Wealthy Women Can Afford to Have More Children. Do They?

Grant Donovan, Manny Brinson

University of Central Florida, College of Business

ECO4422: Econometrics II

Dr. Richard Hofler

April 11th, 2023

A. Introduction

The subject of childbirth has quickly become one of the most pressing topics facing economists and policy analysts in our country today. The United States birth rate is currently the lowest it's ever been, and experts are warning this may lead to worker shortages and dwindling tax bases in the future. Most of the research behind this trend has focused on its relationship to the recent demographic changes of American mothers. But in this study, we wanted to focus on a different set of factors: economic factors. Having a child is undoubtedly a large investment; an investment economically advantaged women are in a much better position to make. So do they? In this report, we seek to answer that question and many like it. It is our hope that these results shed a greater light on the microeconomic decision-making behind having a child, which can then be applied by leaders seeking to better understand and manipulate the national birth rate.

B. <u>Data</u>

Response Variable:

• Number of Own Children in Household (nchild) – Each individual's total number of their own children residing in their household at the time of the survey.

Independent Variables:

- Total Personal Income (inctot) Each individual's total pre-tax personal income from all sources the previous calendar year.
- Marital Status (marst_dummy) A binary variable equal to 1 if the individual is married and 0 if not.
- Usual Hours Worked / Week (uhrsworkt) Each individual's usual hours worked per week at all jobs.
- Health (health) Each individual rated the quality of their health on a scale from 1 being poor to 5 being excellent.

- Additional Household Income (ahhincome) The total income of each individual's household minus their own personal income.
- Educational Attainment (educ) Each individual's highest level of educational attainment as ranked on a scale from 1 being grades 1-4 to 12 being a doctorate degree.

Data Source:

 Sarah Flood, Miriam King, Renae Rodgers, Steven Ruggles and J. Robert Warren. *Integrated Public Use Microdata Series, Current Population Survey: Version 10.0.* Minneapolis, MN: IPUMS, 2022. https://doi.org/10.18128/D030.V10.0

C. Plots of Dependent Variable and Independent Variables

- Response plotted against X₁ (Total Personal Income).
 Potentially displays a non-linear relationship.
- The natural log of this variable was used in the final regression based on the comparison of the BIC scores between models in figure 1. (See Appendix)
- Response plotted against X₅ (Additional Household Income). Potentially displays a non-linear relationship.
- The natural log of this variable was used in the final regression based on the comparison of the BIC scores between models in figure 1. (See Appendix)
- The graph relating the response variable to X₃ (Usual Hours Worked / Week) does not display any non-linear relationship. (See Appendix)
- See appendix for graphs relating the response to the categorical means of binary variable X₂ (Marital Status) and ordinal variables X₄ (Health) and X₆ (Educational Attainment).

D. Model Specification and Regression Estimation Results

Negative binomial		Number of obs	= 21,049			
Dispersion: mean					Prob > chi2	= 0.0000
Log likelihood = -	18346.791				Pseudo R2	= 0.0960
nchild Cc	efficient	Std. err.	z	₽> z	[95% conf.	interval]
+						
log_inctot -	.0018868	.0061971	-0.30	0.761	0140329	.0102593
marst_dummy	1.416815	.0259037	54.70	0.000	1.366045	1.467585
uhrsworkt -	.0030196	.0010984	-2.75	0.006	0051725	0008666
log_health	332667	.0460571	-7.22	0.000	4229373	2423968
log_ahhincome -	.0953746	.0028067	-33.98	0.000	1008756	0898736
log_educ -	1.427391	.0549236	-25.99	0.000	-1.535039	-1.319742
_cons	3.184396	.1284288	24.80	0.000	2.932681	3.436112
+						
/lnalpha -	.4961804	.0488092			5918447	4005161
+						
alpha	.6088518	.0297176			.5533057	.6699742

E. Checks of the Adequacy of the Model

- . gen leverage = yhat / (1-yhat) * model_residual^2
- . drop if leverage > 0.1
- (4 observations deleted)
- . drop if leverage < -0.1

(2 observations deleted)

- Six high leverage observations were removed. Five had exceedingly large incomes. The sixth had an unrealistic Usual Hours Worked / Week.
- The model's residuals do not lie along the normal quantiles plot line of equality. This indicates that the error term is not normally distributed, and significant variables have been omitted from our model.
- The model's residuals all lie above 0, indicating that it consistently underestimates the correct values of the response. The Negative Binomial Regression Model requires neither homoscedasticity nor that e ~ N.

F. Inference and Interpretations

- Marital Status (β₂ = 1.416085) The ratio of the response variable between women who are married and women who are not is = exp(1.417073) = 4.121. Married women are inferred to be 4.121x more likely to have children than unmarried women.
- Usual Hours Worked / Week (β₃ = -0.0030196) For every 1% increase in a woman's usual hours worked / week, she is 0.003% less likely to have an additional child in her household.
- Health Status (β₄=-0.332667) For every 1% increase in a woman's health status, she is 0.333% less likely to have an additional child in her household.
- Additional Household Income ($\beta_5 = -0.0953746$) For every 1% increase in a woman's additional household income, she is 0.095% less likely to have an additional child in her household.
- Educational Attainment ($\beta_6 = -1.427391$) For every 1% increase in a woman's educational attainment, she is 1.43% less likely to have an additional child in her household.

G. Summary

In this project, we sought to quantify the effects that economic factors have on an individual's decision to have children. To control for demographic factors, we restricted our sample to women aged 20-29. Our response was count data with a variance greater than its mean . Therefore, we modeled it as a Negative Binomial Distribution – for which regression requires the use of a log-linear link function. We then took the natural logs of our regressor variables which were either ordinal or displayed non-linear relationships with the response. Likelihood Ratio tests indicated that our unrestricted model including all six variables was preferred. No multicollinearity was apparent in any VIF statistics. (See Appendix)

After estimation, we were surprised to see total personal income with an insignificant coefficient. We conclude that it is not income which reduces a woman's decision to have children, but rather her innate workforce capacity and ambition – of which educational attainment is a signifier. It is also worth noting that the checks of model adequacy all suggest this model omits important variables. This is supported by the small pseudo- R^2 values of all the models we estimated. Economic factors must not influence women's decision to have children as much as other kinds, such as socio-cultural factors, do.

H. <u>Appendix</u>

Figure 1 Log-Linear Regression Model vs. Log-Log Regression Model

Negative bino	mial regressi	on			Number of obs	= 21,049 = 3780.65	Negative binom	ial regressio	n		N	umber of obs	= 21,049
Dispersion: m Log likelihoo	ean d = -18404.08	2			Prob > chi2 Pseudo R2	= 0.0000 = 0.0931	Dispersion: me Log pseudolike	an lihood = -183	44.7		P	rob > chi2 seudo R2	= 0.0000 = 0.0961
nchild	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]	nchild	Coefficient	Robust std. err	. z	P> z	[95% conf	. interval]
inctot marst_dummy uhrsworkt health ahhincome educ_recode cons ln(exposu~r)	-2.57e-07 1.194738 0002199 0764029 -5.66e-06 2453923 1.513352 1	3.88e-07 .0238469 .0010846 .0131188 2.62e-07 .0078235 .0833924 (exposure)	-0.66 50.10 -0.20 -5.82 -21.57 -31.37 18.15	0.508 0.000 0.839 0.000 0.000 0.000 0.000	-1.02e-06 1.147999 0023456 1021152 -6.17e-06 260726 1.349906	5.04e-07 1.241478 .0019059 0506906 -5.15e-06 2300586 1.676798	log_inctot marst_dummy uhrsworkt log_health log_ahhincome log_educ oons ln(exposur~r)	0023908 1.417073 0030882 .1875277 0954642 -1.423467 2.623271 1	.0058721 .0251504 .0010735 .0252518 .0028446 .072665 .1508198 (exposure	-0.41 56.34 -2.88 7.43 -33.56 -19.59 17.39	0.684 0.000 0.004 0.000 0.000 0.000 0.000	0138999 1.367779 0051923 .1380351 1010395 -1.565888 2.32767	.0091183 1.466367 0009842 .2370202 0898888 -1.281046 2.918873
/lnalpha	5661685	.0518886			6678683	4644687	/lnalpha	4972074	.0525071			6001194	3942953
alpha	.5676964	.029457			.5128006	.6284689	alpha	.6082268	.0319362			.5487461	.6741549
LR test of al	pha=0: chibar	2(01) = 696	.50		Prob >= chiba	ar2 = 0.000		1					
. estat ic							. estat ic						
Akaike's info	rmation crite	rion and Ba	yesian in	Formation	criterion		Akaike's infor	mation criter	ion and Ba	yesian inf	ormation	criterion	
Model	N	ll(null)	ll(model)) df	AIC	BIC	Model	N	ll(null)	ll(model)	df	AIC	BIC
	21,049	-20294.41	-18404.08	3 8	36824.16	36887.8		21,049	-20294.41	-18344.7	8	36705.4	36769.04
-	21,049	-20294.41	-18404.08	3 8	36824.16	36887.8		21,049	-20294.41	-18344.7	8	36705.4	36769.0

Figure 2 Response Plotted Against the Category Means of X₂ (Marital Status)

Figure 3 Response Plotted Against X₃ (Usual Hours Worked / Week)

Figure 4 Response Plotted Against the Category Means of X₄ (Health)

Figure 5 Response Plotted Against the Categorical Means of X₆ (Educational Attainment)

Figure 6 Poisson Regression Model vs. Negative Binomial Regression Model

Poisson regression				-	Number of obs	= 21,049	Negative binomial regression					Number of obs	= 21,049
Log pseudolikelihood = -18753.574				Wald chi2(6) Prob > chi2 Pseudo R2	= 3335.85 = 0.0000 = 0.1280	Dispersion: mean Log pseudolikelihood = -18344.7					Prob > chi2 = 0.00 Pseudo R2 = 0.00		
		Robust					nchild	Coefficient	Robust std. err.	z	P> z	[95% conf.	. interval
nchild	Coefficient	std. err.	z	P> z	[95% conf.	interval]	log_inctot	0023908	.0058721	-0.41	0.684	0138999	.009118
log_inctot marst_dummy uhrsworkt log_health log_ahhincome log_educ cons ln(exnosucr)	0119592 1.342672 0044749 .1961994 0908412 9163618 1.693703 1	.0055449 .025137 .0010379 .0245394 .0027721 .049041 .1068296 (exposure)	-2.16 53.41 -4.31 8.00 -32.77 -18.69 15.85	0.031 0.000 0.000 0.000 0.000 0.000 0.000	022827 1.293404 0065091 .1481032 0962744 -1.01248 1.484321	0010913 1.39194 0024408 .2442957 085408 8202432 1.903086	marst_dummy uhrsworkt log_health log_ahhincome log_educ cons ln(exposur~r) /lnalpha	1.417073 0030882 .1875277 0954642 -1.423467 2.623271 1 4972074	.0251504 .0010735 .0252518 .0028446 .072665 .1508198 (exposure) .0525071	56.34 -2.88 7.43 -33.56 -19.59 17.39	0.000 0.004 0.000 0.000 0.000 0.000	1.367779 0051923 .1380351 1010395 -1.565888 2.32767 6001194	1.466367 0009842 .2370202 0898888 -1.281046 2.91887: 394295:
	-	(exposure)					alpha	.6082268	.0319362			.5487461	.6741549
								1					

. estat ic

Akaike's information criterion and Bayesian information criterion

. estat ic

Akaike's information criterion and Bayesian information criterion

	21,049	-21506.92	-18753.57	7	37521.15	37576.83
Model	N	ll(null)	ll(model)	df	AIC	BIC

	21,049	-20294.41	-18344.7	8	36705.4	36769.04
Model	N	ll(null)	ll(model)	df	AIC	BIC

Figure 7 Likelihood-Ratio Test Restricted vs. Saturated Model

. Intest restricted_model saturated_model

Likelihood-ratio test Assumption: restricted_m~l nested within saturated_mo~l • See code below for full model

specifications

LR chi2(2) = 914.65 Prob > chi2 = 0.0000

Variable	VIF	SQRT VIF	Tolerance	R- Squared	Variable	VIF	SQRT VIF	Tolerance	R- Squared
nchild inctot marst_dummy uhrsworkt health ahhincome educ_recode	1.21 1.12 1.15 1.08 1.02 1.04 1.18	1.10 1.06 1.07 1.04 1.01 1.02 1.09	0.8243 0.8895 0.8721 0.9277 0.9775 0.9659 0.8482	0.1757 0.1105 0.1279 0.0723 0.0225 0.0341 0.1518	nchild log_inctot marst_dummy uhrsworkt log_health log_ahhincome log_educ	1.23 1.12 1.22 1.08 1.02 1.11 1.13	1.11 1.06 1.10 1.04 1.01 1.00 1.06	0.8115 0.8921 0.8211 0.9224 0.9833 5 0.9043 0.8865	0.1885 0.1079 0.1789 0.0776 0.0167 0.0957 0.1135
Mean VIF	1.11				Mean VIF	1.13			

Figure 9 Distribution of the Response Variable & Summary Statistics

	number o	f own childrer	n in household	
	Percentiles	Smallest		
1%	0	0		
5%	0	0		
0%	0	0	Obs	21,049
5%	0	0	Sum of wgt.	21,049
0%	0		Mean	.5109981
		Largest	Std. dev.	.8978548
5%	1	7		
0%	2	7	Variance	.8061433
5%	2	8	Skewness	1.987506
9%	4	8	Kurtosis	7.354516

Figure 10 STATA Code

. cd "C:\Users\14029\Dropbox\My PC (DESKTOP-R1GC0QH)\Downloads\Econometrics Research Project" . use "C:\Users\14029\Dropbox\My PC (DESKTOP-R1GC0QH)\Downloads\Econometrics Research Project\cps_00010.dta" . browse . keep if sex == 2 & age >= 20 & age <= 29 & inctot != 999999999 & inctot != 999999998 & nchild <= 8 >& uhrsworkt != 997 & uhrsworkt != 999 & marst != 9 & popstat !=2

Figure 8 VIF Collinearity Diagnostics

```
. generate ahhincome = hhincome - inctot
 recode marst (2 = 0) (3 = 0) (4 = 0) (5 = 0) (6 = 0) (7 = 0), generate(marst_dummy)
. recode educ (002 = 0) (010 = 1) (020 = 2) (030 = 3) (040 = 4) (050 = 5) (060 = 6) (071 = 6)
(073 = >7) (081 = 8) (091 = 9) (092 = 9) (111 = 10) (123 = 11) (124 = 11) (125 = 12),
generate(educ recode)
. recode health (1 = 5) (2 = 4) (4 = 2) (5 = 1)
. generate exposure var = 1
. graph bar (count), over(nchild)
. summarize nchild, detail
. sort nchild
. ssc install egenmore
. by nchild: summarize inctot
. graph bar (mean) inctot, over(nchild) horizontal
. twoway scatter nchild inctot
. by nchild: summarize marst_dummy
. graph bar (mean) marst dummy, over(nchild) horizontal yscale(reverse)
. by nchild: summarize uhrsworkt
. graph bar (mean) uhrsworkt, over(nchild) horizontal
. twoway scatter nchild uhrsworkt
. by nchild: summarize health
. graph bar (mean) health, over(nchild) horizontal yscale(reverse)
. by nchild: summarize ahhincome
. graph bar (mean) ahhincome, over(nchild) horizontal
. twoway scatter nchild ahhincome
. by nchild: summarize(educ recode)
. graph bar (mean) educ_recode, over(nchild) horizontal yscale(reverse)
. generate log inctot = log(inctot)
. recode log inctot (. = 0)
. generate log_health = log(health)
. generate log ahhincome = log(ahhincome)
. recode log ahhincome (. = 0)
. generate log educ = log(educ recode)
. recode log educ (. = 0)
. nbreg nchild inctot marst_dummy uhrsworkt ahhincome, exposure (exposure var)
. estat ic
. estimates store basic nbreg model
. gnbreg nchild inctot marst dummy uhrsworkt ahhincome, exposure(exposure var)
. estat ic
. poisson nchild inctot marst dummy uhrsworkt ahhincome, exposure(exposure var)
. estat ic
. nbreg nchild inctot marst dummy uhrsworkt health ahhincome educ recode, exposure(exposure var)
. estat ic
. estimates store sat_nbreg model
. lrtest sat nbreg model basic nbreg model
. corr inctot marst dummy uhrsworkt ahhincome educ recode
. collin inctot marst dummy uhrsworkt ahhincome educ recode, corr
. nbreg nchild log inctot marst dummy uhrsworkt log ahhincome, exposure (exposure var)
. estat ic
. estimates store comp nbreg model
. nbreg nchild log inctot marst dummy uhrsworkt log health log ahhincome log educ,
>exposure(exposure var)
. estat ic
. estimates store comp sat nbreg model
. lrtest comp_sat_nbreg_model comp_nbreg_model
. corr log inctot marst dummy uhrsworkt log health log ahhincome log educ
. collin log inctot marst dummy uhrsworkt log health log ahhincome log educ, corr
. predict model_residuals, stdp
. qnorm model residuals
. predict yhat, xb
. twoway scatter model_residuals yhat, xline(0) yline(0)
. gen leverage = yhat / (1-yhat) * model_residual^2
. drop if leverage > 0.1
. drop if leverage < -0.1
. nbreg nchild log inctot marst dummy uhrsworkt log health log ahhincome log educ,
>exposure(exposure var) vce(robust)
. predict model residuals2, stdp
. qnorm model residuals2
. nbreg nchild age race log inctot marst dummy uhrsworkt log health log ahhincome log educ,
>exposure(exposure var) vce(robust)
. estat ic
. predict yhat2, xb
. twoway scatter model residuals2 yhat2, xline(0) yline(0)
```