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Abstract

General Relativity, proposed by Albert Einstein in 1915, has been the corner-
stone of gravitational physics for over 70 years, utilizing differential geometry. De-
spite advancements in mathematics, its core assumptions, particularly the equiva-
lence principle, remain unchanged. This principle equates gravitation to accelerated
reference frames, reducing spacetime’s general coordinate invariance to Lorentz in-
variance via the metric tensor. This paper explores this perspective using the
principal fiber bundle formulation, emphasizing geometric clarity, coordinate inde-
pendence, and connections to classical gauge theory. We interpret the equivalence
principle topologically, construct the frame bundle, and demonstrate how its re-
duction to a Lorentz group bundle yields the metric tensor, and draw comparisons
with general relativity’s framework.

1 Introduction

General Relativity has served as the keystone of gravitational physics for the past 70
years. This theory was first proposed by Albert Einstein in 1915 and is constructed using
the language of differential geometry. While differential geometry as a field has seen con-
siderable growth since the early days of Riemann, Gauss, and Cartan, the foundations of
general relativity have remained for the most part unchanged since the days of Einstein.
Nevertheless, the advancement of mathematics has allowed for a deeper understanding
of the fundamental assumptions built into general relativity. The most fundamental as-
sumption is the equivalence principle which states that gravitation is indistinguishable
from accelerated reference frames. Broadly speaking, this statement is equivalent to the
statement that our spacetime, which is invariant under general coordinate transforma-
tions, is reducible to a theory invariant under Lorentz transformations. The expense of
this reduction is the metric tensor. From this viewpoint, the metric tensor plays the
role of a classical Higgs field. While this perspective is not a common one taken in the
literature, it paints an interesting geometric picture that is worth exploring.

As with any area of physics, there are a number of formulations of a theory which
ultimately lead to the same description of nature. However, certain formulations have
proved more enlightening and open to generalization. This is certainly true of general
relativity. Throughout this paper, we will stick to the principal fiber bundle formulation
of the subject for a few reasons:
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1. It puts the physical geometry of the problem at center stage as opposed to other
formulations where differential equations or fields on a fixed background manifold
take the spotlight.

2. This formulation is independent of coordinate system. Thus, the “debauch of in-
dices” as Michael Spivak called it ceases to cloud often times simple equations.

3. All of the methods used in this formulation carry over smoothly to the study of
classical gauge theory. Thus, this one classical approach proves vital to other,
seemingly disconnected, areas of fundamental physics.

It is also important to note that this paper is not intended to be a review of principal
fiber bundle mathematics and modern geometry. For a review of this subject see ref. [5]
So, this paper will try to keep some of the more abstract objects constrained to a general
discussion and “sketch” certain aspects of the theory when needed.

2 Atlases, Charts, and Transition Functions

With the formulation fixed, we will view the equivalence principle as being topological at
heart. To elaborate on this, recall that in modern geometry, real smooth n-dimensional
manifolds are defined in a way which is independent of an embedding into an ambient
space. They are defined as a topological space with a collection of neighborhoods and as-
sociated diffeomorphisms onto open subsets of Rn such that these neighborhoods provide
an open cover of the manifold and the diffeomorphisms are compatible on overlapping
neighborhoods. A maximal collection of such neighborhoods and associated diffeomor-
phisms to open subsets of Rn is called a smooth atlas for the manifold. A smooth atlas
contains ample topological and differential information about a smooth manifold. In
some cases, (Exotic R4 for example) there are many different choices for differentiable
structures on the same underlying manifold. The combination of an open neighborhood
and its associated diffeomorphism is called a chart and it is usually denoted by (x, U)
where x : U → Rn is a diffeomorphism. If we pick two such elements of the atlas, (x, U)
and (y, V ) such that U ∩ V ̸= ∅, then the map

τxy = x ◦ y−1 : y(U ∩ V ) → x(U ∩ V ) (1)

is called the transition function. We define the tangent bundle to be the collection of
all points on the manifold and the tangent space associated to each point. We denote
this bundle by TM and at each point p ∈ M , the tangent space at p is denoted by
TpM which carries the structure of a vector space over the real numbers. Note that by
the compatibility requirement, the transition functions are diffeomorphisms. So, by the
inverse function theorem, the differential of a transition function is an isomorphism of
the tangent spaces

(dτxy)(p) : Ty(p)Rn → Tx(p)Rn (2)

for each p ∈ U∩V . This map leads to the association of a group element τ̃xy(p) ∈ GL(n,R)
which transforms from one coordinate representation of the tangent space TpM to the
other. We can do this for all transition functions in the atlas. In this paper, it will be
most useful to view the transition functions as maps

τ̃xy : U ∩ V → GL(n,R) (3)
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where the overlapping charts are (x, U) and (y, V ).
The content of the equivalence principle is that we may choose an atlas on a 4-

dimensional manifold such that the transition functions take values in the Lorentz (ac-
tually spin) group which in this context is viewed as a subgroup of the full general linear
group. These atlases cannot in general be found on manifolds and there exists a certain
“topological obstruction” to being able to do this. Interestingly, it can be shown that
4-dimensional manifolds with zero Euler characteristic admit this kind of atlas.

3 The Frame Bundle and Group Actions

In the above discussion, we thought of transition functions as not only changing the
coordinate representation of points on the manifold, but also acting as a linear transfor-
mation on the tangent spaces associated with those points. This idea of groups acting as
transformations on certain spaces is pervasive in both mathematics and physics for the
reason that they form an “ideal pairing” between algebraic objects. This means that it
is possible to study the properties of each object through its interaction with the other
object. The most useful type of action is when the group acts as a symmetry of the space.
Since the above geometry has already led us to the action of the general linear group on
the tangent vector space, we want to construct from this action a space in which the
general linear group acts as the group of symmetries. A natural choice is the space of
bases for the tangent space. This space is nice for the following reasons:

1. Each element of the group GL(n,R) acts as a diffeomorphism of this space (to see
this note that GL(n,R) is diffeomorphic to the space of bases for the n-dimensional
vector space).

2. For any two bases there exists a unique element of the general linear group which
maps one basis onto the other (called a transitive action).

3. If any element of the general linear group fixes an entire basis, then this must be
the identity transformation (called a free action).

This type of free and transitive action is precisely what is needed for the construction
of a principal fiber bundle for GL(n,R). In more detail, we define the base space of
the bundle to be the n-dimensional manifold, M , and the fiber above any point p ∈ M ,
denoted Fp, to be the space of bases for the tangent space at p. Since all tangent spaces
are vector spaces of the same dimension, the space of bases for that vector space are all
isomorphic to one another and we will denote the generic fiber simply by F . The total
space of the bundle is denoted FM and it can locally be described as the product space
U × F for U an open neighborhood on M which is contained in a chart. Thus, charts
are sometimes thought of as trivializing neighborhoods on the manifold. The general
linear group acts on each of the fibers in the manner described above. This particular
principal fiber bundle is called the frame bundle of M . Note that there is a natural
smooth projection map, π : FM → M from the total space to the base space given by
π(p, e) = p where e represents any basis for TpM . A local smooth right inverse for π is
called a section, s : U → FU such that π ◦ s = idU for U an open subset of M . Thus,
for an element p ∈ U , s(p) is a choice of basis for TpM which is called a frame. Since we
have a smooth choice of these frames for each point of U , a smooth local section of the
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frame bundle is often called a moving frame in the literature. The space of all smooth
local sections for an open neighborhood U is denoted Γ(U, FU).

How does this space transform under the pointwise action of GL(n,R)? Consider a
section s ∈ Γ(U, FU). For each m ∈ FU , we can smoothly pick an element g(m) ∈
GL(n,R). Then the combination s(m) · (g ◦ s)(m) is again a smooth local section of the
frame bundle. The space of all such smooth maps g : FU → GL(n,R) forms a group,
G(U), which is infinite dimensional, and it acts freely and transitively on the space of
smooth local sections of the frame bundle. Implicitly here, we require the map g to
transform as

g(m · h) → h−1g(m)h (4)

for h ∈ GL(n,R) in order to satisfy equivariance between structures. In the mathematics
literature, the group G(U) is called the gauge group, while the group GL(n,R) is called
the structure group of the frame bundle. It is important to note that all automorphisms
of the frame bundle which fix points on the manifold (so they only transform fibers into
themselves) are of this form. These form a special class of bundle automorphisms called
vertical automorphisms.

4 The Equivalence Principle

We want to apply the equivalence principle to the frame bundle on a four-dimensional
manifold. This has been closely studied in the context of principal fiber bundle reductions
in refs. [4, 3]. So, what happens to the frame bundle when we choose the atlas to have
transition functions taking values in the Lorentz group? The Lorentz group does not act
transitively on the space of bases for the tangent space. Instead, the space decomposes
into orbits. For any fixed basis, e, in a generic frame, F , the orbit containing that basis
is the subset

Oe = {e · h | h ∈ SO(3, 1)} (5)

where SO(3, 1) is the Lorentz group and · represents the right action of the group on
the basis. Note that the action of the Lorentz group on the elements of an orbit is
both transitive and free. To say two elements belong to the same orbit is an equivalence
relation on the space of frames. So, we can form the space of orbits which is denoted
by F/SO(3, 1). Note that this space is isomorphic to the coset space GL(4,R)/SO(3, 1).
Because the Lorentz group is a closed Lie subgroup of GL(4,R), the coset space has the
structure of a smooth manifold on which GL(4,R) acts transitively (but not freely) and
note that the dimension of this manifold is 16−6 = 10. Now pick a global smooth section,
σ : M → FM/SO(3, 1) of this quotient frame bundle. Explicitly, σ(p) ∈ Fp/SO(3, 1)
where Fp/SO(3, 1) is the orbit space constructed by allowing the Lorentz group to act
on the fiber lying above the point p. Thus, σ assigns to each point p ∈ M a particular
SO(3, 1)-orbit. In other words, σ identifies a “copy” of SO(3, 1) immersed in a higher
10-dimensional space.

In fact, one can argue that the image of σ in this higher dimensional space is what is
deserving of the name “spacetime”, since the underlying four-dimensional manifold has
no such characterization in terms of “space” and “time”. In the mathematical physics
literature, the map σ is referred to as a classical Higgs field. We can use the map σ
to define a bundle reduction. While global sections of the frame bundle are not always
possible (when they do exist the manifold is said to be parallelizable), the existence of a
global section of the quotient bundle is guaranteed by the equivalence principle. Indeed,
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consider an atlas for spacetime such that all transition functions take values in the Lorentz
group. In the quotient bundle, these transition functions act trivially. This implies that
the quotient bundle is globally a product manifold which is equivalent to the existence of
a global section of this bundle.

Let FMσ denote the fiber bundle whose base space is M and the fiber above each
point p ∈M is the space of all frames lying in the orbit σ(p). Each orbit is isomorphic to
one another, and is acted upon both transitively and freely by the Lorentz group. Thus,
we have a principal fiber bundle with structure group SO(3, 1) and the principal GL(4,R)
frame bundle is said to be reduced to the principal SO(3, 1) bundle FMσ. While a global
section of the quotient bundle cannot in general be lifted globally to a section of the
frame bundle, this can be done locally. In this paper, we will frequently consider the
space of all local sections, s : U → FU such that s(p) ∈ σ(p) for all p ∈ U where U
is a trivializing neighborhood of M . In this way, we can move the discussion of σ from
the quotient frame bundle (which is more difficult to characterize) to the frame bundle
which is easier to understand. From the above construction, we can see that there is a
one-to-one correspondence between global sections of the quotient bundle and reductions
of the GL(4,R)-principal bundle to an SO(3, 1)-principal bundle.

5 The Metric Tensor as a Classical Higgs Field

The goal of this section is to identify the smooth global section of the quotient bundle
σ : M → FM/SO(3, 1) with the metric tensor. Lets explore this global section of the
quotient bundle in more detail. At each point p ∈M , the map σ(p) picks out a particular
SO(3, 1) orbit in the frame bundle. So, σ determines a set of privileged (inertial) frames
out of all possible frames at that point. It remains to show that this is equivalent to a
unique bilinear structure on TpM . To do so, fix a point p ∈M and pick one such privileged
frame, e. This determines an isomorphism ẽ : TpM → R4. Let an element h ∈ SO(3, 1)
act on e so that e · h = e′. We can view h as being the unique linear transformation
on TpM which carries basis e onto e′. This is equivalent to the vector representation
of h on R4. For convenience, we can use ẽ to view h in a matrix representation as a
linear transformation from R4 → R4. Since SO(3, 1) is the largest subgroup of GL(4,R)
to preserve on σ(p), we want to identify a unique minimal structure on R4 which is
invariant under the SO(3, 1) action. One way to identify such a structure is to lift this
SO(3, 1) representation on R4 to the tensor algebra, T (R4) and then look for fixed points.
Note that SO(3, 1) has no non-trivial fixed points in T 1(R4), however it does have a set
of non-trivial fixed points in T 2(R4). It is straightforward to show that these fixed points
are all scalar multiples of the tensor ηab = diag(−1, 1, 1, 1), or, using the dual basis, we
have

ηab = diag(−1, 1, 1, 1) (6)

which is well recognized as the Minkowski metric tensor.
All higher rank fixed points in T (R4) are tensor products of elements from this set of

fixed points. So, this set is the minimal set which generates all of them. If we require
the basis vectors to have magnitude of absolute value equal to one, then the overall
scalar multiple can be fixed to one or minus one which yields the two possible metric
signatures. By using the isomorphism ẽ : TpM → R4 and extending it to the tensor
algebra by ẽ(a ⊗ b) = ẽ(a) ⊗ ẽ(b), we can pull this metric on (R4)∗ ⊗ (R4)∗ back to a
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metric g(p) ∈ TpM
∗ ⊗ TpM

∗. Thus, in this basis, at this one point in M ,

ge(p) = ũ−1(η) and gµν = ηµν . (7)

What if we extend this analysis by a local moving frame, s : U → FU , such that
s(p) ∈ σ(p) for all p ∈ U? Note that s need not be holonomic, nor is it a unique lift of
σ from the quotient bundle to the frame bundle. Then the above analysis holds at each
point in U with respect to this moving frame, s. So, again, g = η everywhere in U .

Now pick a coordinate chart (x, U) onM . For each point p ∈ U , we have the holonomic
basis for TpM given by x(p) =

{
∂

∂xµ |p
}
. In sec. 3, we saw that local sections of the frame

bundle transform under vertical automorphisms of the bundle, each of which is defined
by a map γ : FU → GL(4,R). We can pick a vertical automorphism γx such that

x(p) = v · γx(v) (8)

for all v ∈ Fp. So, the map, γx, is really a vertical automorphism which we can associate
just to the chart (x, U). Now, let s be a lift of σ in FU and note that all such lifts are acted
upon by the reduced gauge group G(U) in the reduced bundle. Then y(p) = s(p) ·γx(s(p).
Note that for h ∈ G(U) we can define s(p) = s′(p) · h(s′(p)). Recall that γx(s(p))
transforms as

γx(s(p)) = γx(s
′(p) · h(s′(p))) = h(s′(p))−1γx(s

′(p))h(s′(p)). (9)

So,
y(p) = [s′(p) · h(s′(p))] · [h−1(s′(p))γx(s

′(p))h(s′(p))] = s′(p) · γx(s′(p)). (10)

Thus, γx is independent of the choice of lift, s, and is really just dependent on the map
σ.

We can allow γx(s(p)) to act on the metric tensor by lifting the action of GL(R, 4)
on the tangent space at each point to the space of rank 2 tensors and we again use the
· symbol to denote this action. So, in the coordinate chart (x, U) the metric tensor is
gx(p) = η(p) · γx(s(p)) for any such s. In coordinates, gµν(p) = eaµ(p)e

b
ν(p)ηab. Note that

by construction, the Minkowski metric tensor is a fixed Lorentz invariant, so

gx(p) = η(p) · γx(s′(p) · h(s′(p)) = [η(p) · h−1(s(p))] · γx(s′(p)) = η(p) · γx(s′(p)). (11)

Thus, gx(p) is also independent of the choice of lift of σ. So, it is therefore a property
of the reduced bundle expressed in the chart (x, U). Here, the Roman letters label the
basis vectors of R1,3 while the Greek letters label the holonomic basis vectors associated
to the chart (x, U).

In general relativity, the local field

γx(s(p)) : U → GL(4,R) (12)

is called a tetrad field (in geometry, this is really just a section of a particular associated
bundle called the adjoint bundle).

We can say that gµν is the coordinate representation of η by thinking about the
previous paragraph where we associated privileged frames in FM to the metric tensor
η at a point p ∈ M . In this line of thinking, we picked a privileged frame e ∈ Fp and
thought of it as an isomorphism to R4. This gave us a metric tensor on R4. To get the
metric tensor on TpM , we needed to pull back η ∈ (R4)∗⊗(R4)∗ by the map ẽ. What if we

6



had chosen some other frame e′ potentially not related to e by a Lorentz transformation?
Then by choosing h ∈ GL(4,R) we could relate e and e′ by e′ = e · h. Here, the element
h is interpreted as an isomorphism Th : [R4]e → [R4]e′ which carries basis e onto basis e′.
Then the metric tensor η = ηab in basis e transforms according to

[Th]
a
µ[Th]

b
νηab = gµν (13)

when expressed in basis e′ on TpM . These operations are analogous to what is done
in the previous paragraph, however they are now interpreted in terms of coordinate
representations.

6 Summary of the Construction

From this, we can see the moral of the story. By applying the equivalence principle,
we can pick a global smooth section σ : M → FM/SO(3, 1) of the quotient bundle to
perform the bundle reduction. This yields a choice of inertial frames lying in the fiber of
the frame bundle over any chosen point, p, on the manifold. Up to metric signature, we
were able to identify a unique metric tensor on TpM which identifies each basis in the set
of inertial frames as being orthonormal. When expressed locally in terms of any moving
frame, s, which is a lift of σ to the frame bundle, the metric has the form gab = ηab. This
can be related to any local holonomic frame (i.e. in a coordinate system) (x, U) by using
a tetrad field, γx ◦s. When the tetrad field acts on the metric tensor, it provides the local
coordinate representation of the metric tensor

gx(p) = η(p) · γx(s(p)) (14)

which is determined solely by the choice of coordinates and the choice of bundle reduction.
Thus, from more of a field theory perspective, the above analysis says that it is valid to
fix a coordinate system and then vary over possible metric tensors gµν to understand the
space of possible bundle reductions. Also, the bundle reduction breaks the symmetry
group associated to the entire manifold from the diffeomorphism group down to the
isometry group.

7 Connections and Metric Compatibility

Now that we understand how the reduction of the frame bundle gives rise to pseudo-
Riemannian metrics on spacetime, we can think about what happens to the space of
connections on spacetime when this bundle reduction is performed. Connections on
principal fiber bundles are defined geometrically by Ehresmann connections. Without
getting into too many technical details, these are differential one-forms defined on the
total space of the principal bundle and which take values in the Lie algebra of the structure
group. Geometrically, these connections define a particular subspace (called a horizontal
subspace) of the tangent space to the total space of the principal bundle at each point
of the total space. More concretely, if FM is the frame bundle over spacetime M and
π : FM →M is the natural projection map, then at each point e ∈ FM , we can always
define a particular subspace (called the vertical subspace at e of FM) by VeFM = ker dπe
where dπe is the differential of the natural projection. This subspace consists of vectors
which are tangent to the fiber at e when the fiber is viewed as a submanifold of the total
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space. There does not exist, however, a canonical choice of complementary subspace,
HeFM such that

TeFM = VeFM ⊕HeFM (15)

for each point e ∈ FM .The smooth choice of such a complementary (horizontal) subspace
at each point of the total space is equivalent to a choice of Ehresmann connection on the
bundle.

Before any bundle reduction, the structure group is GL(4,R) with Lie algebra gl(4,R)
and after the bundle reduction the structure group is SO(3, 1) with Lie algebra so(3, 1).
We identify so(3, 1) as a Lie subalgebra of gl(4,R). Note that, as a vector space, gl(4,R)
splits as

gl(4,R) = so(3, 1)⊕m (16)

where m is a 10-dimensional vector space (not a Lie algebra) which is invariant under the
adjoint action of SO(3, 1).

Let ω be a connection on the frame bundle FM and let FMσ be the sub-bundle of
FM defined by the global section of the quotient bundle, σ. A connection is said to be
reducible to a connection ω′ on FMσ if and only if on the sub-bundle, FMσ, ω takes
its values in the Lie subalgebra, so(3, 1). Thus, on the restriction of ω to FMσ, ω = ω′

which is a valid connection on FMσ. Now, σ picks out a smooth set of privileged frames
in the frame bundle at each point and view this set as a submanifold of the frame bundle.
This submanifold determined by σ has its own tangent bundle which we can view as a
sub-bundle of the tangent bundle of the frame bundle. There exists a theorem [2] which
states that ω is reducible if and only if σ is parallel with respect to ω. In other words,
for any lift, s, of σ to the frame bundle, its differential

ds(p) : TpM → Ts(p)FM (17)

has its image satisfying ds(p) ⊂ Hs(p)FM .
To understand how this translates to a condition on the metric tensor, we need to

view the bundle T ∗M ⊗ T ∗M as an associated vector bundle to the frame bundle. The
representation that facilitates this is ρ⊗ρ where ρ is the (dual) fundamental representation
of GL(4,R). Now apply the following theorem: The space of sections of the bundle
T ∗M ⊗ T ∗M is isomorphic to the space of smooth equivariant maps [1],

ψ : FM → T ∗M ⊗ T ∗M. (18)

The term equivariant means that

ψ(e · h) = ψ(e) · (ρ⊗ ρ)(h). (19)

Since the metric tensor, g, is a global section of the bundle T ∗M ⊗ T ∗M , there exists a
unique global map

ψg : FM → T ∗M ⊗ T ∗M. (20)

So, to put things together, we have the diagram shown in Fig. 1:
Thus, we see that locally, the metric tensor can be expressed as g = ψg ◦ s and notice

that this expression looks eerily similar to the expression for the metric tensor in Eq. 14
using tetrad fields. Now, we have function composition with an equivariant map. By
using ψg, we can push the horizontal sub-bundle HFM forward to a horizontal sub-
bundle of T (T ∗M ⊗ T ∗M). We can then differentiate the metric tensor locally in some
chart (x, U) on M to get dg = d(ψg ◦ s) and factor this map as

dg = dψg ◦ ds. (21)
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Figure 1: A visual diagram relating the metric tensor and the bundle reduction.

Recall that the differential of s takes values in the horizontal sub-bundle over the tangent
bundle, so dg also takes values in the horizontal sub-bundle induced on T ∗M ⊗T ∗M . So,
g must also be parallel with respect to the connection. This is essentially the statement
of metric compatibility. So, we see that the only connections on the frame bundle which
are preserved by the bundle reduction are those which are compatible with the metric
tensor.

8 Conclusion

Principal fiber bundles on four dimensional.ConcurrentHashMap manifolds provide a
unique, geometrically motivated, perspective on the construction of physical laws. In this
paper, we first began with a very general construction of the frame bundle with structure
group GL(4,R). We then applied the equivalence principle and showed that this principle
satisfies the requirements to reduce the GL(4,R) principal bundle to a SO(3, 1) principal
bundle. Each way of possibly doing this reduction on the four-dimensional manifold is
equivalent to the choice of a pseudo-Riemannian metric tensor on spacetime. By using
our transformation laws for fields in each of the bundles, we saw how these fields trans-
formed under the different gauge groups. Finally, we thought about what connections on
the frame bundle are able to be reduced to connections on the SO(3, 1) bundle and found
that the allowed connections are exactly those which are compatible with the metric
tensor.

Up to torsion, this provides the correct set of connections which are studied in general
relativity. Moreover, it identifies the metric tensor as a classical Higgs field for break-
ing the general coordinate transformations down to Lorentz transformations. Thus, the
remaining group structure which remains is the Lorentz group and all fundamental parti-
cles can then be constructed as sections of associated vector bundles over spacetime since
they live in the various representation spaces for the Lorentz group. With field theory in
mind, it is also worth pointing out that while this approach uses all of the tools associated
with classical gauge theory, this is not a typical gauge theory for gravitation.

Additionally, the space of all field configurations is the same as the space of all bundle
reductions which is the same as the space of all maps σ :M → FM/SO(3, 1). By picking
a metric signature, all of the information in σ can be transferred into a metric. Then by
picking the Levi-Civita connection on spacetime, we can transfer all of the information
from the metric into the connection and this is the primary object studied in classical
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gauge theory. In this way, we can see how the information is just repackaged from the
highly geometric formulation of the theory presented in this paper to a more standard
interpretation as fields on a fixed background.
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