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A voltage graph consists of: Example of the edge polarization An edge is properly colored if any one of the
e Agraph,G = (V,EcV xV) function: following holds for an edge (v;, v;):
 Agroup, H 1 Kk, (v) # 11 (V)

« An edge labeling, L ‘_,_“@ . .
2. |If ) =kK.(v;)and e((v;, Vi) ) =1,
« An edge polarization, € 1 (i) = 161 (v) (( ’ ]))

(( )) ) then L ((vi, vj)) 12 (v;) # 12 (v))

Example of a voltage graph e((vy, 7)) = B o

G, H,L, ¢ E((vzﬂﬁ)) _ 1 3. Ifk(v;) = Ky (vj) and € ((vi, vj)) = —1,
then L ((vi, v])) Ko (v]) = K, (vi)'

The vertices of the voltage graph are colored

using the following functions:
* Kiq: V- N

L
* KyV-oH ‘—12—‘
e k:V > N XH where k(v) = (K1(U);Kz(v)) @ @
leg #* h

Example of a properly colored edge




Notation:
b 61] = 5

. Sl = 5L((”i'”j))’€2(”i):’€2(”j)

k1 (Vi) K1 (vj)

. siki = gk2@DL((viv)))ra(v))
« ) =)
* X = X)Xy, i) V] =1

We define the symmetric chromatic function
(SCF) as:

X6 H,Le) = Xk

K:V-oNXH
K LS proper

We can sum over all colorings of the graph by
introducing the second factor to “encode” the
proper coloring condition.

X(G,}[,L,e) = %
K:V-oNXH

1_[ (1— i)

(i,j))EE

b = 15ij (84 + 617 + (67 — 511))

Here, ¢;; is the 0-1 valued term that

determines when a coloring is improper. If G, G, are

disconnected graphs
N andG=Gl|_|Gz,

H 2 then XG - XG1XG2
Expanding the product term in the SCF
gives a subsets of edges formulation.

X(G,}[,L,e) — Z Xy Z(_1)|S|¢ij

K:V-oNXH SCE

Example Calculation:

@)
If we have the coloring k: V' — N X

2
X = ( Z X(n’g)>
H and Im[k] € N X H, then the coefficient (n.g)ENXH

of the term x,. in the SCF is the number of —
ways to properly color the graph using only
and all of the elements of Im|k].

X(m,g)X(n,L129)
(n,g)ENXH



Types of Edges: Example of this formula:
* Full edges are edges which require

the proper coloring condition for
the vertices connected to the
edge. I Ly,

* Squiggly edges are edges which @ @ —
require an improper coloring for

the vertices connected to the
Using this algorithm, we can

edge.
decompose voltage graphs into
Proper coloring of a squiggly edge: combinations of disconnected graphs
L., and connected squiggly graphs.
By coloring any one vertex in a
(n,g) (n, h) connected squiggly graph, we

can find a proper coloring by
propagating the group element
Turning full edges into squiggly edges: Let by paths to any other group
eeFandE =F UuS. Then, element.

Li,g=h

X, Fus),..) = X(v,(F\e)us),..) — X (F\e)u(Sue),...)

Example of a squiggly graph
whose colorablity is independent
of the chosen coloring.

For any coloring to work
we require: L1,L,3L31 = €
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w
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Li3 = Li5L53

The goal is to move edges over
other edges and leave the SCF
invariant under this
transformation.

Lip
If we think of the vertices
as labeled here, then we @
can write a formula which
incorporates arbitrary
edge polarizations.

€13 _ 7€237€12
L13 - L23 L12

This formula holds for

moving squiggly edges The edge here has
over squiggly edges and “picked up a phase”
for moving full edges over from the edge it
squiggly edges. moved over.

L23

OSSO0

U3

y Ly3 = L1,L53

(w)

a




Turning full edges into squiggly edges: Xy rus),..) = X(v,(F\e)us),..) — X(V,(F\e)u(Sue),...)

O

L
(T,H,L,€)

(T is a tree) 9 Lis le@

Llet T: H X H™ - H™ be a group action defined
by, T(g, (hy, ..., hn)) = (h.g, ..., h,,9).

v = (e,Lij, Lig, .. Lim) € H™

O4n(v) is the orbit of v in H™ under

the group action 7.

i NXOyn(v) > H,i €{2,..,n+ 1}

m1: N X O4n(v) - N defined by

ki=1
ﬂl(kl 91, ---;gn) = {gl’l’ 1

Xn(o) = X(k,m2(0))X(k,m3(0)) = X(k,mn41(0))

Star Basis Element:

Son = Xn(o)
0ENXO4n (V)

S(e,L14,L13,L12),4 =

By performing the
decomposition
into “radiating

14
c Lse @ @ voltage stars”, we
B + can use this as an

algebraic basis for
the SCF.

Example term:

O

L14-

(D
(3) L1z le@

X1(o)
0€NX04,4((e,L14,L13,L12))
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