = data.readCompressedInt();
if (type == TYPE) {

byte[] rawdata = new byte[length];
data.readFully(rawdata);
return new Configuration(rawdata);

}
} catch (EOFException e) {

System.err.println(e);
}
return null;

}

Enable handheld data restore
Implement SyncConverter.convert(). This method is invoked when data is restored from the user
computer to the handheld.

public boolean convert(SyncObject object, DataBuffer buffer, int version) {
boolean retval = false;
if (object instanceof Configuration) {

Configuration c = (Configuration)object;
buffer.writeInt(TYPE);
buffer.writeCompressedInt(c._data.length);
buffer.write(c._data);
retval = true;

}

114

11: Managing notifications
return retval;
}

Define the notification configuration
Create a class that describes the notification configuration information. The class implements
SyncObject and Persistable. You must implement SyncObject.getUID() but you can return 0
because this value is required only for data synchronization, which is not required in this example.

private static final class Configuration implements SyncObject, Persistable {
public byte[] _data;
public Configuration(byte[] data) {

_data = data;
}
public int getUID() {

return 0;
}

}

Register a consequence
If you create a custom Consequence implementation, register it with the NotificationsManager by
invoking registerNotificationsObjects().
NotificationsManager.registerConsequence(ConsequenceImpl.ID, new

ConsequenceImpl());

To register the consequence when the handheld starts, perform this registration in a library project. See
"Create a library project" on page 106 for more information.

Code example

Example: ConsequenceDemo.java

/**
 * ConsequenceDemo.java
 * Copyright (C) 2001-2004 Research In Motion Limited. All rights reserved.
*/

package com.rim.samples.docs.notifications;

import net.rim.device.api.synchronization.*;
import net.rim.device.api.notification.*;
import net.rim.device.api.system.*;
import net.rim.device.api.util.*;
import java.io.*;

public class ConsequenceDemo implements Consequence, SyncConverter {

 public static final long ID = 0xbd2350c0dfda2a51L;
 private static final int TYPE = ’n’ << 24 | ’o’ << 16 | ’t’ << 8 | ’d’;
 private static final byte[] DATA = new byte[] {
 ’m’, ’y’, ’-’, ’c’, ’o’, ’n’, ’f’, ’i’,
115

BlackBerry Application Developer Guide
 ’g’, ’-’, ’o’, ’b’, ’j’, ’e’, ’c’, ’t’ };

 private static final Configuration CONFIG = new Configuration(DATA);

 private static final short BFlat = 466; // The actual value is 466.16.
 private static final short TEMPO = 125;
 private static final short d16 = 1 * TEMPO;
 private static final short pause = 10; // 10 millisecond pause.
 private static final short[] TUNE = new short[] {BFlat, d16, pause, BFlat};
 private static final int VOLUME = 80; // Percentage volume.

 public void startNotification(long consequenceID, long sourceID, long eventID,
 Object configuration, Object context) {
 LED.setConfiguration(500, 250, LED.BRIGHTNESS_50);
 LED.setState(LED.STATE_BLINKING);

 Alert.startAudio(TUNE, VOLUME);
 Alert.startBuzzer(TUNE, VOLUME);
 }

 public void stopNotification(long consequenceID, long sourceID, long eventID,
 Object configuration, Object context) {
 LED.setState(LED.STATE_OFF);
 Alert.stopAudio();
 Alert.stopBuzzer();
 }

 public Object newConfiguration(long consequenceID, long sourceID,
 byte profileIndex, int level, Object context) {
 return CONFIG;
 }

 public SyncObject convert(DataBuffer data, int version, int UID) {
 try {
 int type = data.readInt();
 int length = data.readCompressedInt();
 if (type == TYPE) {
 byte[] rawdata = new byte[length];
 data.readFully(rawdata);
 return new Configuration(rawdata);
 }
 } catch (EOFException e) {
 System.err.println(e);
 }
 return null;
 }
 public boolean convert(SyncObject object, DataBuffer buffer, int version) {
 boolean retval = false;
 if (object instanceof Configuration) {
 Configuration c = (Configuration)object;
 buffer.writeInt(TYPE);
 buffer.writeCompressedInt(c._data.length);
 buffer.write(c._data);
 retval = true;
 }
116

11: Managing notifications
 return retval;
 }

 /* Inner class to store configuration profile. */
 private static final class Configuration implements SyncObject, Persistable {

 public byte[] _data;

 public Configuration(byte[] data) {
 _data = data;
 }
 public int getUID() {
 return 0;
 }
 }
}

117

BlackBerry Application Developer Guide
118

 12
Managing applications

Application manager
The virtual machine (VM) on BlackBerry Wireless Handhelds has an application manager that functions
as the central dispatcher of operating system events for other Java applications.

The net.rim.device.api.system.ApplicationManager class enables applications to interact with
the application manager to perform the following actions:

� interact with processes, such as retrieving the IDs for foreground applications

� post global events to the system

� lock or unlock the handheld, or determine whether the handheld is locked

� run an application immediately or at a specific time

To use any of the ApplicationManager methods, you must first retrieve a reference to the current
application manager by invoking getApplicationManager().

ApplicationManager manager = ApplicationManager.getApplicationManager();

Retrieve information about applications
Retrieve information about running processes by invoking getVisibleApplications() on the
ApplicationManager class. For example you could write an system administration application that
audits the state of the handheld to determine how long users spend using each application.

To retrieve an array of ApplicationDescriptor objects for visible applications that are running, invoke
getVisibleApplications(). An ApplicationDescriptor object contains descriptive information for
the application, such as its name, icon, position on the Home screen, and resource bundle. Use
ApplicationDescriptor methods to retrieve this information. For example, to retrieve the name of a
running application, invoke getName() on an application descriptor.

ApplicationManager manager = ApplicationManager.getApplicationManager();
ApplicationDescriptor descriptors[] = manager.getVisibleApplications();
// retrieve the name of a running application
String appname1 = descriptors[0].getName();

To retrieve an ApplicationDescriptor for the current application, invoke
ApplicationDescriptor.currentApplicationDescriptor().

ApplicationDescriptor descriptor =
ApplicationDescriptor.currentApplicationDescriptor();
String appname = descriptor.getName();

� Application manager
� Managing code modules
� Managing code modules

BlackBerry Application Developer Guide
Post a global event
Use ApplicationManager.postGlobalEvent() as a basic mechanism to communicate with other
processes.

To post a global event to a particular application, invoke postGlobalEvent(int processId, long
guid, int data0, int data1, Object object0, Object object1).

The processID parameter specifies the ID of the process to which to post the event. To retrieve a
process ID, invoke getProcessId(ApplicationDescriptor). The guid parameter specifies a global
unique identifier (GUID) for the event. The data and object parameters specify additional information
for the event.

To post a global event to all applications, use one of the following forms of postGlobalEvent():

Receive a global event
To receive a global event, implement the net.rim.device.api.system.GlobalEventListener
interface and GlobalEventListener.eventOccurred(), which is invoked when a global event occurs.
In its implementation of eventOccurred(), the application specifies which actions to perform when a
global event is received.

Register the GlobalEventListener by invoking
Application.addGlobalEventListener(GlobalEventListener).

Lock the handheld
To determine whether a handheld is locked, invoke ApplicationManager.isSystemLocked().

To lock a handheld, invoke ApplicationManager.lockSystem(true).

If the user has set a password, the lock screen appears and the user must type this password to use the
handheld again. If a password is not set, the keyboard lock screen appears and the user must double-
click the trackwheel to use the handheld again.

To unlock a handheld, invoke ApplicationManager.unlockSystem(true).

Run an application with different arguments
Create a new application descriptor
Use the existing ApplicationDescriptor as a template. Specify the arguments to use in main().

ApplicationDescriptor template =
ApplicationDescriptor.currentApplicationDescriptor();

String[] args = { "admin", "secure" };
ApplicationDescriptor newdescriptor = new ApplicationDescriptor(template, args);

Tip: You can also send and receive messages between processes using the runtime store. See "Sharing runtime objects
between applications" on page 125 for more information.

Method signature Description

boolean postGlobalEvent(long guid) posts a global event with a unique identifier

boolean postGlobalEvent(long guid, int data0, int data1) posts a global event with additional data

abstract boolean postGlobalEvent(long guid, int data0,
int data1, Object object0, Object object1)

posts a global event with additional integer and object
data
120

12: Managing applications
The ApplicationDescriptor constructor has two other forms:

Run the application
Run the application using a new ApplicationDescriptor object.

ApplicationManager appmanager = ApplicationManager.getApplicationManager();
try {

appmanager.runApplication(newdescriptor);
} catch(ApplicationManagerException) {

//handle error
}

The runApplication() method creates a new process and invokes the exported main() method in the
specified descriptor, using its arguments. The new process moves to the foreground if possible.

Run an application at a specified time
Invoke scheduleApplication() instead of runApplication().

try {
appmanager.scheduleApplication(newdescriptor, 1728000, false);

} catch(ApplicationManagerException) {
//handle error

}

The scheduleApplication() method requires the following parameters:

� an ApplicationDescriptor object

� time at which to start the application, in milliseconds

� a Boolean value, where true indicates that the time is absolute (calculated from midnight, January
1, 1970 UTC) and false indicates that the time is relative to midnight local time

Managing code modules
The CodeModuleManager class, in the net.rim.device.api.system package, enables you to retrieve
information about and manage code modules on the handheld.

A code module is a .cod file, the compiled archive of a single project in the IDE. To view a list of third-
party applications installed on handhelds, in the handheld options, click Applications. Click the
Properties menu item to view information about each application.

Method signature Description

ApplicationDescriptor(ApplicationDescriptor
original, String name, String[] args)

This form of the constructor enables you to specify a name for the
new ApplicationDescriptor.

ApplicationDescriptor(ApplicationDescriptor
original, String name, String[] args, Bitmap
icon, int position, String nameResourceBundle,
int nameResourceId)

This form of the constructor enables you to specify a name, and
initial settings, including an application icon, a Home screen
position, and the resource bundle and ID to use for the application
title.

Note: The application does not run if the handheld is restarted or turned off before the specified time.
121

BlackBerry Application Developer Guide
Retrieve module information
The CodeModuleManager class provides methods that enable applications to retrieve information about
code modules on the handheld, such as the name, type, description, version, and creation date.

To retrieve a handle for the module, invoke getModuleHandle(). Provide as a parameter the name of
the code module.

int handle = CodeModuleManager.getModuleHandle("test_module");

Invoke methods of the CodeModuleManager class to retrieve specific information. Provide the module
handle as a parameter to these methods.

String name = CodeModuleManager.getModuleName(handle);
String vendor = CodeModuleManager.getModuleVendor(handle);
String description = CodeModuleManager.getModuleDescription(handle);
int version = CodeModuleManager.getModuleVersion(handle);
int size = CodeModuleManager.getModuleCodeSize(handle);
int timestamp = CodeModuleManager.getModuleTimestamp(handle);

Retrieve an array of handles
To retrieve an array of handles for all existing modules on the handheld, invoke getModuleHandles().

int handles[] = CodeModuleManager.getModuleHandles();
String name = CodeModuleManager.getModuleName(handles[0]);

The net.rim.device.api.system.CodeModuleManager class provides methods for creating, saving,
and deleting code modules. These capabilities enable an application on the handheld to receive .cod
files wirelessly.

Code module manager methods

Create a module
Invoke createNewModule(). Provide the size of the module in bytes as a parameter.

int handle = CodeModuleManager.createNewModule(3000);

This method returns the module handle (or 0 if the module cannot be created).

Method Description

int handle =
CodeModuleManager.getModuleHandleForObject(anObject);

This method retrieves the handle of the module in which
an object class is defined.

boolean library = CodeModuleManager.isLibrary(handle); This method determines whether a module is a library.
This method returns true if the module is a library or
false if the module is an application.

int size = CodeModuleManager.getModuleHandleForObject(
anObject);

This method determines the size, in bytes, of the code
that a module contains.

ApplicationDescriptor descriptors[] =
CodeModuleManager.getApplicationDescriptiors(handle);

This method retrieves an array of all descriptors that a
code module contains.
122

12: Managing applications
To add data to the module when you create it, invoke the following form of createNewModule().
Provide as parameters the length in bytes of the entire module, a byte array to add to the module, and
the length parameter specifies the number of bytes from the byte array to add to the start of the
module.

static int createNewModule(int totalLength, byte[] data, int length);

Write data into a module
Invoke writeNewModule(). Provide a byte array of data as a parameter to this method.

Boolean success = CodeModuleManager.writeNewModule(handle, data, 0, data.length);

Save a module to the handheld database
To save a module to the handheld database, invoke saveNewModule().

int result = CodeModuleManager.saveNewModule(handle);

The saveNewModule() method returns one of the result codes that are defined in the
CodeModuleManager class, such as CMM_OK if the module is saved successfully.

Delete a module from the handheld database
Invoke deleteModule(). Provide as parameters the handle of the module to delete and a Boolean value
to specify whether to delete the module and any data it contains or to delete the module only if does not
have any associated data. If the module is in use, it is deleted the next time that the handheld is
restarted.

int handle = CodeModuleManager.getModuleHandle("test_module");
if(handle != 0) {

Boolean success = CodeModuleManager.deleteModule(handle, true);
}

Tip: A module must have the correct format for a .cod file. You can write data into a code module in increments, as long
as you know the offset at which to add data.
123

BlackBerry Application Developer Guide
124

 13
Sharing runtime objects
between applications

Sharing runtime objects
BlackBerry handhelds use a runtime store to provide a central location in which applications can share
runtime objects. By default, only applications that have been digitally signed by RIM can access data in
the runtime store. Contact RIM for information on how to control access to your data.

Retrieve the runtime store
Invoke RuntimeStore.getRuntimeStore().

RuntimeStore store = RuntimeStore.getRuntimeStore();

To add or retrieve runtime objects, invoke methods on RuntimeStore.

Add a runtime object
Invoke RuntimeStore.put(). Provide as parameters a unique long ID and the object to store.

RuntimeStore store = RuntimeStore.getRuntimeStore();
// create an object and a unique number to identify the object
String msg = "Some shared text";
long ID = 0x60ac754bc0867248L;
// put() throws an IllegalArgumentException if an object with the same ID exists
try {

store.put(ID, msg);
} catch(IllegalArgumentException e) {

// handle exception - an object with the sam
}

Replace a runtime object
Invoke replace().

RuntimeStore store = RuntimeStore.getRuntimeStore();
String newmsg = "Some new text";
try {

// returns the existing object with the specified ID if it exists, or null
// otherwise

� Sharing runtime objects

Note: The runtime store is not persistent. If the handheld is restarted, data in the runtime store is lost.

BlackBerry Application Developer Guide
Object obj = store.replace(0x60ac754bc0867248L, newmsg);
} catch(ControlledAccessException e) {

// handle exception - insufficient permissions
}

Retrieve a registered runtime object
Invoke RuntimeStore.get(). Provide as a parameter the object ID.

RuntimeStore store = RuntimeStore.getRuntimeStore();
// get() throws a ControlledAccessException if your application does not have read

access to the specified object.
try {

// get() returns the objectm with the specified ID if it exists, or null
// otherwise
Object obj = store.get(0x60ac754bc0867248L);

} catch(ControlledAccessException e) {
//handle exception

}

Retrieve an unregistered runtime object
Invoke RuntimeStore.waitFor() to wait for an object to be registered.

RuntimeStore store = RuntimeStore.getRuntimeStore();
try {

Object obj = store.waitFor(0x60ac754bc0867248L);
} catch(ControlledAccessException e) {

//handle exception - insufficient permissions
} catch(RuntimeException e) {

//handle exception - time out

}

Note: If the object with the specified ID does not exist, waitFor() blocks for a maximum of MAX_WAIT_MILLIS. The
waitFor() method throws a RuntimeException if the object is not registered by this time.
126

13: Sharing runtime objects between applications
127

Glossary
A

ALX

Application Loader XML

API

application programming interface

APN

Access Point Name

C

CA

Certificate Authority

CDMA

Code Division Multiple Access

CHAP

Challenge Handshake Authentication Protocol

cHTML

Compact Hypertext Markup Language

CLDC

Connected Limited Device Configuration

CPU

central processing unit

D

DES

Data Encryption Standard

DNS

Domain Name System

G

GIF

Graphics Interchange Format

GPRS

General Packet Radio Service

GUI

graphical user interface

GUID

globally unique identifier

H

HTML

Hypertext Markup Language

HTTP

Hypertext Transfer Protocol

HTTPS

Hypertext Transfer Protocol over Secure Socket
Layer

I

i18n

internationalization

IDE

integrated development environment

iDEN

Integrated Digital Enhanced Network

IMEI

International Mobile Equipment Identity

IMSI

International Mobile Subscriber Identity

I/O

input/output

IP

Internet Protocol

IPPP

IP Proxy Protocol

ISDN

Integrated Services Digital Network

Glossary
J

J2ME

Java 2 Platform, Micro Edition

J2SE

Java 2 Platform, Standard Edition

JAD

Java Application Descriptor

JAR

Java Archive

JDE

Java Development Environment

JPEG

Joint Photographic Experts Group

JRE

Java Runtime Environment

K

KB

kilobytes

KVM

Kilobyte virtual machine

L

LAN

local area network

LDAP

Lightweight Directory Access Protocol

LTPA

Lightweight Third-Party Authentication

M

MB

megabyte

MHz

megahertz

MIDlet

MIDP application

MIDP

Mobile Information Device Profile

MIME

Multipurpose Internet Mail Extensions

MSISDN

Mobile Station ISDN

O

OCSP

Online Certificate Status Protocol

P

PAP

Password Authentication Protocol

PDA

personal digital assistant

PIM

personal information management

PIN

personal identification number

PNG

Portable Network Graphics

R

RAM

random access memory

RRC

Radio Resource Control

RTC

real-time clock

S

SDK

software development kit

SIM

Subscriber Identity Module

SMS

Short Message Service
129

BlackBerry Application Developer Guide
SRAM

static random access memory

SRP

Service Relay Protocol

SSL

Secure Sockets Layer

T

TCP

Transmission Control Protocol

TCP/IP

Transmission Control Protocol/Internet Protocol

TIFF

Tag Image File Format

TLS

Transport Layer Security

U

UDP

User Datagram Protocol

UI

user interface

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

UTC

Universal Time Coordinate

V

VM

virtual machine

W

WAP

Wireless Application Protocol

WBMP

wireless bitmap

WML

Wireless Markup Language

WMLC

Wireless Markup Language Compiled

WTLS

Wireless Transport Layer Security

X

XHTML

Extensible Hypertext Markup Language

XML

Extensible Markup Language
130

Index
A

addCall(), PhoneLogs class, 71
addElement(), Vector class, 87
addGlobalEventListener(), Application class, 120
addMenuItem(), ApplicationMenuItemRepository class,

77
addPhoneListener(), Phone class, 70
addRecordStore(), RecordStore class, 79
address book

about, 25
converting to serial formats, 28
creating contacts, 25
importing contacts, 28
invoking, 75
opening ContactList, 25
removing contacts, 29
retrieving contact information, 27
saving contacts, 27

administrative control
about, 81

APIs
invocation, 75
messaging, 11
notifications, 105
persistence, 79
PIM, 23
service book, 103
synchronization, 93

Application class, addGlobalEventListener(), 120
application descriptor, different arguments, 120
application manager, virtual machine, 119
ApplicationDescriptor class

about, 120
currentApplicationDescriptor(), 120

ApplicationManager class
about, 119
getVisibleApplications(), 119
isSystemLocked(), 120
lockSystem(), 120
postGlobalEvent(), 120
runApplication(), 121
scheduleApplication(), 121
unlockSystem(), 120

ApplicationMenuItem class
about, 76
extending, 76

overriding constructor, 76
toString(), 76

ApplicationMenuItemRepository class
about, 76
addMenuItem(), 77
getInstance(), 77

applications
auto-run on startup, 95
different arguments, 120
event source, 106
inter-process communication, 120
managing, 119
retrieving information, 119
scheduling, 121
system modules, 95
See also code modules

appointments, See calendar
attachments

about, 19
registering a handler, 20
retrieving contents, 20
retrieving information, 20
sending, 21

audio formats, supported, 113
auto-run, applications, 95

B

backup
about, 81
implementing, 93
supporting, 94

Backup and Restore
about, 93

BlackBerry applications
adding menu items, 76
starting, 75

Boolean data type, persistence, 81
browser

about, 47
API overview, 47

Browser class
getDefaultSession(), 47
getSession(), 47

browser content
filtered, 64
retrieving, 51

BlackBerry Application Developer Guide
browser fields, about, 48
browser sessions, retrieving, 47
BrowserContentProvider class

about, 58
getAccept(), 59
getSupportedMIMETypes(), 59

BrowserContentProvider interface
getBrowserContent(), 59

BrowserField class, finishLoading(), 51
BrowserPageContext interface, about, 59
BrowserSession class, displayPage(), 48
Byte data type, persistence, 81

C

calendar
adding appointment information, 37
converting to serial formats, 39
creating a recurring appointment, 38
creating an appointment, 37
invoking, 75
opening a list, 37
retrieving appointment information, 39
saving an appointment, 38
See also PIM

CalendarArguments class, about, 75
call logs

adding, 71
code example, 72
replacing, 71

callAt(), PhoneLogs class, 71
cancelAllDeferredEvents(), NotificationsManager class,

108
cancelDeferredEvent(), NotificationsManager class, 108
cancelImmediateEvent(), NotificationsManager class,

107
Character data type, persistence, 81
.cod files, compiled projects, 9
code examples

BasicMail.java, 17
BrowserFieldSampleApp.java, 52
BrowserPlugin.java, 60
ConsequenceDemo.java, 115
ContactsDemo.java, 29
DemoAppMenuItem.java, 77
DemoOptionsProvider.java, 44
EventDemo.java, 40
NotificationsDemo.java, 108
PhoneLogsDemo.java, 72
Protocol.java, 64
Restaurants.java, 87
RestaurantsSync.java, 95
TaskDemo.java, 35

UserInfo.java, 83
code modules

creating, 121
deleting, 123
methods, 122
retrieving handle arrays, 122
retrieving handles, 122
retrieving information, 121
saving, 123
writing, 123

code signing
about, 5
registering, 8
requesting signatures, 9
verification, 6

CodeModuleManager class
about, 121
createNewModule(), 122
deleteModule(), 123
getApplicationDescriptor(), 122
getModuleHandle(), 122
getModuleHandleForObject(), 122
getModuleHandles(), 122
isLibrary(), 122
saveNewModule(), 123
writeNewModule(), 123

commit(), PersistentObject class, 82
conference calls, about, 71
ConferencePhoneCallLog class

constructor, 71
getParticipantAt(), 71

Consequence class
newConfiguration(), 114
startNotification(), 113
stopNotification(), 113

Consequence interface
about, 112

ContactList class
about, 25
closing, 27
opening, 25

convert(), SyncConverter class, 114
createNewModule(), CodeModuleManager class, 122
.csl files, required signatures, 9
.cso files, optional signatures, 9
currentApplicationDescriptor(), ApplicationDescriptor

class, 120
custom consequences, code example, 115
custom notifications

about, 110
defining, 111
user profile settings, 114
132

Index
custom objects, managing, 85

D

data
persistent storage, 82

data integrity, 81
data types

persistence, 81
databases, creating persistent, 82
deferred events

cancelling, 108
cancelling all, 108
code example, 108
triggering, 107

deferredEventWasSuperseded(),
NotificationsEngineListener interface, 111

deleteCall(), PhoneLogs class, 72
deleteModule(), CodeModuleManager class, 123
deleting, persistent databases, 83
display characteristics, specifying, 59
displayBrowserField(), RenderingApplication class, 48
displayPage(), BrowserSession class, 48
DTMF tones, queueing, 70

E

email, See messaging
enableSynchronization(), SerialSyncManager class, 94
entry points, alternate, 95
enumerateRecords(), RecordStore class, 80
eventOcurred(), GlobalEvent interface, 120
events

adding, 105
calendar, 37
cancelling, 107
global, 120
messaging, 13
phone, 70
service book, 104
triggering deferred, 107

examples
BasicMail.java, 17
BrowserFieldSampleApp.java, 52
BrowserPlugin.java, 60
ConsequenceDemo.java, 115
ContactsDemo.java, 29
DemoAppMenuItem.java, 77
DemoOptionsProvider.java, 44
EventDemo.java, 40
NotificationsDemo.java, 108
PhoneLogsDemo.java, 72
Protocol.java, 64
Restaurants.java, 87

RestaurantsSync.java, 95
TaskDemo.java, 35
UserInfo.java, 83

F

file extensions
.cod files, 9
.csl files, 9
.cso files, 9

filtering URLs, 64
finishLoading(), BrowserField class, 51
FolderEvent class, about, 13
folders

listing, 18
managing, 18
saving messages, 19
searching, 19

G

get(), RuntimeStore class, 126
getAccept(), BrowserContentProvider class, 59
getActiveCall(), Phone class, 69
getApplicationDescriptor(), CodeModuleManager class,

122
getBrowserContent(), BrowserContentProvider

interface, 59
getBrowserField(), RenderingApplication interface, 51
getContents(), PersistentObject class, 82
getDefaultSession(), Browser class, 47
getDisplayPhoneNumber(), PhoneCall class, 69
getElapsedTime(), PhoneCall class, 69
getInstance()

ApplicationMenuItem class, 77
OptionsProvider interface, 43
SerialSyncManager class, 94

getModuleHandle(), CodeModuleManager class, 122
getModuleHandles(), CodeModuleManager class, 122
getModuleManagerForObject(), CodeModuleManager

class, 122
getParticipantAt(), ConferencePhoneCallLog class, 71
getParticipants(), PhoneCallLog class, 71
getRecord(), RecordStore class, 79
getRenderingOptions(), RenderingApplication

interface, 49
getRuntimeStore(), RuntimeStore class, 125
getSession(), Browser class, 47
getStatus(), PhoneCall class, 69
getSupportedContentTypes(), Manager class, 113
getSupportedMIMETypes(), BrowserContentProvider

class, 59
getVisibleApplications(), ApplicationManager class, 119
global events, posting, 120
GlobalEventListener interface, about, 120
133

BlackBerry Application Developer Guide
H

handheld options
about, 43
adding, 43
code example, 44
registering, 43
storing data persistently, 44
using public methods, 44

handhelds
locking, 120
unlocking, 120

Hashtable data type, persistence, 81
HTTP filters, about, 64
HTTPFilterRegistry class, registerFilter(), 64

I

immediate events
cancelling, 107
code example, 108
triggering, 107

initialization projects, creating, 95
Integer data type, persistence, 81
integrity, data, 81
Intellisync, about, 93
intercepting, URLs, 64
inter-process communication, global events, 120
Invoke class, invokeApplication(), 75
invokeApplication(), Invoke class, 75
isLibrary(), CodeModuleManager class, 122
isOutgoing(), PhoneCall class, 69
isSystemLocked(), ApplicationManager class, 120

L

lastElement(), Vector class, 87
library projects, creating, 106
locking, handhelds, 120
lockSystem(), ApplicationManager class, 120
Long data type, persistence, 81

M

Manager class, getSupportedContentTypes(), 113
managing, applications, 119
memo pad, invoking, 75
MemoArguments class, about, 75
menu items

adding, 76
adding to BlackBerry applications, 76
registering, 77
specifying behavior, 76
specifying position, 76
specifying text, 76

MessageArguments class, about, 75

MessageEvent class, about, 13
messages

about, 11
attachments, 19
creating, 11
managing events, 13
managing folders, 18
multipart, 12
reading, 14
receiving, 13
replying, 16
storing, 12

MIME types
listing accepted, 59
supporting additional, 58

Mobile Media API, about, 113

N

negotiateDeferredEvent(), Notifications manager class,
107

newConfiguration(), Consequence class, 114
notifications

about, 105
adding events, 105
canceling events, 107
custom, 110
custom system, 112
custom system notifications, 112
deferred events, 107
defining custom, 111
holstering, 111
immediate events, 107
listener, 111
registering listener, 112
superseded, 111
triggering deferred events, 107
tunes, 113

NotificationsEngineListener interface, 111
about, 110
deferredEventWasSuperseded(), 111
notificationsEngineStateChanged(), 111
registerNotificationsEngineListener(), 112

notificationsEngineStateChanged(),
NotificationsEngineListener interface, 111

NotificationsManager class
cancelDeferredEvent(), 108
cancelImmediateEvent(), 107
code example, 108
negotiateDeferredEvent(), 107
registerNotificationsObject(), 115
registerSource(), 106
134

Index
triggerImmediateEvent(), 107
numberOfCalls(), PhoneLogs class, 71

O

Object data type, persistence, 81
openRecordStore(), RecordStore class, 79
options

See handheld options
OptionsProvider interface

about, 43
getInstance(), 43
registerOptionsProvider(), 43

P

persistence
BlackBerry APIs, 80
code examples, 87
creating databases, 82
custom objects, 85
limited memory, 80
MIDP API, 79
retrieving data, 82
retrieving objects, 87
saving data, 82
saving objects, 86

persistent data, managing, 81
persistent databases, deleting, 83
PersistentObject class

about, 82
commit(), 82
getContents(), 82
setContents(), 82

PersistentStore class, about, 80
phone calls

about, 69
adding DTMF tones, 70
duration, 69
retrieving, 69
status, 69

Phone class
addPhoneListener(), 70
getActiveCall(), 69
removePhoneListener(), 70

phone listener, registering, 70
phone logs

about, 70
missed calls folder, 71
normal calls folder, 71
retrieving, 71

phone, invoking, 75
PhoneArguments class, about, 75
PhoneCall class

about, 69
getDisplayPhoneNumber(), 69
getElapsedTime(), 69
getStatus(), 69
isOutgoing(), 69

PhoneCallLog class
constructor, 71
getParticipants(), 71

PhoneCallLogID class
about, 71

PhoneListener interface, about, 70
PhoneLogs class

addCall(), 71
callAt(), 71
deleteCall(), 72
getInstance(), 71
swapCall(), 71

PIM
fields, 23
items, 23
lists, 23
See also Address Book, Calendar, Tasks

postGlobalEvent(), ApplicationManager class, 120
proceedWithDeferredEvent(),

NotificationsEngineListener interface, 111
put(), RuntimeStore class, 125

R

receiving, email messages, 13
record stores

about, 79
adding, 79
opening, 79
retrieving, 79
retrieving all, 80

RecordStore class
addRecordStore(), 79
enumerateRecords(), 80
getRecord(), 79
openRecordStore(), 79

registerFilter(), HTTPFilterRegistry class, 64
registering

attachment handler, 20
notification event source, 105
options items, 43
startup, 106
synchronization collections, 94

registerNotificationsEngineListener(),
NotificationsEngineListener class, 112

registerNotificationsObjects(), NotificationsManager
class, 115

registerOptionsProvider(), OptionsProvider interface, 43
135

BlackBerry Application Developer Guide
registerSource(), NotificationsManager class, 106
removePhoneListener(), Phone class, 70
rendering

separate threads, 48
rendering options

specifying, 49
rendering providers

registering, 58
RenderingApplication class, displayBrowserField(), 48
RenderingApplication interface,

getRenderingOptions(), 49
replace(), RuntimeStore class, 125
restore

about, 81
impementing, 93
supporting, 94

retrieving
attachment contents, 20
attachment information, 20

root database, persistence, 82
runApplication(), ApplicationDescriptor class, 121
runtime APIs, about, 5
runtime objects

retrieving, 125
sharing, 125

runtime storage, 5
runtime store

replacing objects, 125
retrieving objects, 126
unregistered objects, 126

RuntimeStore class
get(), 126
getRuntimeStore(), 125
put(), 125
replace(), 125
waitFor(), 126

S

saveNewModule(), CodeModuleManager class, 123
scheduleApplication(), ApplicationDescriptor class, 121
scheduling, applications, 121
security

See also code signing
security, about, 81
security, handheld lock, 120
sending

attachments, 21
messages, 15

serial formats
appointments, 39
contacts, 28
tasks, 34

SerialSyncManager class
enableSynchronization(), 94
getInstance(), 94

service books
about, 103
events, 104

service records
about, 103

setContents(), PersistentObject class, 82
Short data type, persistence, 81
signing, See code signing
startNotification(), Consequence class, 113
stopNotification(), Consequence class, 113
StoreEvent class, about, 13
String data type, persistence, 81
swapCall(), PhoneLogs class, 71
SyncCollection class

registering, 94
SyncConverter class

convert(), 114
notifications, 112

synchronization
about, 93
collections, 94
initializing, 95
objects, 94
registering collections, 94

SyncObject interface, about, 94

T

TaskArguments class, about, 75
tasks

adding information, 32
code example, 35
converting to serial formats, 34
creating, 32
invoking, 75
removing, 34
retrieving information, 33

to do, See tasks
toString(), ApplicationMenuItem class, 76
triggerImmediateEvent(), NotificationsManager class,

107
tunes

audio formats, 113
creating, 113

U

unique keys, creating, 82
unlocking, handhelds, 120
unlockSystem(), ApplicationManager class, 120
user profile settings, custom notifications, 114
136

Index
V

Vector class
addElement(), 87
lastElement(), 87

Vector data type, persistence, 81

W

waitFor(), RuntimeStore class, 126

web content
browser fields, 48
displaying, 47

web pages
displaying, 47
requesting, 48

writeNewModule(), CodeModuleManager class, 123
137

©2004 Research In Motion Limited
Published in Canada.

	Contents
	Using controlled APIs
	BlackBerry controlled APIs
	Code signatures
	Code signature verification
	Code signing request process
	Optional signatures
	Signing limitations
	Registering for code signing
	Register for code signatures
	Change your private key password
	Requesting code signatures

	Integrating email
	BlackBerry mail API
	Mail API classes
	Messages

	Working with messages
	Receive message notification
	Receive more of a message
	Open a message
	Send a message
	Reply to a message
	Forward a message
	Code example

	Managing folders
	List folders
	Retrieve an array of folders by type
	Retrieve an array of folders by searching
	Retrieve a folder by name
	Retrieve a folder by ID
	File a message

	Managing attachments
	Create a custom attachment handler
	Retrieve attachments
	Send an attachment

	Integrating PIM functions
	PIM APIs
	PIM lists
	PIM items

	Using the address book
	BlackBerry-specific address fields
	Open a contact list
	Create a contact
	Add contact information
	Modify contact information
	Save a contact
	Retrieve contact information
	Convert a contact to a serial format
	Import a contact
	Delete a contact
	Close a contact list
	Code example

	Using tasks
	Open a task list
	Create a task
	Add task information
	Set the status of a task
	Modify task information
	Save a task
	Retrieve task information
	Convert a task to a to serial format
	Import a task
	Delete a task
	Close a task list
	Code example

	Using the calendar
	Open an event list
	Create an appointment
	Add appointment information
	Create a recurring appointment
	Modify appointment information
	Save an appointment
	Retrieve appointment information
	Convert an appointment to a serial format
	Import an appointment
	Close an event list
	Code example

	Adding handheld options
	Options API
	Adding option items
	Registering to add options
	Store options
	Provide access to option data
	Code example

	BlackBerry Browser
	Browser APIs
	Displaying web content
	Displaying web content in the browser
	Displaying web content in a browser field

	Supporting additional MIME types
	Register as rendering provider for a MIME type
	Code example

	Registering as a HTTP filter
	Code example

	Accessing the phone application
	Using the phone API
	Retrieve a phone call
	Retrieve phone call information
	Add DTMF tones
	Retrieve the send queue for the current call

	Listening for phone events
	Accessing and managing phone logs
	Retrieve phone logs
	Retrieve the number of calls in a folder
	Retrieve a call log
	Retrieve a call participant
	Add a call log
	Delete a call log
	Code example

	Communicating with BlackBerry applications
	Starting BlackBerry applications
	Adding menu items to BlackBerry applications
	Create an application menu item
	Register the application menu item
	Code example

	Storing persistent data
	Storage options
	MIDP record store
	BlackBerry persistent storage

	Managing persistent data
	Persistent data types
	Create a persistent database
	Store data persistently
	Retrieve persistent data
	Delete a database
	Code example

	Managing custom objects
	Create a database
	Store data persistently
	Create expandable objects
	Save an object
	Retrieve an object
	Code example

	Backing up and restoring persistent data
	Synchronization API
	Data backup
	Data synchronization

	Adding support for backing up data
	Define a unique ID
	Define a constructor
	Register a synchronization collection
	Create an initialization project
	Code example

	Accessing setup and configuration information
	Service book API
	Listen for service book events

	Managing notifications
	Notification API
	Adding events
	Register a new event source
	Trigger an immediate event
	Trigger a deferred event
	Cancel an event
	Code example

	Responding to events
	Provide a custom UI notification for deferred events
	Register the notifications listener

	Customizing system notifications
	Respond to notification events
	Define a unique ID
	Define constants
	Create a tune
	Play a tune from a supported audio format
	Define a notification
	Stop a notification
	Store user profile settings
	Enable handheld data backup
	Enable handheld data restore
	Define the notification configuration
	Register a consequence
	Code example

	Managing applications
	Application manager
	Retrieve information about applications
	Post a global event
	Receive a global event
	Lock the handheld
	Run an application with different arguments
	Run an application at a specified time

	Managing code modules
	Retrieve module information
	Retrieve an array of handles
	Code module manager methods
	Create a module
	Write data into a module
	Save a module to the handheld database
	Delete a module from the handheld database

	Sharing runtime objects between applications
	Sharing runtime objects
	Retrieve the runtime store
	Add a runtime object
	Replace a runtime object
	Retrieve a registered runtime object
	Retrieve an unregistered runtime object

	Glossary
	A
	C
	D
	G
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

