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Talk Outline
• Background: Renormalization group equations and asymptotic safety

• How to find renormalization group equations

• Evolution of couplings under the renormalization group

• Asymptotic safety and its definition/uses

• The gauged baryon number model and its various sectors

• The UV fixed point structure

• Numerical analysis and phenomenology

• Dark matter analysis
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Quantum Field Theory & Renormalization

• How are renormalization group equations (RGEs) calculated?

• Ex: Scalar 𝜙4 theory: 

• 𝜇 is the renormalization scale

• 𝛿𝜆 = 𝜆0𝑍2 − 𝜆𝜇𝜖  and 𝛿𝑚 = 𝑚0
2𝑍 − 𝑚2 and 𝛿𝑧 = 𝑍 − 1 = 0 (at one loop)
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Quantum Field Theory & Renormalization

• Consider the vertex correction:

• Apply dimensional regularization and 𝑀𝑆 renormalization scheme:
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Renormalization Group Equations

• Physical amplitudes & bare couplings are independent of choice of 𝜇

• Apply 𝜇
𝑑

𝑑𝜇
 to both sides to find the 𝜆 renormalization group equation 

at one loop:

• In general, for a theory with couplings 𝑔1, … , 𝑔𝑘:
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Running of Couplings

• Experimentally measured values of the couplings fix the boundary 
conditions at an energy scale 

• One of three things can happen as a coupling, 𝑔, is evolved into the UV:

1. Gaussian Fixed Point: The coupling approaches zero.                  
Possible if 𝛽 𝑔∗ = 0 = 0

2. Interacting Fixed Point: The coupling approaches a fixed non-zero 
value. Possible if 𝛽 𝑔∗ ≠ 0 = 0

3. Landau Pole: The coupling diverges to infinity at a finite energy scale. 
Field theories cannot be extrapolated past this scale
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The UV Critical Surface

• UV critical surface: The set of couplings at an energy scale which run 
to a fixed point
• Typically of smaller dimension than the full parameter space

• The dimension can be found by evaluating the 𝛽-functions in the 
vicinity of the fixed points:

• UV critical surface is spanned by all 𝑣𝑖
𝑘 with 𝜃𝑘 < 0 (maybe 𝜃𝑘 = 0)

7

𝛽𝑖 = 𝑀𝑖
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The Problem with Einstein Gravity

• It is well known that Einstein gravity as a quantum field theory is non-
renormalizable

• The mass dimensions of Newton’s constant, 𝐺, is −2

• New couplings must be introduced to absorb divergent amplitudes at 
each order in perturbation theory
• The parameter space is infinite dimensional

• The theory lacks predictive power since infinitely many measurements 
need to be performed to determine the values of these couplings

8

𝑆𝐸𝐻 =
1

16𝜋𝐺
න 𝑑4𝑥 𝑔 𝑅 − 2Λ



Asymptotic Safety

• Asymptotic Safety: The only points in parameter space which 
correspond to a physically sensible theory are those which lie on the UV 
critical surface 

• If the UV critical surface for quantum gravity is finite dimensional, then 
the theory is predictive

• If this works for gravity, then couplings for other quantum fields should 
be asymptotically safe too

• This paradigm can reduce the dimensionality of the parameter space 
for a renormalizable theory
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Extensions of the standard model

• Generally, extensions of the standard model contain many new 
underconstrained couplings. For example:
• Kinetic mixing in 𝑈(1) extensions

• Higgs mixing angles in theories with an extended scalar sector (like two-Higgs 
doublet models)

• Masses and mixing angles in theories with heavy right-handed neutrinos to 
utilize a see-saw type mechanism

• Asymptotic safety restricts couplings to live on the UV critical surface
• Leads to greater predictivity and interesting phenomenology 
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Asymptotically Safe Gravity

• Asymptotically safe gravity is studied in a functional renormalization group (FRG) 
framework:

• S is the “bare” action and 𝑆𝑘  integrates out high momentum modes via the 𝑅𝑘 𝑞2  functions

• Γ𝑘 is the effective action which depends on the momentum scale 𝑘

• 𝑔𝑖(𝑘) are running couplings and 𝒪𝑖 𝜙𝐴  are field monomials of 𝜙𝐴 and its derivatives

• For gravity, Einstein-Hilbert truncation ignores higher order terms (ex: 𝑅2) and 
just considers the running of 𝐺 and Λ

• The effective action evolves under the Wetterich equation: 𝑡 = log 𝑘
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Γ𝑘 𝜙𝐴 = Σ𝑖  𝑔𝑖 𝑘 𝒪𝑖(𝜙𝐴)
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𝐴𝐵 𝑞2 𝜙𝐵



Gravitational Corrections

• Coupling matter to gravity alters the running of couplings for matter fields above 
the Planck scale. These are approximated at one loop order as:

• The form of the 𝑓𝑖  depend on the exact matter content, gravity theory, 
truncation, and renormalization scheme 
• In practice, the 𝑓𝑖 are treated as phenomenological parameters

• Gravity couples universally to matter fields:
• 𝑓𝑖 contributes identically to the running of all gauge couplings. True too for Yukawa & quartic 

couplings. So, 𝑓𝑔, 𝑓𝑦, 𝑓𝜆 are input parameters

• Below the Planck scale gravity fluctuations fall off quickly. So, essentially no RGE 
effect for matter fields. In practice, this is modeled as:
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Δ𝛽 𝑔𝑖 = 𝑓𝑖𝑔𝑖
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Talk Outline

• Background: Renormalization group equations and asymptotic safety

• The gauged baryon number model and its various sectors
• Why gauge baryon number?

• Cancelation on anomalies

• Particle content

• The different sectors

• The UV fixed point structure

• Numerical analysis and phenomenology

• Dark matter analysis
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Why Gauge Baryon Number?

• Baryon number is a 𝑈 1  global symmetry of the standard model

• Kinetic mixing between gauged baryon number and hypercharge has 
interesting phenomenology for standard model particles

• Affects cosmological processes like baryogenesis and the matter anti-
matter asymmetry

• Higgs mixing is possible if gauged baryon number is spontaneously 
broken by a complex scalar

• New fermions charged under this symmetry may provide a dark 
sector
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Anomaly Cancellation

• This requires cancelation of anomalies by adding new fermions
• The cancelation constrains the 𝑈 1 𝐵 charges of the new fermions

• Assume the new fermions, 𝜓𝐿,𝑅
𝜈,𝑒,ℓ , are vector-like, chiral under baryon 

number, and charged identical to the standard model leptons

• Ex: 𝑈 1 𝐵𝑆𝑈 2 𝑊
2  anomaly
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A Gauged Baryon Number Model

• 3 new generations of Dirac, vector-like 

fermions, 𝜓𝑖
𝑗

• Standard model particles + right-
handed neutrinos

• 1 new Dirac, vector-like fermion, 𝜒

• 1 new vector boson, 𝑍′

• 1 new complex scalar boson, 𝜙

𝜙 is a singlet under the standard model 
gauge group with baryon number +1
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• Yukawa terms coupling the new fermions together are:

• The mass scale of the new fermions is set by the 𝜙 vev (TeV-scale)
• Coupling heavy and light fermions together are also possible:

• This allows for decays to standard model particles
• We adopt a simplified flavor structure where 𝑦𝑖 and 𝜅𝑖 are 

proportional to the identity matrix

The Yukawa Sector
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The Scalar Potential

• Asymptotic safety also applies to the scalar sector:

• Stability of the potential depends on the couplings: 

• Following the approach of Nie & Sher (arXiv:hep-ph/9811234), we track the 
RGE evolution of 𝔰 > 0 and 𝜆 > 0 to ensure vacuum stability
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𝔰 = 𝜆𝜆𝜙 − 𝜆𝑚
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Kinetic Terms and Mixing
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• Rescale gauge fields so that gauge coupling dependence is clear:

• Change the field bases so that the matrix 𝐺 is upper triangular:

• In this field basis, the covariant derivative takes the form:

(We will use 𝑆𝑈(5) GUT normalization of hypercharge, 

𝑔1 =
5

3
𝑔𝑌, for the rest of the analysis)



Talk Outline

• Background: Renormalization group equations and asymptotic safety

• The gauged baryon number model and its various sectors

• The UV fixed point structure
• Renormalization group equations

• Fixed-point structure

• Numerical analysis and phenomenology

• Dark matter analysis
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Renormalization Group Equations

• The Abelian gauge sector RGEs (one Loop):

𝛽 1 𝑔1 =
77

10
𝑔1
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መ𝑓𝑔𝑔1

𝛽 1 𝑔𝐵 = 11𝑔𝐵
3 +

77

6
𝑔𝐵 ෤𝑔2 −

16

3
𝑔𝐵

2 ෤𝑔 − 𝜃 𝜇 − 𝑀𝑃𝑙
መ𝑓𝑔𝑔𝐵

𝛽 1 ෤𝑔 = −
16

5
𝑔1

2𝑔𝐵 −
16

3
𝑔𝐵 ෤𝑔2 +

77

5
𝑔1

2 ෤𝑔 + 11𝑔𝐵
2 ෤𝑔 +

77

6
෤𝑔3 − 𝜃 𝜇 − 𝑀𝑃𝑙

መ𝑓𝑔 ෤𝑔

• Ultraviolet fixed points satisfy the conditions:

𝛽 1 𝑔1∗
= 𝛽 1 𝑔𝐵∗

= 𝛽 1 ෤𝑔∗ = 0
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ln 𝜇/1 TeV

Running of the Hypercharge Coupling

22

𝜇 < 𝑀𝑝𝑙:

𝛽 1 𝑔1∗
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Continuity requires matching

at Planck scale

(Gaussian Fixed Point)
(Interacting Fixed Point)



Renormalization Group Equations

• The Abelian gauge sector RGEs (one Loop):

𝛽 1 𝑔1 =
77

10
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• Ultraviolet fixed points satisfy the conditions:

𝛽 1 𝑔1∗
= 𝛽 1 𝑔𝐵∗

= 𝛽 1 ෤𝑔∗ = 0
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Interacting 𝑔1 fixed pointGaussian 𝑔1 fixed point

Ultraviolet Fixed Points

Fixed Point: 𝑔𝐵, ෤𝑔 = (0.871, 0.181) 24



The UV Critical Surface

Representative coupling values at 𝜇0 = 1 TeV: 
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𝜇 = 1 TeV

Other Parameter Choices:

• 𝑣𝜙 = 10 TeV

• 𝜆𝜙 𝜇0 = 0.2

• 𝜆𝑚 𝜇0 = −0.004

• 𝜅𝑖 𝜇0 = 𝑦𝑖 𝜇0 = 0.1

• 𝑓𝜆 = 𝑓𝑦 = 0.1

𝑚ℎ = 125 GeV ⟹ 𝜆 𝜇0 = 0.25828 ⟹ 𝑚𝜙 = 4.472 TeV

• 𝜃𝑚𝑖𝑥~𝒪(10−4)
• Current bounds are 𝒪(10−1)(J. Claude and S. Godfrey, arXiv:2104.01096)



Talk Outline

• Background: Renormalization group equations and asymptotic safety

• The gauged baryon number model and its various sectors

• The UV fixed point structure

• Numerical analysis and phenomenology
• Evolution of couplings

• Explore the parameter space

• Phenomenology of the baryon number gauge boson

• Dark matter analysis

26



Evolution of Gauge & Scalar Couplings

Gaussian 𝑔1fixed point

Interacting 𝑔1fixed point
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𝜆⋆ = 0.065
 𝜆𝜙⋆ = 0.014

𝜆𝑚⋆ = 0.030

𝜆⋆ = 0.018
𝜆𝜙⋆ = 0.32

     𝜆𝑚⋆ = 0.0037



Comparison with the Standard Model
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Gaussian 
Fixed Point

Interacting 
Fixed Point
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Exploring the Parameter Space

• Parameter choices at
      𝜇0 = 1 TeV

•      = Asymptotically safe 
•      = Metastable vacuum
•  × = Not asymptotically  
              safe



Partial Decay Widths for the 𝑍′ Boson

• For example, consider the interacting 𝑔1 fixed point:

• ෤𝑔 =
16

77
𝑔𝐵 for 0 ≤ 𝑔𝐵 ≤ 0.4013

• Partial decay widths:

• 𝑥 =
𝑚𝐵

2𝑚𝑊
 , 𝑦 =

𝑚𝑍

𝑚𝐵
 , 𝜃𝑊 is the weak mixing angle
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• For 𝑚𝐵 ≫ 𝑚𝑍 and small ෤𝑔:  Γ 𝑊+𝑊− ≈
4

29645𝜋
𝑚𝐵𝑔𝐵
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Branching Fractions for the 𝑍′ Boson

• The choice 𝑚𝐵 = 3 TeV and 𝑔𝐵 = 0.3 (0.6 in plot conventions) is 
consistent with assumptions

31

• 𝑔𝐵 = 0.3 → ෤𝑔 = 0.062 → 𝜖 = 0.13
• For 𝑍′ of order the TeV scale, the 

kinetic mixing bound is 𝜖 ≲ 0.3
(B.A. Dobrescu and F. Yu, arXiv:2112.05392)(A. Hook, E. Izaguirre, J.G. Wacker, arXiv:1006.0973)



Talk Outline

• Background: Renormalization group equations and asymptotic safety

• The gauged baryon number model and its various sectors

• The UV fixed point structure

• Numerical analysis and phenomenology

• Dark matter analysis
• Dark matter stability

• Relic density

• Direct detection
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Dark Matter Stability

• All particles (except 𝜒), have baryon number charge |𝑄𝐵| = 0,
1

3
, or 1

• 𝜒 has 𝑄𝐵 = 1/6

• Under a 𝑈 1 𝐵 phase rotation: 𝑒𝑖𝑄𝐵(6𝜋), all fields are left invariant 
except for 𝜒 → −𝜒

• This ℤ2 ⊂ 𝑈 1 𝐵 remains unbroken after spontaneous symmetry 
breaking. It is safe from violation by quantum gravitational effects

• Since 𝜒 is the only field odd under this symmetry, its stability is 
guaranteed
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Ultraviolet Fixed Points

Benchmark Fixed Point: (0.202, 1.136)
At 1 TeV: (0.200, 0.150)

Fixed Point: (0,0)
At 1 TeV: (0.200,0.041)

Fixed Point: (0.871, 0.181)
At 1 TeV: (0.400, 0.083)

(ii) (ia)(ib)
34



Dark Matter Relic Density

• Thermal equilibrium exists if DM annihilation rate to SM particles 
exceeds the expansion rate. 𝜎 𝜒 ҧ𝜒 → 𝑓 ҧ𝑓  via 𝑍′ exchange dominates:

• The decay width of 𝑍′ to standard model fermions is:

• We use a relativistic treatment of the thermally averaged annihilation 
cross section times relative velocity:
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𝑍′



Dark Matter Relic Density

• 𝜒 falls out of thermal equilibrium at the freeze-out temperature:

• The entropy density to number density ratio is then propagated from 
the freeze-out temperature to the present temperature:

• The dark matter relic density is then:

36

𝑛𝜒
𝐸𝑄

𝜎𝑣

𝐻 𝑇
≈ 1

Freeze-out 
condition



• We illustrate the relic density results for different TeV scale 𝑚𝜒 and 

𝑚𝐵 in the case of 𝑔1, 𝑔𝐵, ෤𝑔  all flowing to the interacting fixed point:

Dark Matter Relic Density
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Ω𝐷ℎ2 = 0.1193 ± 0.0009
(Planck measurement)



Direct Detection

• For each 𝑚𝜒, we pick an 
𝑚𝐵 which achieves the 
correct relic density
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Conclusions

1. Gravitational corrections above the Planck scale allow for different 
fixed-point scenarios 

2. Requiring asymptotic safety constrains the model’s couplings, 
including the kinetic mixing parameter, and yields a more predictive 
theory

3. The model includes a stable TeV-scale dark matter candidate

4. These models can predict the observed relic density while also 
remaining consistent with direct detection experiments
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Thank You!



RGEs of Gauge Couplings at 1 Loop
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RGEs of Yukawa Couplings at 1 Loop
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RGEs of Quartic Couplings at 1 Loop
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1 TeV SM Coupling Values

43

• SM Higgs mass is 125 GeV and the Higgs vev is 246 GeV. The 
following are the measured gauge coupling values at 𝜇0 = 1 TeV and 
the Yukawa couplings for the top and bottom quarks:

(G. Hiller, C. Hormigos-Feliu, D. F. Litim and T. Steudtner, arXiv:2008.08606) 



Evolution of Gauge Couplings
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Interacting 𝑔1 fixed point Gaussian 𝑔1 fixed point



Evolution of Yukawa Couplings
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Interacting 𝑔1 fixed point Gaussian 𝑔1 fixed point 



Evolution of Yukawa Couplings
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Interacting 𝑔1 fixed point Gaussian 𝑔1 fixed point 



Evolution of Yukawa Couplings
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Interacting 𝑔1 fixed point Interacting 𝑔1 fixed point 



𝜙4 Theory One Loop Self Energy

• Consider the self-energy at one loop:

• Apply dimensional regularization and 𝑀𝑆 renormalization scheme:

•  So, 𝛿𝑍 = 0 and 𝛿𝑚 =
𝜆𝑚2

32𝜋2

2

𝜖
− 𝛾 + ln(4𝜋) = 𝑚0

2𝑍 − 𝑚2 = 𝑚0
2 − 𝑚2 (at one loop)
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= −𝑖𝜆𝜇𝜖
1

2
න

𝑑𝑑𝑘

2𝜋 𝑑

𝑖

𝑘2 − 𝑚2
+ 𝑖 𝑝2𝛿𝑍 − 𝛿𝑚 = −

𝑖𝜆𝜇𝜖

2

1

4𝜋
𝑑
2

Γ 1 −
𝑑
2

𝑚2 1−
𝑑
2

+ 𝑖 𝑝2𝛿𝑍 − 𝛿𝑚

−𝑖Σ(𝑝2) =

=
𝑖𝜆

2

𝑚2

4𝜋 2

2

𝜖
− 𝛾 + ln 4𝜋 + 1 − ln

𝑚2

𝜇2 + 𝑖 𝑝2𝛿𝑍 − 𝛿𝑚



Identifying 𝐶𝑉 and 𝐶𝐴
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Consider the expansion of the kinetic term: 𝑖 𝑃𝐿𝜓 𝛾𝜇𝐷𝜇
𝐿 𝑃𝐿𝜓 + 𝑃𝑅𝜓 𝛾𝜇𝐷𝜇

𝑅 𝑃𝑅𝜓  

• 𝐷𝜇
𝐿,𝑅 = 𝜕𝜇 − 𝑖𝑔𝐵𝑄𝐵

𝐿,𝑅𝐵𝜇 − 𝑖 𝑔𝑌𝐴𝜇
𝑌 + ෤𝑔𝐵𝜇 𝑄𝑌

𝐿,𝑅

• 𝑃𝐿 =
1−𝛾5

2
, 𝑃𝑅 =

1+𝛾5

2
, also note that 𝛾5 2

= 1

• 𝑃𝐿𝜓 = ത𝜓𝑃𝑅 and likewise 𝑃𝑅𝜓 = ത𝜓𝑃𝐿

• Since we are interested in the coupling to 𝑍′ we will just focus on these terms 
in the covariant derivative:

• 𝑖
1+𝛾5

2
−𝑖𝑔𝐵𝑄𝐵

𝐿𝛾𝜇 − 𝑖 ෤𝑔𝑄𝑌
𝐿𝛾𝜇 1−𝛾5

2
+ 𝑖

1−𝛾5

2
−𝑖𝑔𝐵𝑄𝐵

𝑅𝛾𝜇 − 𝑖 ෤𝑔𝑄𝑌
𝑅𝛾𝜇 1+𝛾5

2

•
1

2
𝑔𝐵𝑄𝐵

𝐿 𝛾𝜇 + ෤𝑔𝑄𝑌
𝐿𝛾𝜇 − 2𝑔𝐵𝑄𝐵

𝐿𝛾𝜇𝛾5 − ෤𝑔𝑄𝑌
𝐿𝛾𝜇𝛾5 + 𝑔𝐵𝑄𝐵

𝑅𝛾𝜇 + ෤𝑔𝑄𝑌
𝑅𝛾𝜇 + 𝑔𝐵𝑄𝐵

𝑅𝛾𝜇𝛾5 + ෤𝑔𝑄𝑌
𝑅𝛾𝜇𝛾5

•
1

2
𝛾𝜇 𝑔𝐵 𝑄𝐵

𝐿 + 𝑄𝐵
𝑅 + ෤𝑔 𝑄𝑌

𝐿 + 𝑄𝑌
𝑅 + 𝑔𝐵 𝑄𝐵

𝑅 − 𝑄𝐵
𝐿 𝛾5 + ෤𝑔 𝑄𝑌

𝑅 − 𝑄𝑌
𝐿 𝛾5

• 𝐶𝑉 = 𝑔𝐵 𝑄𝐵
𝐿 + 𝑄𝐵

𝑅 + ෤𝑔 𝑄𝑌
𝐿 + 𝑄𝑌

𝑅

• 𝐶𝐴 = 𝑔𝐵 𝑄𝐵
𝑅 − 𝑄𝐵

𝐿 𝛾5 + ෤𝑔 𝑄𝑌
𝑅 − 𝑄𝑌

𝐿



Partial Decay Widths
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Species 𝐶𝑉 /𝑔𝐵 𝐶𝐴 /𝑔𝐵

up-type 
quark

0.8008 0.0805

down-type 
quarks

0.6398 0.0805

charged 
leptons

0.2414 0.0805

neutrinos 0.0805 0.0805

𝑖ℳ𝑗 = ത𝑢𝑠1 𝑝1

𝑖

2
𝐶𝑉

𝑗
𝛾𝜇 + 𝐶𝐴

𝑗
𝛾𝜇𝛾5 𝑣𝑠2 𝑝2 𝜀𝜇

𝑟(𝑘)

𝐶𝑉 = 𝑔𝐵 𝑄𝐵
𝐿 + 𝑄𝐵

𝑅 + ෤𝑔 𝑄𝑌
𝐿 + 𝑄𝑌

𝑅

𝐶𝐴 = 𝑔𝐵 𝑄𝐵
𝑅 − 𝑄𝐵

𝐿 + ෤𝑔 𝑄𝑌
𝑅 − 𝑄𝑌

𝐿

Values for interacting 𝑔1 fixed point

𝑍′

ഥ𝑓𝑖

𝑓𝑖

𝜇, 𝑟

𝑝2

𝑝1

𝑘

𝑘 = 𝑝1 + 𝑝2

Γ𝑗 ∝ ℳ𝑗 2
 and Γ = Σ𝑗Γ𝑗

|ℳ𝑗|2 =
1

3
Σ𝑟Σs1,s2

ℳ𝑗∗ℳ𝑗



DM Annihilation to SM Fermions
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𝑘1 + 𝑘2 = 𝑞 = 𝑝1 + 𝑝2

𝑖ℳ𝑗 = ҧ𝑣𝑠2 𝑘2

𝑖𝑔𝐵

3
𝛾𝜇 𝑢𝑠2 𝑘1 −

𝑖 𝑔𝜇𝜈 −
𝑞𝜇𝑞𝜈

𝑚𝐵
2

𝑞2 − 𝑚𝐵
2 + 𝑖𝑚𝐵Γ

ത𝑢𝑟1 𝑝1

𝑖

2
𝐶𝑉

𝑗
𝛾𝜈 + 𝐶𝐴

𝑗
𝛾𝜈𝛾5 𝑣𝑟2 𝑝2

𝜒

𝑍′

ഥ𝑓𝑗

𝑓𝑗

𝑝2

𝑝1

𝑞

ҧ𝜒

𝑘1

𝑘2

𝜇𝜈

ℳ𝑗 2
=

1

4
Σ𝑠1,𝑠2

Σ𝑟1,𝑟2
ℳ𝑗∗ℳ𝑗

𝜎𝑗 ∝ ℳ𝑗 2
 and 𝜎 = Σ𝑗𝜎𝑗



Direct Detection Calculation
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𝜒

𝑍′

𝑁𝑗𝑁𝑗

𝑝1
𝑝2

𝑞

𝜒

𝑘2𝑘1

𝜇

𝜈

𝑖ℳ𝑗 = ത𝑢𝑠2 𝑝2

𝑖

2

𝑔𝐵

3
𝛾𝜇 𝑢𝑠1 𝑝1 −

𝑖 𝑔𝜇𝜈 −
𝑞𝜇𝑞𝜈

𝑚𝐵
2

𝑞2 − 𝑚𝐵
2 ത𝑢𝑟2 𝑘2

𝑖

2
𝐶𝑉

𝑗
𝛾𝜈 + 𝐶𝐴

𝑗
𝛾𝜈𝛾5 𝑢𝑟1 𝑘1

𝑝1 − 𝑝1 = 𝑞 = 𝑘2 − 𝑘1

• 𝜎𝑒𝑓𝑓 ∝
𝑛1ℳ1+𝑛2ℳ2 2

𝑛1+𝑛2
2  

• since the entire nucleus recoils, the individual protons/neutrons are not treated as distinct
• 𝜎𝑒𝑓𝑓 is the effective spin-independent nucleon scattering cross section.

For protons, 𝐶𝑉 = 2𝑔𝐵 +
3

2
෤𝑔 and 𝐶𝐴 = −

1

2
෤𝑔

For neutrons, 𝐶𝑉 = 2𝑔𝐵 +
1

2
෤𝑔 and 𝐶𝐴 =

1

2
෤𝑔

Xenon-132:
• 𝑛1 = 54 protons
• 𝑛2 = 78 neutrons
• 𝑚𝑁 ≈ 939 𝑀𝑒𝑉

Consider scattering off of a Xenon-132 atom:
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