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Voltage Graphs and a Proper Coloring.
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𝑣1

𝑣3 𝑣2

𝐿31
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Example of a voltage graph
(𝐺, ℋ, 𝐿, 𝜖)

𝐿: 𝐸 → ℋ
𝜖: 𝐸 → −1,1

𝑣1 𝑣2

𝜖 𝑣1, 𝑣2 = 1

𝜖 𝑣2, 𝑣1 = −1

An edge is properly colored if any one of the 
following holds for an edge (𝑣𝑖 , 𝑣𝑗):

1.  𝜅1 𝑣𝑖 ≠ 𝜅1(𝑣𝑗)

2.  If 𝜅1 𝑣𝑖 = 𝜅1(𝑣𝑗) and 𝜖 𝑣𝑖 , 𝑣𝑗 = 1, 

then 𝐿 𝑣𝑖 , 𝑣𝑗 𝜅2 𝑣𝑖 ≠ 𝜅2(𝑣𝑗)

3.  If 𝜅1 𝑣𝑖 = 𝜅2(𝑣𝑗) and 𝜖 𝑣𝑖 , 𝑣𝑗 = −1, 

then 𝐿 𝑣𝑖 , 𝑣𝑗 𝜅2 𝑣𝑗 = 𝜅2(𝑣𝑖).

𝑣1 𝑣2

Example of a properly colored edge

(1, 𝑔) (1, ℎ)

𝐿12𝑔 ≠ ℎ

𝐿12

The vertices of the voltage graph are colored 
using the following functions:
• 𝜅1: 𝑉 → ℕ
• 𝜅2: 𝑉 → ℋ

• 𝜅: 𝑉 → ℕ × ℋ where 𝜅 𝑣 = 𝜅1 𝑣 , 𝜅2 𝑣

Example of the edge polarization 
function:

A voltage graph consists of: 
• A graph, 𝐺 = 𝑉, 𝐸 ⊂ 𝑉 × 𝑉
• A group, ℋ
• An edge labeling, 𝐿
• An edge polarization, 𝜖 
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A Symmetric Chromatic Function.

Χ(𝐺,ℋ,𝐿,𝜖) = ෍

𝜅:𝑉→ℕ×ℋ

𝑥𝜅 ෑ

𝑖,𝑗 ∈𝐸

(1 − 𝜙𝑖𝑗)

𝜙𝑖𝑗 =
1

2
𝛿𝑖𝑗 𝛿𝐿𝑖𝑗 + 𝛿𝑖𝐿𝑗 + 𝜖𝑖𝑗 𝛿𝐿𝑖𝑗 − 𝛿𝑖𝐿𝑗

Notation:
• 𝛿𝑖𝑗 = 𝛿𝜅1 𝑣𝑖 ,𝜅1 𝑣𝑗

 

• 𝛿𝐿𝑖𝑗 = 𝛿
𝐿 𝑣𝑖,𝑣𝑗 𝜅2 𝑣𝑖 ,𝜅2 𝑣𝑗

• 𝛿𝑖𝐿𝑗 = 𝛿
𝜅2 𝑣𝑖 ,𝐿 𝑣𝑖,𝑣𝑗 𝜅2 𝑣𝑗

• 𝑖, 𝑗 = (𝑣𝑖 , 𝑣𝑗)

• 𝑥𝜅 = 𝑥𝜅 𝑣1
𝑥𝜅𝑣2

… 𝑥𝜅 𝑣𝑛
, 𝑉 = 𝑛

Χ(𝐺,ℋ,𝐿,𝜖) = ෍
𝜅:𝑉→ℕ×ℋ

𝜅 𝑖𝑠 𝑝𝑟𝑜𝑝𝑒𝑟

𝑥𝜅
Χ 𝐺,ℋ,𝐿,𝜖 = ෍

𝜅:𝑉→ℕ×ℋ

𝑥𝜅 ෍

𝑆⊂𝐸

−1 𝑆 𝜙𝑖𝑗

We define the symmetric chromatic function 
(SCF) as:

We can sum over all colorings of the graph by 
introducing the second factor to “encode” the 
proper coloring condition.

Here, 𝜙𝑖𝑗 is the 0-1 valued term that 

determines when a coloring is improper.

𝑣1 𝑣2

𝐿12

Expanding the product term in the SCF 
gives a subsets of edges formulation.

If we have the coloring 𝜅: 𝑉 → ℕ ×
ℋ and 𝐼𝑚 𝜅 ⊂ ℕ × ℋ, then the coefficient 
of the term 𝑥𝜅 in the SCF is the number of 
ways to properly color the graph using only 
and all of the elements of 𝐼𝑚[𝜅].

Example Calculation:

X = ෍

(𝑛,𝑔)∈ℕ×ℋ

𝑥(𝑛,𝑔)

2

− ෍

𝑛,𝑔 ∈ℕ×ℋ

𝑥(𝑛,𝑔)𝑥(𝑛,𝐿12𝑔)

If 𝐺1, 𝐺2 are 
disconnected graphs 
and 𝐺 = 𝐺1 ⊔ 𝐺2, 
then Χ𝐺 = Χ𝐺1

Χ𝐺2
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Squiggly Voltage Graphs.

Turning full edges into squiggly edges: Let 
𝑒 ∈ 𝐹 and 𝐸 = 𝐹 ⊔ 𝑆. Then,

Χ( 𝑉,𝐹⊔𝑆 ,… ) = Χ( 𝑉, 𝐹∖𝑒 ⊔𝑆 ,… ) − Χ 𝑉, 𝐹∖𝑒 ⊔ 𝑆⊔𝑒 ,…

Types of Edges:
• Full edges are edges which require 

the proper coloring condition for 
the vertices connected to the 
edge.

• Squiggly edges are edges which 
require an improper coloring for 
the vertices connected to the 
edge.

Proper coloring of a squiggly edge:

𝑣1 𝑣2

𝐿12

(𝑛, 𝑔) (𝑛, ℎ)

𝐿12𝑔 = ℎ

Example of this formula:

𝑣1 𝑣2

𝐿12

=

𝑣1 𝑣2 − 𝑣1 𝑣2

𝐿12

Using this algorithm, we can 
decompose voltage graphs into 
combinations of disconnected graphs 
and connected squiggly graphs.

Example of a squiggly graph 
whose colorablity is independent 
of the chosen coloring.

𝐿23

𝑣1

𝑣3 𝑣2

𝐿31 𝐿12

For any coloring to work 
we require: 𝐿12𝐿23𝐿31 = 𝑒

4

𝐿14

1

3 2𝐿13 𝐿12

(𝑛, 𝐿14𝑔)

(𝑛, 𝑔)

(𝑛, 𝐿13𝑔) (𝑛, 𝐿12𝑔)

By coloring any one vertex in a 
connected squiggly graph, we 
can find a proper coloring by 
propagating the group element 
by paths to any other group 
element. 



Noah Donald    |    A Symmetric Chromatic Function for Voltage Graphs

Moving Rules.

𝐿13 = 𝐿12𝐿23
−1

𝐿23
𝑣2

𝑣1

𝑣3

𝐿12

𝐿23
𝑣2

𝑣1

𝑣3

The goal is to move edges over 
other edges and leave the SCF 
invariant under this 
transformation.

𝐿13
𝜖13 = 𝐿23

𝜖23𝐿12
𝜖12

𝐿12

𝐿23
𝑣2

𝑣1

𝑣3

𝐿13 = 𝐿12𝐿23
−1

𝐿23
𝑣2

𝑣1

𝑣3

If we think of the vertices 
as labeled here, then we 
can write a formula which 
incorporates arbitrary 
edge polarizations.

This formula holds for 
moving squiggly edges 
over squiggly edges and 
for moving full edges over 
squiggly edges.

The edge here has 
“picked up a phase” 
from the edge it 
moved over.



Going Forward and Algebraic Bases.
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4

𝐿14

1

3 2𝐿13 𝐿12

4 6
𝐿46

3 5

Turning full edges into squiggly edges: Χ( 𝑉,𝐹⊔𝑆 ,… ) = Χ( 𝑉, 𝐹∖𝑒 ⊔𝑆 ,… ) − Χ 𝑉, 𝐹∖𝑒 ⊔ 𝑆⊔𝑒 ,…

(𝑇, ℋ, 𝐿, 𝜖) +− − …=

By performing the 
decomposition 
into “radiating 
voltage stars”, we 
can use this as an 
algebraic basis for 
the SCF.

Star Basis Element:

𝑆𝑣,𝑛 = ෍

𝜎∈ℕ×𝒪ℋ𝑛(𝑣)

𝑥𝜋(𝜎)

• 𝑥𝜋 𝜎 = 𝑥(𝑘,𝜋2 𝜎 )𝑥(𝑘,𝜋3 𝜎 ) … 𝑥(𝑘,𝜋𝑛+1 𝜎 )

• 𝜋𝑖: ℕ × 𝒪ℋ𝑛 𝑣 → ℋ, 𝑖 ∈ {2, … , 𝑛 + 1}
• 𝜋1: ℕ × 𝒪ℋ𝑛 𝑣 → ℕ defined by

• 𝜋𝑖 𝑘, 𝑔1, … , 𝑔𝑛 = ቊ
𝑘, 𝑖 = 1
𝑔𝑖 , 𝑖 ≠ 1

• Let 𝜏: ℋ × ℋ𝑛 → ℋ𝑛 be a group action defined 

by, 𝜏 𝑔, ℎ1, … , ℎ𝑛 = ℎ1𝑔, … , ℎ𝑛𝑔 .

• 𝑣 = 𝑒, 𝐿𝑖𝑗 , 𝐿𝑖𝑘 , … 𝐿𝑖𝑚 ∈ ℋ𝑛

• 𝒪ℋ𝑛 𝑣  is the orbit of 𝑣 in ℋ𝑛 under 
the group action 𝜏.

4

𝐿14

1

3 2𝐿13 𝐿12

Example term:

𝑆(𝑒,𝐿14,𝐿13,𝐿12),4 = ෍

𝜎∈ℕ×𝒪ℋ4((𝑒,𝐿14,𝐿13,𝐿12))

𝑥𝜋(𝜎)

(𝑇 is a tree)
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