Towards a quantum field theory description of nonlocal spacetime defects

Christopher D. Carone, Noah L. Donald

arXiv:2310.04319v1 (2023)

Email: nldonald@wm.edu

Causal Sets

- Causal Set Theory (CST) is one approach towards a quantum theory of gravity
- A causal set is defined as a locally finite, partially ordered set (C, \leq) satisfying the following relations for any $v_i, v_j, v_k \in C$:
 - Reflexive: $v_i \leq v_i$
 - Transitive: If $v_i \leq v_j$ and $v_j \leq v_k$, then $v_i \leq v_k$
 - Antisymmetric: If $v_i \leq v_j$ and $v_j \leq v_i$, then $v_i = v_j$
 - Locally finite: If $v_i \le v_k$, then the set $\{v_l | v_i \le v_l \le v_k\}$ has finite cardinality
- Spacetime: $v_i \in C$ are events, $v_i \leq v_j$ if v_j is in the future light cone of v_i

points

Causal Sets (cont.)

- A causal set can by described by a matrix called the causal matrix, C
 - $C_{ij} = 1$ if point v_j in the causal set is in the future light cone of point v_i . $C_{ij} = 0$ otherwise
- Poisson Sprinkling: To approximate a region of spacetime, Poisson distribute points at density ρ into that region and then connect points based on inherited causality
- Averaging over such approximations yields the continuum

The Retarded Propagator in CST

- Consider a free real scalar field of mass *M* in 1+1 Minkowski space
- To study particle propagation in CST consider paths between any two points in a Poisson sprinkled causal set with density ρ
- Assign amplitude a to each edge and amplitude b to each internal point in a path
- Total amplitude to travel between any two points is:

$$K = I + \sum_{i=1}^{i=\infty} b^{i-1} a^{i} C^{i} = I + aC(I - baC)^{-1}$$

The Retarded Propagator in CST (Cont.)

- Define $K_R = K I = aC(I baC)^{-1}$
- By averaging over all Poisson sprinklings, it can be shown that:

$$<\widetilde{K_R} > (p) = -\frac{2a}{(p_0 + i\epsilon)^2 - p_1^2 + 2ab\rho}$$

• Set $a = \frac{1}{2}$ and $b = -\frac{M^2}{\rho}$
 $<\widetilde{K_R} > (p) = -\frac{1}{(p_0 + i\epsilon)^2 - p_1^2 - M^2}$

The Feynman Propagator in CST

- In the continuum, we have a free real scalar quantum field $\phi(x)$ acting on a Hilbert space, H
- By restriction, let $\phi_x = \phi(x)$ be the causal set analog when x is in the causal set, C
- In the continuum theory, we have:

 $[\phi(x),\phi(y)] = i\Delta(x,y)$

- Here, $\Delta(x, y) = K_R(x, y) K_A(x, y)$ is the Pauli-Jordan function
- By analogy in CST, define the matrix $\Delta = K_R K_R^T$
- Analogously we also have $[\phi_x, \phi_y] = (i\Delta)_{xy}$

• $i\Delta$ is Hermitian and skew-symmetric. So, $i\Delta$ has matching sets of positive and negative eigenvalues. Let $2s = rank(i\Delta)$ so that i = 1, ..., s

$$(i\Delta)u_i = \lambda_i u_i$$
, $(i\Delta)v_i = -\lambda_i v_i$

- The eigenvectors can be chosen orthonormal, $u_i = v_i^*$, and $u_i^{\dagger}v_j = 0$
- Define the following operators:

$$a_i^{\dagger} = \sum_{x \in C} (u_i)_x \phi_x$$
 , $a_i = \sum_{x \in C} (v_i)_x \phi_x$

• a_i and a_i^{\dagger} satisfy canonical commutation relations. We can then express ϕ_x in terms of raising and lowering operators:

$$\phi_x = \sum_{i=1}^{i=s} (u_i)_x a_i + (v_i)_x a_i^{\dagger}$$

- Identify a normalized vacuum state $|0 > \in H$ by $a_i |0 > = 0$ for all i and < 0|0 > = 1
- In the continuum, the Feynman propagator is defined as:

- By evaluating $(K_F)_{xy} = i < 0 |T\phi_x \phi_y| 0 >$, it can be shown that: $K_F = K_R + iQ$
- The matrix Q can be shown to be the causal set equivalent of the two-point function:

$$Q = <0 |\phi_x \phi_y| 0 > = \sum_{\lambda_i > 0} \lambda_i u_i u_i^{\dagger}$$

• $Re(K_F) = \frac{1}{2}(K_R + K_R^T)$ and $Im(K_F) = Re(Q)$

$$i\Delta = Q - Q^* \to Im(Q) = \frac{\Delta}{2}$$

$$\lim_{\epsilon \to 0} \frac{1}{(2\pi)^2} \int_{\mathbb{R}^2} \frac{1}{p_0^2 - p_1^2 - M^2 + i\epsilon} e^{-i(p_0 x_0 - p_1 x_1)} d^2 p = \frac{1}{4} H_0^2 \left(M \sqrt{x_0^2 - x_1^2} \right)$$

Spacetime Defects

- Several proposed quantum gravity theories postulate a discrete spacetime connected by links to form a graph
- Emergence of a manifold from a graph will generically have nonlocal defects which need not respect macroscopic locality
- A particle which encounters a nonlocal defect will experience a spacetime translation
- The defect density introduces a larger length scale than the discreteness scale

Model A

- Unit volume causal diamond in 1+1 Minkowski space
- 400 spacetime points and 200 paired defects
- In-defects and out-defects are timelike paired
- We chose $\epsilon = 0.75$
- *M* = 5

time

Real Part of Feynman Propagator (A)

Imaginary Part of Feynman Propagator (A)

Model D

- Consider two weakly coupled lattices
- 400 spacetime points and 100 defects are Poisson distributed in a unit volume causal diamond
- Set $\epsilon = a = 0.5$ as the amplitude between defects
- Set $\xi = 0.1$ as the amplitude between a spacetime point and defect pair
- *M* = 5

Real Part of Feynman Propagator (D)

Imaginary Part of Feynman Propagator (D)

Summary of Findings

 We find on average results can be described as shifts in mass and wavefunction renormalization of the continuum low-energy theory

Model	M_r/M_0	Z/Z_0	σ_M	σ_Z	R_a^2	R_b^2	R_c^2	
 A	0.818	0.564	0.005	0.051	0.9214	0.9474	0.8104	$\langle \widetilde{K_R} \rangle (p) = -\frac{2a}{(p-1)^2}$
В	0.827	0.643	0.002	0.058	0.9487	0.9775	0.8865	$(p_0 + i\epsilon)^2 - p_1^2 + 2ab\rho$
\mathbf{C}	1.000	0.999	0.004	0.086	0.9765	0.9883	0.9786	
 → D	0.958	0.864	0.002	0.071	0.9784	0.9727	0.9348	$Re(K_F) = \frac{1}{2} \left(K_R + K_R^I \right)$
\mathbf{E}	0.964	0.883	0.002	0.073	0.9692	0.9728	0.9325	

- M_0 and Z_0 are mass and wavefunction renormalization fit parameters in the defect free limit
- Consider the average amplitude of an edge in the causal set, \overline{a} . Without defects, $\overline{a} = \frac{1}{2}$. If defects are present, this need no longer be true
- If \overline{a} increases, so does Z and M_r . If \overline{a} decreases, so does Z and M_r

Further Conclusions

- In principle, a particle collider could see the different branches of the Feynman propagator with sufficient resolution
- Our analysis may provide qualitative insight into how defects affect the Feynman propagator in 3+1 dimensional spacetime, though numerical simulations are difficult in this case

References:

- A. Addazi, J. Alvarez-Muniz, R. Alves Batista, G. Amelino-Camelia, V. Antonelli, M. Arzano, M. Asorey, J. L. Atteia, S. Bahamonde and F. Bajardi, *et al.* "Quantum gravity phenomenology at the dawn of the multi-messenger era—A review," Prog. Part. Nucl. Phys. **125**, 103948 (2022) arXiv:2111.05659 [hep-ph].
- [2] S. Hossenfelder, "Theory and Phenomenology of Spacetime Defects," Adv. High Energy Phys. 2014, 950672 (2014) arXiv:1401.0276 [hep-ph].
- [3] S. Hossenfelder, "Phenomenology of Space-time Imperfection II: Local Defects," Phys. Rev. D 88, no. 12, 124031 (2013) arXiv:1309.0314 [hep-ph].
- [4] S. Hossenfelder, "Phenomenology of Space-time Imperfection I: Nonlocal Defects," Phys. Rev. D 88, no. 12, 124030 (2013) arXiv:1309.0311 [hep-ph].
- [5] M. Schreck, F. Sorba and S. Thambyahpillai, "Simple model of pointlike spacetime defects and implications for photon propagation," Phys. Rev. D 88, no. 12, 125011 (2013) arXiv:1211.0084 [hep-th].
- [6] F. R. Klinkhamer and J. M. Queiruga, "Mass generation by a Lorentz-invariant gas of spacetime defects," Phys. Rev. D 96, no. 7, 076007 (2017) arXiv:1703.10585 [hep-th].
- J. M. Queiruga, "Particle propagation on spacetime manifolds with static defects," J. Phys. A 51, no. 4, 045401 (2018) arXiv:1703.03606 [hep-th].
- [8] L. Bombelli, J. Lee, D. Meyer and R. Sorkin, "Space-Time as a Causal Set," Phys. Rev. Lett. 59, 521-524 (1987)

- [10] S. Johnston, "Particle propagators on discrete spacetime," Class. Quant. Grav. 25, 202001 (2008) arXiv:0806.3083 [hep-th].
- [11] S. Johnston, "Feynman Propagator for a Free Scalar Field on a Causal Set," Phys. Rev. Lett. 103, 180401 (2009) arXiv:0909.0944 [hep-th].
- [12] S. Shuman, "Path Sums for Propagators in Causal Sets," arXiv:2307.08864 [gr-qc].
- [13] F. Dowker, J. Henson and R. D. Sorkin, "Quantum gravity phenomenology, Lorentz invariance and discreteness," Mod. Phys. Lett. A 19, 1829-1840 (2004) arXiv:gr-qc/0311055 [gr-qc].
- [14] L. Bombelli, J. Henson and R. D. Sorkin, "Discreteness without symmetry breaking: A Theorem," Mod. Phys. Lett. A 24, 2579-2587 (2009) arXiv:gr-qc/0605006 [gr-qc].
- [15] R. D. Sorkin, "Does locality fail at intermediate length-scales," arXiv:gr-qc/0703099 [gr-qc].

Variation of Parameters

Model	Parameter	M_r/M_0	Z/Z_0	σ_M	σ_Z
А	$\epsilon = 0.95$	0.818	0.562	0.005	0.051
А	$\epsilon = 0.55$	0.818	0.565	0.005	0.051
В	$\epsilon = 1.2$	0.829	0.641	0.002	0.058
В	$\epsilon = 0.8$	0.827	0.644	0.002	0.058
\mathbf{C}	$\epsilon = 0.95$	1.000	0.998	0.004	0.086
\mathbf{C}	$\epsilon = 0.55$	1.000	1.000	0.004	0.086
D	$\xi = 0.3$	0.976	0.934	0.002	0.077
D	$\xi = 0.002$	0.954	0.794	0.002	0.066
Ε	$\kappa = 0.3$	0.982	0.943	0.002	0.078
Е	$\kappa=0.002$	0.954	0.854	0.004	0.070

