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Causal Sets

• Causal Set Theory (CST) is one approach towards a 
quantum theory of gravity

• A causal set is defined as a locally finite, partially 
ordered set (𝐶, ≤) satisfying the following 
relations for any 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑘 ∈ 𝐶: 
• Reflexive: 𝑣𝑖 ≤ 𝑣𝑖

• Transitive: If 𝑣𝑖 ≤ 𝑣𝑗 and 𝑣𝑗 ≤ 𝑣𝑘, then 𝑣𝑖 ≤ 𝑣𝑘

• Antisymmetric: If 𝑣𝑖 ≤ 𝑣𝑗 and 𝑣𝑗 ≤ 𝑣𝑖, then 𝑣𝑖 = 𝑣𝑗

• Locally finite: If 𝑣𝑖 ≤ 𝑣𝑘, then the set {𝑣𝑙|𝑣𝑖 ≤ 𝑣𝑙 ≤ 𝑣𝑘}
has finite cardinality

• Spacetime: 𝑣𝑖 ∈ 𝐶 are events, 𝑣𝑖 ≤ 𝑣𝑗 if 𝑣𝑗 is in the 
future light cone of 𝑣𝑖
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Causal Sets (cont.)

• A causal set can by described by a matrix 
called the causal matrix, 𝐶
• 𝐶𝑖𝑗 = 1 if point 𝑣𝑗 in the causal set is in the 

future light cone of point 𝑣𝑖. 𝐶𝑖𝑗 = 0 otherwise

• Poisson Sprinkling: To approximate a region 
of spacetime, Poisson distribute points at 
density 𝜌 into that region and then connect 
points based on inherited causality

• Averaging over such approximations yields 
the continuum
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The Retarded Propagator in CST

• Consider a free real scalar field of mass 𝑀 in 1+1 Minkowski space

• To study particle propagation in CST consider paths between any two 
points in a Poisson sprinkled causal set with density 𝜌

• Assign amplitude 𝑎 to each edge and amplitude 𝑏 to each internal 
point in a path

• Total amplitude to travel between any two points is:
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The Retarded Propagator in CST (Cont.)

• Define 𝐾𝑅 = 𝐾 − 𝐼 = 𝑎𝐶 𝐼 − 𝑏𝑎𝐶 −1

• By averaging over all Poisson sprinklings, it can be shown that:

෫< 𝐾𝑅 > 𝑝 = −
2𝑎

𝑝0 + 𝑖𝜖 2 − 𝑝1
2 + 2𝑎𝑏𝜌

• Set 𝑎 =
1

2
 and 𝑏 = −

𝑀2

𝜌

෫< 𝐾𝑅 > 𝑝 = −
1

𝑝0 + 𝑖𝜖 2 − 𝑝1
2 − 𝑀2
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The Feynman Propagator in CST

• In the continuum, we have a free real scalar quantum field 𝜙(𝑥) acting on 
a Hilbert space, 𝐻

• By restriction, let 𝜙𝑥 = 𝜙(𝑥) be the causal set analog when 𝑥 is in the 
causal set, 𝐶

• In the continuum theory, we have:
𝜙 𝑥 , 𝜙 𝑦 = 𝑖Δ(𝑥, 𝑦)

• Here, Δ 𝑥, 𝑦 = 𝐾𝑅 𝑥, 𝑦 − 𝐾𝐴(𝑥, 𝑦) is the Pauli-Jordan function

• By analogy in CST, define the matrix Δ = 𝐾𝑅 − 𝐾𝑅
𝑇

• Analogously we also have 𝜙𝑥 , 𝜙𝑦 = (𝑖Δ)𝑥𝑦
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The Feynman Propagator in CST (cont.)

• 𝑖Δ is Hermitian and skew-symmetric. So, 𝑖Δ has matching sets of 
positive and negative eigenvalues. Let 2𝑠 = 𝑟𝑎𝑛𝑘 𝑖Δ  so that 𝑖 =
1, … , 𝑠

𝑖Δ 𝑢𝑖 = 𝜆𝑖𝑢𝑖 , 𝑖Δ 𝑣𝑖 = −𝜆𝑖𝑣𝑖

• The eigenvectors can be chosen orthonormal, 𝑢𝑖 = 𝑣𝑖
∗, and 𝑢𝑖

†𝑣𝑗 = 0

• Define the following operators:

𝑎𝑖
† = σ𝑥∈𝐶 𝑢𝑖 𝑥𝜙𝑥 , 𝑎𝑖 = σ𝑥∈𝐶 𝑣𝑖 𝑥𝜙𝑥
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The Feynman Propagator in CST (cont.)

• 𝑎𝑖 and 𝑎𝑖
† satisfy canonical commutation relations. We can then 

express 𝜙𝑥 in terms of raising and lowering operators:

𝜙𝑥 = 
𝑖=1

𝑖=𝑠

𝑢𝑖 𝑥𝑎𝑖 + 𝑣𝑖 𝑥𝑎𝑖
†

• Identify a normalized vacuum state |0 >∈ 𝐻 by 𝑎𝑖|0 > = 0 for all 𝑖 
and < 0|0 > = 1

• In the continuum, the Feynman propagator is defined as:
𝐺𝐹 𝑥, 𝑦 = 𝑖 < 0 𝑇𝜙 𝑥 𝜙 𝑦 0 >
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The Feynman Propagator in CST (cont.)

• By evaluating KF xy = 𝑖 < 0 𝑇𝜙𝑥𝜙𝑦 0 > , it can be shown that:

𝐾𝐹 = 𝐾𝑅 + 𝑖𝑄

• The matrix 𝑄 can be shown to be the causal set equivalent of the 
two-point function:

𝑄 =< 0 𝜙𝑥𝜙𝑦 0 >= 

𝜆𝑖>0

𝜆𝑖𝑢𝑖𝑢𝑖
†

• 𝑅𝑒 𝐾𝐹 =
1

2
𝐾𝑅 + 𝐾𝑅

𝑇  and 𝐼𝑚 𝐾𝐹 = 𝑅𝑒(𝑄)
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𝑖Δ = 𝑄 − 𝑄∗ → 𝐼𝑚 𝑄 =
Δ
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The Feynman Propagator in CST (cont.)
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𝐼𝑚 𝐾𝐹 𝑠 =
1

4
𝐼𝑚 𝐻0

2 𝑀𝑠 𝐼𝑚 𝐾𝐹 𝑠 =
1

4
𝐼𝑚 𝐻0

2 𝑀𝑠

lim
𝜖→0

1

2𝜋 2 න
ℝ2

1

𝑝0
2 − 𝑝1

2 − 𝑀2 + 𝑖𝜖
𝑒−𝑖 𝑝0𝑥0−𝑝1𝑥1 𝑑2𝑝 =

1

4
𝐻0

2 𝑀 𝑥0
2 − 𝑥1

2
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Spacetime Defects
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• Several proposed quantum gravity theories 
postulate a discrete spacetime connected by links 
to form a graph

• Emergence of a manifold from a graph will 
generically have nonlocal defects which need not 
respect macroscopic locality

• A particle which encounters a nonlocal defect will 
experience a spacetime translation

• The defect density introduces a larger length scale 
than the discreteness scale Space

Tim
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Model A
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Spacetime 
point

Out-
defect In-defect

• Unit volume causal diamond in 1+1 Minkowski space
• 400 spacetime points and 200 paired defects
• In-defects and out-defects are timelike paired
• We chose 𝜖 = 0.75
• 𝑀 = 5
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Real Part of Feynman Propagator (A)
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𝐹 𝑠 =
1

4
𝐻0

2 𝑀𝑠 → 𝐹𝑟 𝑠 =
𝑍

4
𝐻0

2 𝑀𝑟𝑠

𝑀, 𝑍 = 5 , 1 → 𝑀𝑟 , 𝑍 = (4.08 , 0.47)



Imaginary Part of Feynman Propagator (A)
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Model D
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Spacetime 
point

Defect

• Consider two weakly coupled lattices
• 400 spacetime points and 100 defects 

are Poisson distributed in a unit volume 
causal diamond 

• Set 𝜖 = 𝑎 = 0.5 as the amplitude 
between defects

• Set 𝜉 = 0.1 as the amplitude between a 
spacetime point and defect pair

• 𝑀 = 5

𝜖

𝜉

𝑎



Real Part of Feynman Propagator (D)
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𝐹 𝑠 =
1

4
𝐻0

2 𝑀𝑠 → 𝐹𝑟 𝑠 =
𝑍

4
𝐻0

2 𝑀𝑟𝑠

𝑀, 𝑍 = 5 , 1 → 𝑀𝑟 , 𝑍 = (4.59 , 0.63)



Imaginary Part of Feynman Propagator (D)
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Summary of Findings
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• 𝑀0 and 𝑍0 are mass and wavefunction renormalization fit parameters in the defect free limit

• Consider the average amplitude of an edge in the causal set, ത𝑎. Without defects, ത𝑎 =
1

2
. If 

defects are present, this need no longer be true
• If ത𝑎 increases, so does 𝑍 and 𝑀𝑟. If ത𝑎 decreases, so does 𝑍 and 𝑀𝑟

• We find on average results can be described as shifts in mass and 
wavefunction renormalization of the continuum low-energy theory

෫< 𝐾𝑅 > 𝑝 = −
2𝑎

𝑝0 + 𝑖𝜖 2 − 𝑝1
2 + 2𝑎𝑏𝜌

𝑅𝑒 𝐾𝐹 =
1

2
𝐾𝑅 + 𝐾𝑅

𝑇



Further Conclusions

• In principle, a particle collider could see the different branches of the 
Feynman propagator with sufficient resolution

• Our analysis may provide qualitative insight into how defects affect 
the Feynman propagator in 3+1 dimensional spacetime, though 
numerical simulations are difficult in this case
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Variation of Parameters

21


	Slide 1: Towards a quantum field theory description of nonlocal spacetime defects
	Slide 2: Causal Sets
	Slide 3: Causal Sets (cont.)
	Slide 4: The Retarded Propagator in CST
	Slide 5: The Retarded Propagator in CST (Cont.)
	Slide 6: The Feynman Propagator in CST
	Slide 7: The Feynman Propagator in CST (cont.)
	Slide 8: The Feynman Propagator in CST (cont.)
	Slide 9: The Feynman Propagator in CST (cont.)
	Slide 10: The Feynman Propagator in CST (cont.)
	Slide 11: Spacetime Defects
	Slide 12: Model A
	Slide 13: Real Part of Feynman Propagator (A)
	Slide 14: Imaginary Part of Feynman Propagator (A)
	Slide 15: Model D
	Slide 16: Real Part of Feynman Propagator (D)
	Slide 17: Imaginary Part of Feynman Propagator (D)
	Slide 18: Summary of Findings
	Slide 19: Further Conclusions
	Slide 20: References:
	Slide 21: Variation of Parameters

