
Hazelyn Cates

11/5/22

EN.605.620.81.FA22

1

README
This program was written in Python 3.8 in the IDE PyCharm, version 2021.2. This program

writes the output to a file and can also be run on the command line if the input file(s) are in the

same file as the program.

This program hashes values in a given input text file to their proper location in a hash table

containing 120 slots. This program implements four main hashing schemes: division modulo

120, division modulo 113, division modulo 41, and multiplication using value 120. Schemes 1, 2,

and 4 hash values to a hash table of size 120 with a bucket size of 1 per slot and use linear

probing, quadratic probing, and chaining to handle collisions. Scheme 2 by comparison hash

values to a hash table of size of 120, but with a bucket size of 3 (meaning there are 40 accessible

slots).

The input files for this program contain numbers ranging in value from 1 to 99999. In the text

input file, they are listed in no particular order in a single column, as such:

12083

00193

57739

99828

…etc.

This program consists of 14 functions, the first two of which implement the division and

multiplication hash functions (respectively), while functions 3 through 8 insert the keys in the

input file into their proper slot in the table (where bucket size = 1), being identical in

methodology between the division and multiplication schemes. Functions 9 and 10 implement a

chaining-like procedure for hashing the values when bucket size = 3, functions 11 through 13

implement the three aforementioned collision handling techniques, and function 14 prints the

hash table, load factor, collision statistics, and the number of values unable to be hashed in each

hashing scheme.

division_hashing and multiplication_hashing calculate hash values using division and

multiplication hash functions, respectively.

division_insert_linear1 and multiplication_insert1 insert the values from the input file into

their corresponding slots in the hash table as calculated by a call to division_hashing and

multiplication_hashing, respectively, when bucket size is equal to 1. If a collision occurs during

hashing, both of these functions call the linear_probing function to calculate new hash values to

hash the remaining values. Lastly, a call to print_hashTable within these functions prints the

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

2

resulting hash table, load factor, collision statistics, and the number of values that could not be

hashed.

division_insert_quadratic1 and multiplication_insert_quadratic1 insert the values from the

input file into their corresponding slot in the hash table as calculated by a call to

division_hashing and multiplication_hashing, respectively, when the bucket size is equal to 1.

If a collision occurs during hashing, both of these functions call the quadratic_probing function

to calculate new hash values to hash the remaining values. Lastly, a call to print_hashTable

within these functions prints the resulting hash table, load factor, collision statistics, and the

number of values that could not be hashed.

division_insert_chaining1 and multiplication_insert_chaining1 insert the values from the

input file into their corresponding slot in the hash table as calculated by a call to

division_hashing and multiplication_hashing, respectively, when the bucket size is equal to 1.

If a collision occurs, both of these functions call the chaining function to create a list at the

corresponding slot in the hash table, where multiple values can be hashed to the same slot.

Lastly, each of these functions call the print_hashTable function to print the resulting hash

table, load factor, collision statistics, and the number of values that could not be hashed.

division_insert_linear3 and division_insert_quadratic3 insert values from the input file into

their corresponding slot in the hash table as calculated by a call to division_hashing when the

bucket size of each slot in the hash table is 3 (i.e. three values max can hash to the same slot). If

a hash value is calculated that exceeds the size of the table or a collision occurs, these functions

call the linear_probing and quadratic_probing functions respectively to calculate new hash

values until all the values in the input file have been hashed correctly. Lastly, a call to

print_hashTable within these functions prints the resulting hash table, load factor, collision

statistics, and the number of values that could not be hashed.

linear_probing and quadratic_probing calculate and return new hash values as called in their

respective insert functions (see above).

The chaining function appends the number from in the input file into its correct slot in the hash

table when called in their respective insert functions (see above).

print_hashTable prints out the resulting hash table from the insert functions (see above),

collision statistics, the calculated load factor and the number of values from the input file that

could not be hashed. All of the results from each hashing scheme are appended to the end of the

same file (“output.txt”) and each run is separated by asterisks and the title “Next Run”. In order

to reset output.txt, delete it from its location in your file directory and re-run the program.

