
Learning XML:
A Beginner’s

Guide
 By Cooper Smitherman

Defining XML
Glossary...
Introducing XML Syntax.....................
Activity 1..
Validating Documents........................
Activity 2..
DTD Basics..
Schema Basics..................................
Activity 3..

Contents
1
3
7
11
13
14
16
19
20

Defining XML

1

XML, or eXtensible Markup Language, allows you
to define, store, and share structured information.
XML is a self-descriptive language, which means
that users can create meaningful tag names to
carry and structure information web-based
documents.

Why Should You Use XML?

XML is not designed to perform operations like
other programming languages. Instead, XML
annotates existing information so that software
may store, format, publish, and update existing
documents.

What are the Pros of XML?

2

Requires structure definitions for new tags and
elements.
Requires entity references, or substitutes, for
multiple characters. For example, an
apostrophe (‘) must be written as ' and
an ampersand (&) must be written as &).
Uses more storage because of redundancy.

Allows users to customize a document’s
labeling and organizational system without
changing the content within the document.
Improves efficiency for storing, publishing, and
updating information.
Readable, precise, unambiguous, and flexible.

What are the Cons of XML?

Glossary

Document Type Definition (DTD): Essentially a glossary for
an XML document that defines the document’s element
attributes and structure. The DTD does not contain any
content, is not written in XML, and does not allow for easy
reusability or perfect validation.

Child Element: An element that is contained or nested
within another element (i.e., the parent element). For
example, the parent element “newspaper” could contain child
elements such as “headline” or “locallistings.”

Element: Contains the document’s content and constitutes
the informational hierarchy. Each element is an instance of a
type of content and includes the opening and closing tags,
attributes, text, and other elements. For example, an element
called “rule” could contain an instance such as “Don’t run,
jump, or shout.”

3

Parent Element: An element that contains other elements or
is situated directly above another element within the
information hierarchy. For example, the element “song” could
be the parent element for the “releasedate” element.

Prolog: The first part of a document that provides external
information about the XML version, character set, DTD, and
stylesheet to build a properly formatted document. The
Prolog ensures the document adheres to XML rules and is
correctly displayed to users.

Root Element: Located at the top of the document’s
hierarchy, the root element contains every other element
nested within it. Naturally, the root element is the only
required part of the document because it’s the first, or
highest, level of content.

4

Schema: Like a DTD in that it takes extra steps to describe
structures for documents. However, unlike a DTD, a Schema
is written in XML, offers improved validation, and allows more
flexibility in grouping at the cost of readability and efficiency.

Tags: Label and group elements by category and type for the
program to format, transform, store, and publish documents.
Additionally, XML tags allow documents to update
themselves as information changes or new information is
added.

Tree: The informational hierarchy of an XML document
resembles a tree because all information is contained within
one root element and progresses from higher to lower levels.
All elements branch from this one root element and may
contain other elements or be nested within other elements, .

5

Valid XML: Follows general XML syntax rules, and the
document structure conforms to the pre-existing DTD or
Schema and other guidelines provided in the Prolog. Valid
XML is well-formed and adheres to a DTD or schema.

Well-Formed XML: Follows general XML syntax rules. For
example, all content must be defined, properly nested, and
possess a beginning and end tag; further, beginning and end
tags must match each other, a root element must be present,
and entity references are used when appropriate.

6

Introducing XML Syntax
Why start with a prolog?

The prolog, or XML declarations, draws external information
about the XML version, character set, DTD, and stylesheet
to display the document correctly.

Prolog Syntax Rules Examples

Always type the prolog at the top of the
document. You can often copy and paste
the prolog across documents.

Correct:
<?xml version="1.0" encoding="UTF-8"?>
<first>

Incorrect:
<first>
<?xml version="1.0" encoding="UTF-8"?>
(The prolog is incorrectly not placed at the top of
the document.)

Type “1.0” (recommended) or “1.1" after
version= to reflect the document’s XML
version.
Type “UTF-8” (recommended) or “UTF-16”
after encoding=.
Type “yes” or “no” after standalone= to
reflect whether the document draws from an
external DTD.

Correct:
<?xml version="1.0" encoding="UTF-8"
standalone="no"?>

Incorrect:
<?xml version="2.0" encoding="UTf-8"?>
(The xml version is incorrectly listed as “2.0” (which
doesn’t exist), and the “f” is not capitalized.)

Type <?xml at the beginning of the prolog.
Type ?> at the end of the prolog.

Correct: <?xml version="1.0" encoding="UTF-8"?>

Incorrect: <xml version="1.0" encoding="UTF-8">
(The question mark is missing at the beginning and
the end of the prolog.)

7

How do you write tags?

Tags label and group the document’s information so the
program may easily read, publish, and update documents.
The writer customizes tags to represent the information
contained within each tag. For example, if someone wrote
the tag <Dishes>, the information contained within this tag
could likely be “Mug” or “Plate.”

Tags Syntax Rules Examples

Type all tags between < and >.

Correct: <song>

Incorrect: <album<
(< is placed after the tag name instead of >.)

Never use spaces in tag names.

Correct: <BusinessName>

Incorrect: <Business Name>
(A space is placed between “Business” and “Name.”)

Type / after < in the closing tag.

Correct: <MenuItem>Cheeseburger</MenuItem>

Incorrect:<FilmTitle>Django Unchained<FilmTitle>
(The / is missing in the closing tag.)

Use the same case for opening and
closing tags. Tags can be
lowercase or uppercase as long as
opening tags match their closing
tags.

Correct: <greeting>Hello!</greeting>

Incorrect: <Greeting>How’s it going?</greeting>
(The opening tag is written in uppercase, and the closing tag
doesn’t match because it’s written in lowercase.)

8

How do you organize elements?

Elements are the document’s content and constitute the
informational hierarchy. Elements include the opening and
closing tags, as well as everything in between these tags.
For example, the <VideoGame>Fallout 4</VideoGame
element is labeled as VideoGame with Fallout 4 as the
text.

Elements Syntax Rules Example

Always type a root element at the top
of a document or immediately after
the prolog; a root element is the only
required part of a document.

Correct:
<?xml version="1.0" encoding="UTF-8"?>
<total>

Incorrect:
<total>
<?xml version="1.0" encoding="UTF-8"?>
(The root element is incorrectly placed before the prolog.)

Properly nest all elements. Nesting,
or placing one element inside
another, contributes to XML’s
hierarchical structure. If you open an
element inside another element, the
first element must also be closed
before the second element.

Correct: <poem><line>Two roads diverged in a yellow wood,
</line></poem>

Incorrect: <team><name>San Francisco 49ers</team>
</name>
(The <team> tag is incorrectly closed before the <name>
element, which must be closed first because it was opened in
the <team> element.)

Add the element’s attribute in the
opening Tag. Type the attribute name
after a space. Then, type =“Text” or
=’Text’ before >.

Correct: <cat name="Oakley">

Incorrect: <dog name=Kelso>
(The Kelso attribute has no quotation marks around it.)

9

How do you write text correctly?

The text in each element is what will be displayed to the
user. Because of XML’s specific syntax requirements, there
are a couple of important caveats to writing text in XML.

Text Syntax Rules Examples

Because you must use characters
such as < and > as markup for XML,
these characters must be written with
entity references, or substitutes,
within the document’s text. Consult
this list of entity references for these
characters:

1. Instead of <, type <
2.Instead of >, type >
3.Instead of &, type &
4.Instead of ', type '
5.Instead of ", type "

Correct: <money>profit > $5,000</money>

Incorrect: <characters>Saul & Kim</characters>
(The ampersand is not written as its entity reference, which
means the document will be parsed incorrectly.)

Type only the desired amount of
spaces in all text because XML will
display all white spaces.

Correct: <wish>One million dollars</wish>

Incorrect: <groceries>Apples, Oranges, and Grapes
</groceries>
(There are extra spaces between and and Grapes, which
means the program will display unnecessary white space on
the document when it’s viewed by the user.)

10

Activity 1
Try to correct the syntax errors in the following
XML document that organizes an ice cream
parlor’s menu by flavor, price, and color.

<?xml version= "1" encoding="UtF-8?>
<Ice Cream Menu>
 <IceCream<
 <Flavor>Banana Blitz<flavor>
 <Price>$3.55</Price>
 <Color>Yellow</Color>
 </Icecream>
 <IceCream>
 >Flavor>Belgian Chocolate</Flavor >
 <Price>$4.00</Price>
 <Color>Brown<Color>
 <IceCream>
 <Flavor>Strawberry Supreme<Flavor>
 <Price>$3.05</price>
 <Color>Pink</ Color>
 </IceCream>
</IceCreamMenu>

11

Activity 1 Answer

<?xml version="1.0" encoding="UTF-8"?>
<IceCreamMenu>
 <IceCream>
 <Flavor>Banana Blitz</Flavor>
 <Price>$3.55</Price>
 <Color>Yellow</Color>
 </IceCream>
 <IceCream>
 <Flavor>Belgian Chocolate</Flavor>
 <Price>$4.00</Price>
 <Color>Brown</Color>
 </IceCream>
 <IceCream>
 <Flavor>Strawberry Supreme</Flavor>
 <Price>$3.05</Price>
 <Color>Pink</Color>
 </IceCream>
</IceCreamMenu>

The appropriate changes are highlighted in blue.

12

Validating Documents
To manually validate a document, you can ensure
the document’s structure and content adhere to
XML syntax rules and, if applicable,
internal/external DTD or schema rules.

If a document adheres to general XML syntax, then
it is considered well-formed. If a document
adheres to general XML syntax and a pre-existing
DTD or Schema and other guidelines provided in
the Prolog, then it is considered valid. A document
can be well-formed and valid, but a document
cannot be valid and not well-formed.

While you can manually validate a document, you
can also validate a document’s syntax, a document
against an internal DTD, or a schema in isolation
using an online XML Validator.

13

https://www.w3schools.com/xml/xml_validator.asp

Activity 2
Create an XML document that organizes the Miami
Heat, Chicago Bulls, and Indiana Pacers into the
NBA’s Eastern Conference. Further, organize the
information from the following table, which provides
each team’s number of Finals wins, number of
MVPs, and number of head coaches.

To write or edit an XML document, you can use
one of these Authoring Tools or others:

Microsoft Notepad
Oxygen XML Editor
Adobe FrameMaker

Miami Heat Chicago Bulls Indiana Pacers

Finals Wins 3 6 0

Number of
MVPs 2 6 0

Number of
Head Coaches 6 24 16

NBA TEAM INFORMATION

14

Activity 2 Potential Answer

<?xml version="1.0" encoding="UTF-8"?>
<EasternConference>
 <NBATeam>
 <Name>Miami Heat</Name>
 <Finals>3</Finals>
 <MVPs>2</MVPs>
 <HeadCoaches>6</HeadCoaches>
 </NBATeam>
 <NBATeam>
 <Name>Chicago Bulls</Name>
 <Finals>6</Finals>
 <MVPs>6</MVPs>
 <HeadCoaches>24</HeadCoaches>
 </NBATeam>
 <NBATeam>
 <Name>Indiana Pacers</Name>
 <Finals>0</Finals>
 <MVPs>0</MVPs>
 <HeadCoaches>16</HeadCoaches>
 </NBATeam>
</EasternConference>

This answer places every team within the “EasternConference” parent
element. Each “NBATeam” element lists the team name and the team’s
number of Finals wins, MVPs, and head coaches.

15

DTD Basics
Occasionally, you will need to use unique element
attributes and structures. If so, you will need to
define these attributes and structures by writing an
internal or an external DTD. Luckily, DTDs often
already exist and will be provided to you.

An internal DTD is contained within the same file
as the document, which is ideal for one-off
documents. The internal DTD is opened and
closed after the Prolog (but before the document
itself).

An external DTD is written and defines a
document’s rules in a separate file, which is ideal
for creating complex, reusable structures to be
used for a wide range of documents. The external
DTD, therefore, is better suited for creating
consistency within larger projects rather than
individual, isolated documents.

16

What are the Pros & Cons of DTDs?

17

Pros Cons

Usually, DTDs are created for you. As long
as you know the DTD structure, you’ll
generally be able to proceed with ease.

Difficult to change because they are not written in
XML.

Can validate document structures.

Can only somewhat validate that elements are
unique because DTDs are written to validate
structures and not individual elements. For
example, a DTD would validate a <Flower
name=”Lily”> element if the <Flower> element
is defined in the DTD. However, if two <Flower
name=”Lily”> elements were present, the DTD
would not detect error of the repeated elements.

Efficiently defines a document’s structure. Difficult to read and maintain if they are quite large.

Internal DTD Syntax Rules Example

Always open the internal DTD after the
Prolog and close it after defining each
element in the document. Open the internal
DTD as follows: <!DOCTYPE RootElement [

Close the internal DTD as follows:]>

Correct:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Collection [

Incorrect:
<DOCTYPE Collection [
<?xml version="1.0" encoding="UTF-8"?>
(The exclamation point is missing from the internal
DTD declaration, which is incorrectly placed before
the prolog.)

Define each parent element in hierarchical
order. Place any child elements within
parentheses. Ensure that elements are
consistently named. Define parent elements
as follows: <!ELEMENT ParentElement
(ChildElement1, ChildElement2)>

Correct:
<!ELEMENT Album (Song)>
<!ELEMENT Song (Writer, TrackNumber, Length)>

Incorrect:
<!element Can (Vegetable, ExpirationDate, Brand)>
<!element Pantry (Can)>
(The <!ELEMENT declaration is incorrectly written in
lowercase, and the Can child element is incorrectly
listed before its Pantry parent element.)

Define elements that do not have a child
element as follows:
<!ELEMENT ChildElement (#PCDATA)>

*#PCDATA essentially means each element
contains regular text.

Correct:
<!ELEMENT Price (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT SideItem (#PCDATA)>

Incorrect:
<!ELEMENT Name (#pcdata)>
<!ELEMENT Age (#pcdata)>
<!ELEMENT VocalRange (#pcdata)>

(The #PCDATA designation is incorrectly written in
lowercase for every child element.)

Introducing Internal DTD Syntax

18

Schema Basics
You can also define a document’s elements and
structures by writing an external schema. A
schema offers many of the same capabilities as a
DTD and improves on DTDs in many ways, but
schemas still pose some limitations.

19

What are the Pros & Cons of Schemas?

Pros Cons

Easier to edit because they are written in XML. More dense and redundant, leading to less
readability (especially for beginners).

Offers improved validation and ensures
elements are unique.

Takes up more file space and may require more
technological power/resources to function.

Flexibility in editing across documents.
May appear more like programming than an outline,
which likely doesn’t appeal as much to writers (a
considerably large XML user base).

Create an internal DTD for the following XML file
that organizes a collection of Lego helmets by
character, pieces, and franchise.

20

Activity 3

<?xml version="1.0" encoding="UTF-8"?>
<LegoCollection>
 <Helmet>
 <Character>Spiderman</Character>
 <Pieces>450</Pieces>
 <Franchise>Marvel</Franchise>
 </Helmet>
 <Helmet>
 <Character>Shadow the Hedgehog</Character>
 <Pieces>500</Pieces>
 <Franchise>Sega</Franchise>
 </Helmet>
</LegoCollection>

21

Activity 3 Potential Answer

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE LegoCollection [
 <!ELEMENT LegoCollection (Helmet)>
 <!ELEMENT Helmet (Character, Pieces, Franchise)>

 <!ELEMENT Character (#PCDATA)>
 <!ELEMENT Pieces (#PCDATA)>
 <!ELEMENT Franchise (#PCDATA)>
]>

This answer uses appropriate DTD syntax and demonstrates the
hierarchical structure of the XML file.

