
Hazelyn Cates

9/19/22

EN.605.620.81.FA22

1

Project 1

Implementation and Design
This program consists of three functions: divide_matrix, Strassen_method, and

matrix_multiplication. As description of each function follows:

divide_matrix(matrix)

Takes a single matrix as an argument. The shape of the matrix (i.e. its order) is determined and

using this value, the matrix is divided by two to create submatrices of size order/2, which get returned.

This function is called within the Strassen_method function.

Strassen_method(matrixA, matrixB)

Takes two square matrices of the same size whose order are a power of 2 as arguments. If one

matrix is already of size 1x1 (which in the case of square matrices means they both are), they will be

multiplied, and the product returned. If not, the divide_matrix function gets called twice (once for each

matrix) to assign four values (a, b, c, d) containing size order/2 submatrices to matrixA and four values

(e, f, g, h) containing size order/2 submatrices to matrixB. The p1-p7 calculations require recursive calls

to the Strassen_method function, where the a, b, c, d, e, f, g, and h values become the arguments. For

example:

p1 = Strassen_method(a, f-h), where “a” is acting as matrixA, and “f-h” is acting as matrixB. These

variables are storing order/2 matrices at the first call.

This first recursive call to generate the value for p1 sends the program to the top of the function,

where it once again checks if the matrices are 1x1 (i.e. the base case). If not, the divide_matrix function

gets called again to generate order/4 size submatrices. The program once again reaches the recursive call

for Strassen_method for p1, and the arguments, which are still “a” and “f-h”, are now submatrices of

size order/4. With this second recursive call, the program once again goes to the top of the function to

check if the matrix size is the base case.

This recursive process continues for p1 until a size of 1x1 for each matrix is reached, in which

their multiplied product gets returned and stored in the p1 variable.

This process repeats for variables p2-p7 in the exact same manner. Once all the p-values have

been calculated, the C-values must be calculated via various arithmetic manipulations of the previously

calculated p-values. The C-values must then be combined together to generate the matrix of the

products, and the final matrix C is returned.

matrix_multiplication(matrix1, matrix2)

Takes two matrices as arguments, which in this case are square matrices of the same size whose

order is a power of 2. A matrix of the proper size is initialized to all zeros, which will contain the final

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

2

product. The function then enters three nested for loops that traverse through the rows of the first matrix

and then then columns and rows of the second matrix and sums the products at each index, before finally

returning the resulting matrix product.

No output is printed to the terminal. Instead, the results of each multiplication, number of

multiplications, and execution times for each function are written to a text file named “products”.

Efficiency and Analysis
The recurrence relation to represent the algorithm implementing Strassen’s method of matrix

multiplication is as follows:

𝑇(𝑛) = {
𝜃(1) 𝑖𝑓 𝑛 = 1

7𝑇 (
𝑛

2
) + 𝜃(𝑛2) 𝑖𝑓 𝑛 > 1

According to case 1 of Masters Theorem, the solution to the recurrence relation is:

𝑇(𝑛) = 𝜃(𝑛𝑙𝑔7)

Therefore, Strassen’s algorithm has a time complexity of O(nlg7).

(pp. 79-80, Cormen et al, 2009; “Divide and Conquer”, 2022)

By comparison, the naïve matrix multiplication function has a time complexity of O(n3) since

there are triply nested for loops that iterate by a constant amount, which run in linear time (i.e. O(n)

time) (pg. 76, Cormen et al, 2009; “How to Analyse”, 2022).

Regarding space complexity, the naïve method of matrix multiplication is O(n2) due to the

requirement of creating a third matrix to hold the multiplication product, which is n x n in size (“Time

Complexity”, 2022; “Python program”, 2022).

For Strassen’s method, since it is a recursive function, the depth of the recursion is how many

calls are required until the base case of the matrix is reached (More, n.d.). For the specifics of this

project, only square matrices whose order are a power of 2 get multiplied, making the depth of the

recursion log2n, where n is a power of 2. For example, the recursion depth of multiplying two 8x8

matrices would be log28, which equals 3, which means three recursive calls must be implemented to

reach the base case. Therefore, the space complexity for Strassen’s method would be O(lgn). Using the

above recurrence relation for Strassen’s method, the following proof can be generated to show this

asymptotic bound:

Prove: 𝑇(𝑛) = 𝑂(𝑙𝑔𝑛)

𝑇(𝑛) ≤ 7 lg (
𝑛

2
) + 𝑐𝑛2

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

3

= 7𝑙𝑔𝑛 − 7𝑙𝑔2 + 𝑐𝑛2

= 7𝑙𝑔𝑛 − 7 + 𝑐𝑛2

Where: 𝑙𝑔𝑛 ≤ 7𝑙𝑔𝑛 − 7 + 𝑐𝑛2

If: 7𝑙𝑔𝑛 − 7 + 𝑐𝑛2 ≥ 0

Where: 𝑐 ≥
7(1−𝑙𝑔𝑛)

𝑛2

∴ 𝑇(𝑛) = 𝑂(𝑙𝑔𝑛) and n > 1

Given the above time complexities, Strassen’s method has a theoretically better efficiency, and

therefore it is expected that the greater the matrix size, the more efficient Strassen’s method becomes,

with its efficiency versus the naïve method negligible on matrices of small size. To test this, a text input

file containing 12 square matrix couples was generated, with nine of theses matrix couples having a size

of a power of two, and three of them not, therefore the latter were excluded from multiplication. For

each matrix multiplication, the run time and number of multiplications of each method was recorded and

can be seen in the following table:

Matrices size (n) Observed

Strassen’s method

run time (sec)

Observed naïve

method run time

(sec)

multiplications

for Strassen’s

method

multiplications

for naïve

method

2 6.81e-05 1.86e-05 7 8

4 4.72e-04 9.26e-05 49 64

8 2.56e-03 6.36e-04 343 512

16 2.04e-02 4.20e-03 2401 4096

32 1.10e-01 3.05e-02 16807 32768

64 1.20e+00 4.84e-01 117649 262144

128 7.82e+00 2.15e+00 823543 2097152

256 7.46e+01 2.65e+01 5764801 16777216

512 4.56e+02 1.79e+02 40353607 134217728

Table 1: Shows run time of Strassen’s method and naïve matrix multiplication as well as number of

multiplications conducted by each method given the size (n) of two square matrices as input.

As can be observed in table 1, a significant difference between observed Strassen method and

naïve method run times can be seen. Theoretically it was assumed that as the size of the matrix

increased, Strassen’s method would become more efficient. However, as can be seen in table 1, this was

not observed, with the naïve method retaining its lead in efficiency for all cases tested. The reason for

this is likely due to the recursion calls that Strassen’s method implements. As the size of the matrices

increases, so does the number of recursion calls, thus increasing the recursion depth, as described above.

Even though the time complexity for Strassen’s method is theoretically smaller than the naïve matrix

multiplication method, the experimental run times seen in table 1 do not support this claim.

Additionally, it can be observed that Strassen’s method requires fewer multiplications than the naïve

method, as the resulting number of multiplications follows the asymptotic upper bounds of each, that is

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

4

nlg7 and n3, respectively. However, Strassen’s method still runs slower, again likely attributed to the

number of recursion calls that must be performed compared to the iterative nature of the naïve method.

These findings are also represented in the following graphs:

Graph 1: Number of multiplications required for Strassen’s method (blue line) and naïve matrix

multiplication (orange line) for a matrix size of size n.

Graph 2: Run time of Strassen’s method (blue line) and naïve matrix multiplication (orange line) given

in seconds for a matrix of size n.

y = x2.8074

y = x3

0

20000000

40000000

60000000

80000000

100000000

120000000

140000000

160000000

0 100 200 300 400 500 600

N
u

m
b

er
 o

f
M

u
lt

ip
lic

at
io

n
s

Matrix size (n)

Number of Multiplications: Strassen vs. Naive

Strassen Naïve Power (Strassen) Power (Naïve)

y = 8E-06x2.859

y = 2E-06x2.9578

0.00E+00

1.00E+02

2.00E+02

3.00E+02

4.00E+02

5.00E+02

0 100 200 300 400 500 600

R
u

n
 t

im
e

(s
ec

)

Matrix size (n)

Run Time: Strassen vs. Naive

Strassen Naïve Power (Strassen) Power (Naïve)

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

5

Above, graph 1 is a visual representation of the observed number of multiplications performed to

implement Strassen’s method of matrix multiplication and the number of multiplications performed to

implement naïve matrix multiplication for two square matrices of size n (as recorded in table 1). Notice

in graph 1 that the equation for the trendline of Strassen’s method in (blue) and of the naïve method

(orange) match the asymptotic upper bounds given above. Graph 1 would suggest that Strassen’s

method is favorable in that it performs fewer multiplications.

Next, graph 2 is a visualization of the observed run times of Strassen’s method and naïve matrix

multiplication on two square matrices of size n. Observe that in graph 2, Strassen’s method (blue) has a

notably increased run time for all values of n tested (see table 1) compared to that the naïve method

(orange). Given this, graph 2 would suggest that the naïve method is more efficient and therefore more

favorable compared to Strassen’s method. Also note that the associated equations for each trendline,

constants aside, are very similar to their respective asymptotic time complexities (see above). Again, this

observed discrepancy in comparison to the theoretical outcome is likely attributed to the time required

for recursion, even though Strassen’s method performs fewer multiplications.

Bioinformatics Application

Common examples of matrix usage in bioinformatics include protein sequence analysis and

alignment and phylogenetic studies. In protein sequence analysis, 20 x 20 amino acid substitution

matrices can be employed to determine the rate of substitution of a specific amino acid in a protein over

time (Trivedi & Nagarajaram, 2020). The nature of the protein (i.e. a transmembrane protein or cytosolic

protein, etc.) dictates which amino acids are more likely to be substituted and which are more likely to

remain unchanged due to some evolutionary functional role (Trivedi & Nagarajaram, 2020).

Additionally, using a substitution matrix for protein sequence analysis can give insight into specific

amino acid enrichment of certain protein families (Trivedi & Nagarajaram, 2020).

Given this, substitution matrices used should vary to correlate with the family of protein being

studied, if possible (Trivedi & Nagarajaram, 2020). There are various types of amino acid substitution

matrices, where certain matrices, as stated above, are better suited for specific protein types, like G

protein‐coupled receptor transmembrane substitution matrix (GPCRtm) or beta‐barrel Transmembrane

Matrices (bbTMs) (Trivedi & Nagarajaram, 2020). However, the two most commonly used are: BLOcks

SUbstitution Matrix (BLOSUM) and Point Accepted Mutation (PAM) (Trivedi & Nagarajaram, 2020).

The following is an example of BLOSUM62 amino acid substitution matrix:

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

6

Fig. 1: BLOSUM62 matrix (“BLOSUM62”, 2021)

In figure 1, the values ranging from red to blue represent the BLOSUM scores for the likelihood

of an amino acid from row i being substituted with an amino acid from column j (“BLOSUM62”, 2021).

The higher the value, the more conserved that amino acid is and therefore less likely that it will be

substituted, which is demonstrated by the fact that the values in dark blue diagonal represent the amino

acids from row i being substituted with itself in column j (“BLOSUM62”, 2021). In figure 1, this is

referred to as a BLOSUM62 matrix due to the fact that, based on sequence alignments, no alignment

pairs share identity over 62% (“BLOSUM62”, 2021). Other BLOSUM matrices include BLOSUM45

and BLOSUM50 (utilized when sequences are distantly related), and BLOSUM80 and BLOSUM90,

which are used for more closely related sequences (Pearson, 2013).

PAM matrices, compared to BLOSUM, are used on very closely related protein sequences, and

give insight into the likelihood that an amino acid in a given protein sequence(s) was substituted via a

point-accepted mutation (“Amino Acid Substitutions”, n.d.). There are also various types of PAM

matrices: PAM40, PAM60, and most commonly used, PAM250 (“Amino Acid Substitutions”, n.d.). The

number associated with each type of PAM matrix refers to the similarity of the sequences being aligned;

higher value means farther apart evolutionarily and vice versa (“Amino Acid Substitutions”, n.d.). Both

PAM and BLOSUM can be used as a scoring matrix when performing a protein BLAST.

Beyond protein phylogenetic analysis and alignment, matrices are also utilized in DNA

microarray analysis. A paper from 2010 described five methods of matrix factorization (i.e. matrix

decomposition) in order to determine genes that are regulated together in multiple biological processes

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

7

(Kossenkov & Ochs, 2010). Such methods could allow for further elucidation of biological markers and

further understanding of gene regulation in a given organism (Kossenkov & Ochs, 2010).

Additionally, a paper from 2004 presented a Monte-Carlo type randomized algorithm for

identifying Boolean networks, which is a way to model dynamic and complex gene regulatory

interactions in a qualitative manner (Leifeld et al, 2018; Akutsu et al, 2004). The algorithm described in

the paper utilizes fast matrix multiplication plus string matching via randomized fingerprint function, the

latter which maps large data to shorter byte sequences and is commonly used for extracting unique

information from large amounts of data (Akutsu et al, 2004; “Fingerprinting Algorithms”, 2020). This

approach aids in profiling gene expression from microarray data, as mentioned above (Akutsu et al,

2004). The ability to profile gene expression in a high-throughput way has many implications, for

example in cancer research, where the gene expression profile of a given patient can prove vital in

diagnosis, understanding the etiology of the disease and provide a personalized view of that patient’s

specific case which could aid in treatment decisions.

Reflection

This project aided in my understanding of matrix multiplication and in the use and

implementation of recursive functions. Additionally, this project helped to enhance my handling of file

input and output and utilizing different libraries like numpy, re, time, and math. It also enhanced my

problem-solving skills and made me think critically about how to solve the given problem, because as

I’ve come to find, a lot of success in programming comes from knowing what to look for. Additionally,

this project helped my understanding of the time complexities that have been presented in the course so

far, as seeing the programs implemented and comparing observed results versus those expected made a

rather abstract concept more tangible.

Given the end result, I would not do anything differently. Strassen’s method was successfully

implemented as was the naïve multiplication method. However, one of the bigger difficulties in this

project was the file input. The main issue was figuring out how to read in all the matrices from a single

file and making sure that matrices within the file met all requirements prior to implementation (that is,

the matrices were square matrices of a power of two). And if any did not, to skip them but continue

reading through the file. Ultimately, this task was completed successfully after much trial and error.

Additionally, making sure the recursion was executed successfully was a challenge and making sense of

what the program was actually doing took time and a lot of handwritten notes.

An interesting aspect to this project that I was not initially familiar with was recording the time it

takes for a program to run. To accomplish this, the time library and the time.perf_counter() function was

utilized. This project also gave an opportunity to use regex, which I became familiar with in a prior

class. Overall, this project was challenging but ultimately, I believe it improved my skills as a

programmer and helped drive home how important it is to understand how an algorithm runs, beyond

just the code in the IDE.

Hazelyn Cates

9/19/22

EN.605.620.81.FA22

8

References:

Akutsu, Tatsuya et al. (2004). Algorithms for Identifying Boolean Networks and Related Biological

Networks Based on Matrix Multiplication and Fingerprint Function. Journal of Computational

Biology, 7(3-4), 331-343. http://doi.org/10.1089/106652700750050817

Amino Acid Substitutions & Replacement Matrices. (n.d.). Proteinstructures.com.

https://proteinstructures.com/sequence/amino-acid-substitutions/

BLOSUM62 Substitution Matrix. (2021). LabXchange.

https://www.labxchange.org/library/items/lb:LabXchange:24d0ec21:lx_image:1?source=%2Flibr

ary%2Fclusters%2Flx-cluster%3AIntroBio

Cormen, H. Thomas et al. (2009). Introduction to Algorithms. 3rd ed. The MIT Press.

Divide and Conquer | Set 5 (Strassen’s Matrix Multiplication). (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/strassens-matrix-multiplication/

Fingerprinting Algorithms. (2020). Devopedia. https://devopedia.org/fingerprinting-algorithms

How to Analyse Loops for Complexity Analysis of Algorithms. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/analysis-of-algorithms-set-4-analysis-of-

loops/#:~:text=(Log%20n)%3A-

,The%20time%20Complexity%20of%20a%20loop%20is%20considered%20as%20O,considered

%20as%20O(Logn)

Kossenkov, Andrew V & Michael F Ochs. (2010). Matrix factorisation methods applied in microarray

data analysis. International Journal of Data Mining and Bioinformatics, 4(1), 72-90.

10.1504/ijdmb.2010.030968

Leifeld, Thomas et al. (2018). Identification of Boolean Network Models From Time Series Data

Incorporating Prior Knowledge. Frontiers in Physiology, 9. 10.3389/fphys.2018.00695

More, Nilesh. (n.d.). Time and Space Complexity of Recursive Algorithms. IDeserve.

https://www.ideserve.co.in/learn/time-and-space-complexity-of-recursive-

algorithms#:~:text=To%20conclude%2C%20space%20complexity%20of,would%20be%20O(n

m)

Pearson, William R. (2013). Selecting the Right Similarity-Scoring Matrix. Current Protocols in

Bioinformatics, 43, 3.5.1-3.5.9. 10.1002/0471250953.bi0305s43

Python program to multiply two matrices. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/python-program-multiply-two-matrices/

Time Complexity and Space Complexity. (2022). GeeksforGeeks. https://www.geeksforgeeks.org/time-

complexity-and-space-complexity/

Trivedi, Rakesh & Hampapathalu Adimurthy Nagarajaram. (2020). Substitution scoring matrices for

proteins - An overview. Protein Science, 29(11), 2150-2163. 10.1002/pro.3954

