
Hazelyn Cates

11/5/22

EN.605.620.81.FA22

1

Project 2

Implementation and Design
This project implements a total of 14 functions and are described in detail below in sequential

order. Functions 1 and 2 implement the hash functions, functions 3 through 8 carry out the insertion of

elements into the hash table (note they are identical in function between the division and multiplication

schemes), functions 9 and 10 implement an insertion function in the form of chaining when the bucket

size of the hash table is three, functions 11 through 13 implement the three collision handling techniques

(linear and quadratic probing and chaining) and function 14 prints the resulting hash table, relevant

statistics, load factor, and any values that could not be hashed.

This program requires the user to enter the name of the input text file, the bucket size, the

hashing scheme of choice, modulo value for division scheme, and multiplication value and constant

value for the multiplication scheme.

Hash functions:

division_hashing(number, m)

Takes two arguments, a number from the input data set (number) and the modulo value (m). It

performs a division hash function, returning the result of number mod m as the hash value. This function

is called in the functions division_insert_linear1, division_insert_quadratic1, division_insert_chaining1,

and division_insert_linear3.

multiplication_hashing1(number, c, M)

Takes three arguments: a number from the input data set (number), a constant value greater than

0 and less than 1 (c, entered by the user), and the multiplication value (M). It performs a multiplication

hash function, returning the result of M × (number × c % 1) as the hash value. This function is called in

the functions multiplication_insertlinear1, multiplication_insert_quadratic1, and

multiplication_insert_chaining1.

Insertion into hash table:

division_insert_linear1(hashTable, nums, m, b)

Takes four arguments: an empty hash table with 120 slots (hashTable), the number data from the

input file (nums), the modulo value (m), and bucket size of 1 (b). It inserts keys into the hash table by

calling the division_hashing function and handling any collisions via linear probing.

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

2

The function begins by creating an initially empty array called “hash” to keep track of the values

calculated by division_hashing, as well as initializing variables to store the hash value, the size of the

data input, and the number of primary and secondary collisions.

The outer for loop of this function traverses through the data set, having a range of 0 to the size

of the data (i.e. how many keys are being hashed) or the size of the hash table, whichever is smaller. It

calculates an initial hash value by calling the division_hashing function. The first if statement checks if

this hash value has already been used and is already present in the “hash” array. If it is not, it gets

appended to the “hash” array and the key is added to the hash table at this calculated slot. However, if

the hash value is in the “hash” array, indicating the slot in the hash table is already full, then this

constitutes a primary collision. In this latter case, a second for loop is entered, whose range is 0 to the

size of the hash table (120). The primary collision is resolved by generating a new hash value by calling

the linear_probing function (see function description below). This new hash value is then checked to

see if it has also already been used. If so, it constitutes a secondary collision and the inner for loop

continues until a hash value not yet in the “hash” array is calculated.

This repeats for all of the numbers in the input array. Lastly, it calls the print_hashTable

function (see description of function below).

multiplication_insert_linear1(hashTable, nums, m, c, b)

Identical to division_insert_linear1 above, this function takes five arguments: an initially empty

hash table with 120 slots (hashTable), the number data from the input file (nums), the multiplication

value (m), the constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1

(b). This function also handles collisions by calling the linear_probing function.

The only difference compared to division_insert_linear1 is that this function calculates its hash

values by calling the multiplication_hashing function, which is described above. The remaining

procedure and output are identical to that described for division_insert_linear1 and the function ends

with a call to print_hashTable.

division_insert_quadratic1(hashTable, nums, m, b)

Identical to division_insert_linear1, this function takes four arguments: an initially empty hash

table of 120 slots (hashTable), the numerical data from the input file (nums), the modulo value (m), and

a bucket size of 1 (b). The division_hahsing function is called to generate the hash values.

The only difference compared to division_insert_linear1 is that instead of handling collisions

using the linear_probing function, this function uses the quadratic_probing function, which is

described below. The remaining methodology is identical to the division_insert_linear1 function.

multiplication_insert_quadratic1(hashTable, nums, m, c, b)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

3

Identical to division_insert_quadratic1, this function takes five arguments: an initially empty

hash table of 120 slots (hashTable), the numerical data from the input file (nums), the multiplication

value (m), the constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1

(b). This function calls the quadratic_probing function (described below) to handle collisions.

The only difference compared to division_insert_quadratic1 is that this function calls the

multiplication_hashing function to generate the hash values. The remaining methodology is identical to

the division_insert_quadratic1 function.

division_insert_chaining1(hashTable, nums, m, b)

Takes four arguments: an initially empty hash table of 120 slots (hashTable), the numerical data

from the input file (nums), the modulo value (m), and a bucket size of 1 (b). It inserts keys into the hash

table by calling the chaining function (described below), which functions as the collision handling

method.

In this function, an initially empty array called “count” is initialized to keep track of the number

of primary collisions. In this case, there are no secondary collisions since multiple values can be hashed

to the same slot.

There is only one for loop that has a range of 0 to the size of input file or the size of the hash

table, whichever is smaller. The hash value is calculated by calling the division_hashing function (see

above for description) and then the chaining function is called to append the key to the slot calculated

by division_hashing. Every time a key is hashed to a slot in the hash table, the count array is

incremented by one that that index, and a primary collision is recorded if there is a value greater than 1

at that index in the count array. Lastly, the print_hashTable function is called, which is described

below.

multiplication_insert_chaining1(hashTable, nums, m, c, b)

Identical to division_insert_chaining1, takes five arguments: an initially empty hash table with

120 slots (hashTable), the numerical data from the input file (nums), the multiplication value (m), the

constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1 (b).

The only difference compared to the division_insert_chaining1 function is that this function

calculates the hash values by calling the multiplication_hashing function. The remaining methodology

is identical to division_insert_chaining1.

division_insert_linear3(hashTable, nums, m, b)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

4

Takes four arguments: an initially empty hash table with 40 slots (hashTable), the numerical data

from the input file (nums), the modulo value (m), and a bucket size of 3 per slot (b), for a total of 120

spaces.

Similar to the division_insert_chaining1 and multiplication_insert_chaining1 functions, this

function utilizes an initially empty array called “count”, which keeps track of the number of primary

collisions.

The outer for loop of this function traverses through the input data, having a range from 0 to the

size of the data or to the size of the hash table, which is less. It calculates a hash value by calling the

division_hashing function. After calculating this value, it performs an error check to see if the

calculated hash value exceeds the size of the hash table. If so, the linear_probing function is called to

calculate a new hash value, and this continues until an appropriate hash value is calculated.

Since this function is called when bucket size = 3, only three values per slot can be hashed to the

hash table. Every time a value is hashed to the same slot, the corresponding index in the “count” array is

incremented by 1. If there are less than three values in a given slot, the chaining function is called to

append the key to that slot in the hash table and the corresponding index in “count” is incremented by 1.

If the “count” array reaches three for a given index, then no more values can be hashed to that

index in the hash table and a primary collision occurs. If this is the case, a second, inner for loop is

entered, which has the range 0 to 41 (which is one more than the size of the hash table), and the

linear_probing function is called to generate a new hash value. Once again, this hash value is checked

to see if it exceeds the size of the hash table and if so, the linear_probing function is called to generate

hash values until an appropriate one is reached. Once an acceptable hash value is calculated, if this new

location in the hash table has a value less than three in its corresponding index in the “count” array, then

the value can be hashed to that index. However, if the new hash value also corresponds to a full slot,

then a secondary collision is recorded and the inner for loop continues. Lastly, this function calls the

print_hashTable function.

division_insert_quadratic3(hashTable, nums, m, b)

Identical to division_insert_linear3 and takes four arguments: an initially empty hash table of

size 40 (hashTable), the numerical data from the input file (nums), the modulo value (m), and a bucket

size of 3 (b).

The only difference compared to the division_insert_linear3 function is that instead of linear

probing, this function calls the quadratic_probing function if a collision occurs to calculate a new hash

value of if the hash value exceeds the size of the hash table, as described above. The remaining

methodology is identical to division_insert_linear3.

Collision handling:

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

5

linear_probing(hash_value, m, i)

Takes three arguments: the hash value initially calculated in any of the insert functions described

above (hash_value), the modulo or multiplication value (m), and i, the current index of the key in the

data set. This function returns (hash_value + i) % m, which serves as the new hash value in response to a

collision.

quadratic_probing(hash_value, m, i)

Takes three arguments: the hash value initially calculated in any of the insert functions described

above (hash_value), the modulo or multiplication value (m), and i, the current index of the key in the

data set. This function returns (hash_value + (0.5 × i) + (0.5 × (i2))) % m, which serves as the new hash

value in response to a collision.

chaining(hashTable, hash_value, num)

Takes three arguments: the hash table being used (hashTable), the current hash value calculated

by a call to division_hashing (hash_value), and the current number in the data set (num).

This function appends the current number in the data set to its corresponding slot determined by

the hash value in the hash table.

If the bucket size is set to 1, there is no restriction on how many values can be hashed to the

same slot, but the number of values that can be hashed is still restricted by the size of the hash table. If

the bucket size is 3, only three values can be hashed to a single slot, and this restriction is handled in the

division_insert_linear3 and division_insert_quadratic3 functions.

Printing the hash table:

print_hashTable(hashTable, nums, b, p, s, m, scheme, col, total)

Takes nine arguments: the hash table (hashTable), the numerical data from the file input (nums),

the bucket size (b), the number of primary collisions from the respective insert function (p), the number

of secondary collisions from the respective insert function (s), the mod or multiplication value (m), the

scheme used (scheme), the collision handling technique used in the respective insert function (col), and

the total number of values able to be hashed (total).

This function is called in every insert function (see above for their descriptions) and prints out

the size of input data, the bucket size, the hashing scheme, the collision handling method, the number of

primary and secondary collisions, the resulting hash table, the load factor, and if applicable, any values

unable to be hashed. All of the results from each hashing function are appended to the end of the same

output file, and each run is separated by asterisks and the statement “Next Run”.

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

6

Efficiency and Analysis
There are various different hashing and collision handling techniques that can be implemented

with hashing values to a hash table, each with its own benefits and shortcomings. In this project, only

division and multiplication hash functions are utilized:

Hashing by division is a simple and fast method, defined by the following hash function:

ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑚

Where k is the key in the input being hashed and m is the hash table size (pg. 263, Cormen et al,

2009). The result of this modulo function gives the slot in the hash table to which the key k is hashed.

The benefits of hashing by division are dependent on the value of m; prime numbers and numbers that

are not a power of 2 can help prevent large amounts of collisions from occurring. (pg. 263, Cormen et al,

2009).

Next, hashing by multiplication is defined by the following hash function:

ℎ(𝑘) = ⌊𝑚(𝑘𝐴 𝑚𝑜𝑑1)⌋

Where m is the size of the hash table, k is the key to be hashed, and A is constant value between

0 and 1, exclusive (pg. 263, Cormen et al, 2009). It is noteworthy that using multiplication, the value of

m is not as influential to the result as it is in hashing by division, due to the fact that the value of m is

being multiplied, not divided, and therefore uniformly impacting the result (pg. 264, Cormen et al,

2009).

Once a value is hashed by either of the two methods described above, a collision of keys to the

same slot is inevitable as input size increases. There are multiple collision handling methods in hashing,

and the three utilized in this program are linear probing, quadratic probing, and chaining via an open

addressing scheme. The methods are described as follows:

Linear probing uses a sequential search pattern to find the next open slot in the hash table by

incrementing the hash value first by one, then by two and so on until, if necessary, the entire hash table

has been probed (“Open Addressing”, 2022). While easy to understand and convenient in

implementation, a downside is that primary clustering of values can take place, in which values get

hashed in clusters within the table (i.e. in sequential slots) instead of being distributed in a more uniform

fashion around the table (pg. 272, Cormen et al, 2009). This can increase the time it takes to probe for an

empty spot, thus negatively impacting run time (pg. 272, Cormen et al, 2009).

Similar to linear probing, quadratic probing searches for the next empty slot in the hash table

quadratically using restricted constant values, thus decreasing the chance of hashing values in primary

clusters in the hash table, mentioned above being an issue in linear probing (pg. 272, Cormen et al,

2009). While able to distribute values more uniformly around the hash table, quadratic probing can still

result in secondary clustering, in which two values being hashed have the same initially calculated probe

position, indicating that they have the same probe sequence (pg. 272, Cormen et al, 2009). In both linear

and quadratic probing, the number of distinct probe sequences (which are lists of slots that get calculated

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

7

when a collision occurs in hashing a value) are dependent on the size of the hash table (pg. 272, Cormen

et al, 2009).

Different from both linear probing and quadratic probing is chaining. When a collision occurs

when hashing a key, instead of calculating a new hash value, chaining adds the value to a linked list in

the same slot (“Implementation”, 2022). When using chaining, the number of values that can be hashed

is still limited to the size of the hash table and the space available, but not limited in how many values

can be hashed to the same slot, as appending in Python takes O(1) time (Mahajan, 2022).

In the case of any of the collision handling methods described above, if the size of the input data

exceeds the size of the hash table, then all values in the input will not be able to be hashed and the hash

table will have a load factor greater than 1. When this occurs, the hash table must be resized (i.e.

rehashed), in which its size is doubled to accommodate all of the values (Sehgal, 2022). While rehashing

was not implemented in this program, it is important to keep the load factor at an acceptable value.

To elaborate, the load factor of a hash table is defined as the quotient of the number of values

hashed divided by the size of the hash table (Sehgal, 2022). Rehashing of a table can be set to occur if

the load factor hits a certain threshold value, with a common default load factor value being 0.75 (“Load

Factor”, 2022). The benefit of rehashing once this certain load factor value is hit is that it will reduce the

number of collisions that take place. Theoretically, in the best case, calculating the hash value, inserting

a value and deleting a value from a hash table take O(1) time (“Time and Space,”, n.d.). Also

theoretically, in the worst case, inserting a value and deleting a value from the hash table could take

O(n) time due to the number of collisions and the need to utilize linear probing, quadratic probing, or

chaining many times, and if the value being deleted is located in the last slot of the table (respectively)

(“Time and Space”, n.d.).

Additionally, the time complexity of each function and therefore the time complexity of each

function call are dependent on the size of the input file (i.e. how many values are being hashed). As the

size of the input file increases, so will the number of collisions. As the hash table fills up and collisions

become more frequent, if the table is rehashed more calls to the collision handling functions will be

required, and in the worst case for this project and its given parameters, up to 120 calls of each collision

handling method per scheme will be required to hash all values to the table, namely if the size of input

file is the same size as the hash table (i.e. there are as many numbers to be hashed as there are slots in

the hash table) or the number of input values exceeds the size of the hash table. In both cases, the hash

table will be completely full.

Deleting a value from a hash table, as mentioned above, takes O(1) in the best case and O(n) in

the worst case. In the best case, deleting a value from a hash table would involve a search in the hash

table where the resulting key is the first value or very close to the top of the hash table, with minimal

traversals through the hash table needed. By comparison, if the value to be deleted is towards the bottom

of the hash table, then the majority or entire hash table would have to be searched first in order to find

the key to be deleted, taking up to n searches (hence, O(n)) (“Time and Space”, n.d.). Once a value is

deleted, that slot in hash table is empty again for a new value to be hashed. However, since hash tables

have O(n) space complexity, where n is the number of slots, this could potentially cause a problem when

deleting values, especially if the hash table was rehashed. If enough values are deleted from a hash table

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

8

that was rehashed that the extra space is no longer required, the hash table then takes up excessive and

unnecessary space, which could pose an issue if there is limited space in memory.

When looking at the space complexity of hashing using the linear probing, quadratic probing, or

chaining collision handling technique, it will always require O(n) space since each value in the hash

table is stored in the memory, therefore n is the number of keys hashed (“Time and Space”, n.d.).

Results

To test this program, six file inputs were utilized, whose number of keys included 36, 60, 84,

104, 120 and 150. As was observed, the number of collisions that occur for a given data set are directly

dependent on the size of the data set. For small data sizes, collisions are less likely to occur due to the

greater likelihood that the hash values calculated are going to be unique. Additionally, for small sized

datasets, the resulting hash table for each hashing scheme will be very similar since very few collisions

occur and therefore new hash values will not have to be calculated. However, as the size of the data

increases, collisions become more and more frequent. It is also important to note that the numbers in the

input file directly affect if they will they be able to be hashed or not. For example, if the values in the

input are all the same, then they will all be hashed to the same slot in the table. Or if the values in the

input are not very compatible with the mod value in a division hash function, then it is possible that

some values will not be hashed.

The following tables represent the run times for each hashing scheme and the corresponding

collision handling methods for the six datasets of size: 36, 60, 84, 104, 120, and 150:

Dataset size = 36

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 1.66e-03

Division modulo 120 1 Quadratic probing 1.33e-03

Division modulo 120 1 Chaining 1.25e-03

Division modulo 113 1 Linear probing 1.95e-03

Division modulo 113 1 Quadratic probing 1.26e-03

Division modulo 113 1 Chaining 1.42e-03

Division modulo 41 3 Linear probing 1.93e-03

Division modulo 41 3 Quadratic probing 1.12e-03

Multiplication 120 1 Linear probing 1.73e-03

Multiplication 120 1 Quadratic probing 1.62e-03

Multiplication 120 1 Chaining 1.28e-03

Table 1: observed run times for a dataset size of 36.

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

9

Dataset size = 60

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 1.85e-03

Division modulo 120 1 Quadratic probing 1.30e-03

Division modulo 120 1 Chaining 1.62e-03

Division modulo 113 1 Linear probing 1.57e-03

Division modulo 113 1 Quadratic probing 1.35e-03

Division modulo 113 1 Chaining 1.00e-03

Division modulo 41 3 Linear probing 1.46e-03

Division modulo 41 3 Quadratic probing 1.14e-03

Multiplication 120 1 Linear probing 1.63e-03

Multiplication 120 1 Quadratic probing 1.68e-03

Multiplication 120 1 Chaining 9.75e-04

Table 2: observed run times for a dataset size of 60.

Dataset size = 84

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 1.93e-03

Division modulo 120 1 Quadratic probing 1.53e-03

Division modulo 120 1 Chaining 1.33e-03

Division modulo 113 1 Linear probing 1.95e-03

Division modulo 113 1 Quadratic probing 2.14e-03

Division modulo 113 1 Chaining 1.43e-03

Division modulo 41 3 Linear probing 1.91e-03

Division modulo 41 3 Quadratic probing 1.23e-03

Multiplication 120 1 Linear probing 1.77e-03

Multiplication 120 1 Quadratic probing 1.70e-03

Multiplication 120 1 Chaining 9.77e-04

Table 3: observed run times for a dataset size of 84.

Dataset size = 104:

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 2.65e-03

Division modulo 120 1 Quadratic probing 1.45e-03

Division modulo 120 1 Chaining 1.84e-03

Division modulo 113 1 Linear probing 1.81e-03

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

10

Division modulo 113 1 Quadratic probing 1.29e-03

Division modulo 113 1 Chaining 8.63e-04

Division modulo 41 3 Linear probing 2.13e-03

Division modulo 41 3 Quadratic probing 1.48e-03

Multiplication 120 1 Linear probing 2.77e-03

Multiplication 120 1 Quadratic probing 5.25e-03

Multiplication 120 1 Chaining 8.45e-04

Table 4: observed run times for a dataset size of 104.

Dataset size = 120:

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 4.49e-03

Division modulo 120 1 Quadratic probing 2.47e-03

Division modulo 120 1 Chaining 1.12e-03

Division modulo 113 1 Linear probing 6.10e-03

Division modulo 113 1 Quadratic probing 3.75e-03

Division modulo 113 1 Chaining 8.03e-04

Division modulo 41 3 Linear probing 1.57e-03

Division modulo 41 3 Quadratic probing 1.92e-03

Multiplication 120 1 Linear probing 3.57e-03

Multiplication 120 1 Quadratic probing 3.10e-03

Multiplication 120 1 Chaining 8.55e-04

Table 4: observed run times for a dataset size of 120.

Dataset size = 150:

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec)

Division modulo 120 1 Linear probing 3.55e-03

Division modulo 120 1 Quadratic probing 2.11e-03

Division modulo 120 1 Chaining 9.01e-04

Division modulo 113 1 Linear probing 3.67e-03

Division modulo 113 1 Quadratic probing 3.24e-03

Division modulo 113 1 Chaining 9.88e-04

Division modulo 41 3 Linear probing 1.71e-03

Division modulo 41 3 Quadratic probing 1.51e-03

Multiplication 120 1 Linear probing 5.03e-03

Multiplication 120 1 Quadratic probing 1.18e-02

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

11

Multiplication 120 1 Chaining 1.81e-03

Table 5: observed run times for a dataset size of 150.

As can be observed in the above tables, the run times for all schemes are very similar for each of

the six dataset sizes. This was a bit surprising, as it would be expected that as dataset size increased and

the number of required collision handling calls also increased, that the run time would reflect this.

Calculating a new hash value via linear probing, quadratic probing and chaining all take constant time

(O(1)) in the best case and linear time (O(n)) in the worst case, the latter requiring probing all n slots in

the table (“Hash Table”, n.d.). It also should be noted that the task appending the results of each run of

the program to the end of the same file takes constant time and did not impact the run time as the runs

were done sequentially (“Time and Space”, n.d.).

From the above tables, the chaining collision handling methods for hash schemes 1, 2 and 4 ran

slightly faster than the linear or quadratic probing schemes in all six datasets. This is likely attributed to

the fact that chaining does not require a new hash value to be calculated and as mentioned above,

appending takes O(1) time. For the six datasets, using a hash table with a bucket size of 3 versus 1 did

not influence run time, since both tables still have 120 total slots.

The run time of each scheme for each dataset size was plotted and were grouped by hash scheme

to produce the following four graphs:

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

12

Graph 1: run times of each collision handling method using the hashing scheme division mod 120 on

dataset sizes 36, 60, 84, 104, 120, and 150 with a bucket size equal to 1. Note that equations seen on the

graph are color-coded and correspond to each respective trendline (dotted line).

y = 2E-05x + 0.0006

y = 9E-06x + 0.0009

y = -3E-06x + 0.0017

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

5.00E-03

0 20 40 60 80 100 120 140 160

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Dataset size

Division mod 120

Linear probing

Quadratic probing

Chaining

Linear (Linear probing)

Linear (Quadratic probing)

Linear (Chaining)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

13

Graph 2: run times of each collision handling method using the hashing scheme division mod 113 on

dataset sizes 36, 60, 84, 104, 120, and 150 with a bucket size equal to 1. Note that equations seen on the

graph are color-coded and correspond to each respective trendline (dotted line).

y = 3E-05x + 0.0004

y = 2E-05x + 0.0003

y = 2E-05x + 0.0005

0.00E+00

1.00E-03

2.00E-03

3.00E-03

4.00E-03

5.00E-03

6.00E-03

7.00E-03

8.00E-03

9.00E-03

0 50 100 150 200

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Dataset size

Divison mod 113

Linear probing

Quadratic probing

Chaining

Linear (Linear probing)

Linear (Quadratic probing)

Linear (Chaining)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

14

Graph 3: run times of each collision handling method using the hashing scheme division mod 41 on

dataset sizes 36, 60, 84, 104, 120 and 150 with a bucket size equal to 3. Note that equations seen on the

graph are color-coded and correspond to each respective trendline (dotted line).

y = -6E-07x + 0.0018

y = 6E-06x + 0.0009

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

0 20 40 60 80 100 120 140 160

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Dataset size

Division mod 41

Linear probing

Quadratic probing

Linear (Linear probing)

Linear (Quadratic probing)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

15

Graph 4: run times of each collision handling method using the hashing scheme multiplication value

120 on dataset sizes 36, 60, 84, 104, 120 and 150 with a bucket size equal to 1. Note that equations seen

on the graph are color-coded and correspond to each respective trendline (dotted line).

As can be seen in the above graphs, the run times are variable and observably erratic in some of

the hashing schemes. In the smaller datasets (i.e. 36, 60, 84, 104), the theoretical run times of linear

probing, quadratic probing, and chaining, as stated above, is O(1) in the best case and O(n) in the worst

case.

In graph 1, which shows the run times of the division mod 120 hash scheme with a bucket size of

1 for all dataset sizes (x-axis), the linear and quadratic probing lines (blue and orange, respectively)

follow an upward trend up to dataset size 120. This is expected since as the number of values being

hashed increases, so does the number of collisions and thus the required calls to the respective collision

handling functions. However, as observed in graph 1, there is a decrease in run time for a dataset size of

150. It would be expected that the run time would increase linearly along with dataset size. The line

representing the chaining method (gray) follows a similar trend, with an increase in run time linear to

dataset size for datasets 36, 60, 84 and 104. However, a decrease in run time is observed for data sets of

size 120 and 150. Once again, this was not expected, as it was expected that as dataset size increases, so

would the run time in a linear manner. The trendlines for all three collision handling schemes in graph 1

are linear in the form of y = mx + b. It can be observed that the line equation for chaining has a negative

slope value and a decreasing trendline, indicating an overall decreasing trend in run time. The other two

y = 3E-05x - 3E-05

y = 8E-05x - 0.003

y = 3E-06x + 0.0008

-2.00E-03

0.00E+00

2.00E-03

4.00E-03

6.00E-03

8.00E-03

1.00E-02

1.20E-02

1.40E-02

0 50 100 150 200

R
u

n
 t

im
e

(s
ec

o
n

d
s)

Dataset size

Multiplication 120

Linear probing

Quadratic probing

Chaining

Linear (Linear probing)

Linear (Quadratic probing)

Linear (Chaining)

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

16

trendlines associated with linear probing and quadratic probing have positive slops and an overall

increasing trend in run time.

In graph 2, which shows the results of the division mod 113 hash scheme for all dataset sizes

with a bucket size of 1, all three hashing schemes follow almost the same trends. As can be seen in the

graph, there is a decrease in run time between datasets of size 36 and 60, an increase in run time between

datasets of size 60 and 84, a decrease between datasets of size 84 and 104, a sharp increase from dataset

sizes 104 and 120, and a sharp decrease in runtime between datasets of size 120 and 150. It does make

sense that the run time would be high with a dataset size of 120, since all slots in the hash table would be

full and the collision handling schemes would run in the worst case, being called n times since rehashing

does not occur. However, an increase in run time proportional to dataset size was expected, and like in

graph 1, there is a decrease in run time between datasets of size 120 and 150, while the expected would

be a continued increase and a peak run time for the dataset of size 150. Also, for each collision handling

scheme, the respective trendlines and their associated equations are shown. All three trendline equations

are linear and have a positive slope, indicating an overall increasing trend in run time with respect to

dataset size.

For graph 3, showing the results of the division mod 41 hash scheme for all dataset sizes with a

bucket size of 3, the run times for linear probing (blue line) are erratic and follow no observable trend.

The datasets of size 60, 120 and 150 have the smallest run times for linear probing and the data set of

size 104 has the largest run time for linear probing. By comparison, the run times for quadratic probing

(orange line) follow a more linear increasing trend for datasets of size 36, 60, 84, 104, and 120.

However, like seen in graphs 1 and 2, there is a decrease in run time for the dataset of size 150, which

was unexpected. Also, for both the linear and quadratic run times, the trendlines for each can be seen.

The linear probing trendline has a negative slope, indicating an overall decreasing trend in run time with

respect to dataset size. For quadratic probing, its trendline has a positive slop, indicating an overall

increasing trend in run time with respect to dataset size. The reason for the dramatic differences in run

time for the different datasets compared to the theoretical run time is unknown.

Lastly, for graph 4, which shows the results of the multiplication hashing scheme with a value of

120 and a bucket size of 1, the run times for all datasets follow a mostly linear increasing trend, namely

the linear probing (blue) line. The quadratic probing line (orange) shows a sharp increase in run time for

a dataset size of 84 to 104, a decrease from datasets 104 to 120, and then a sharp increase in run time

between data sets of size 120 and 150. Interestingly, it can be observed that the run time using the

chaining method (gray line) follows a somewhat constant trend for datasets of size 36, 60, 84, 104, and

120 before increasing slightly for a dataset of size 150. This line most closely represents the most ideal

and expected results of running in near constant time for the majority of dataset sizes. The trendlines

associated with all three lines in this graph have positive slope values, indicating an overall increasing

trend in run time respective to dataset size.

It is important to note that the input values used in this program were randomly generated, and

the values in the input can affect run time positively or negatively, depending on if they are powers of 2,

prime, even, odd, etc. This in turn can dictate how many collisions occur and therefore how many times

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

17

the collision handling methods need to be called, which can potentially make a program go from running

in constant time to running in linear time with respect to input size.

Additionally, the constant value chosen by the user for the multiplication scheme does not seem

to affect run time since it is just a constant value. However, it was observed to influence the calculated

hash values. It was observed that if the value of the constant was changed between running the same

input file, the resulting hash table changed, in some cases hashing all the values while in others being

unable to hash up to 40 values. Its influence is also notably seen in the chaining collision handling

function where depending on the constant value, the numbers are chained together in a select few slots

instead of being more dispersed around the table. In the multiplication hash function, the multiplication

value M stays the same, but as the constant value c changes, it influences the result of the multiplication

with the value in the input file and the resulting mod, which is always 1.

In order to account for any values that could not be hashed, the appropriate error handling

methods were put in place to account for these values. In almost all cases, the values that couldn’t be

hashed were entirely dependent on the dataset and their compatibility with the mod value. The number

of values hashed were tracked in each insertion function using an array. In the print_hashTable

function, the number of values that could not be hashed were calculated by subtracting the length of the

hash table by the total number of values hashed. Additionally, an initial issue encountered when using a

bucket size of 3 was that hash values greater than 39 (since indexing of the hash table starts at 0) were

being calculated. Since with a bucket size of 3 the hash table is limited to 40 (i.e. 39 when indexing from

0) addressable slots, error handling had to be put in place to detect any of these hash values. If a hash

value over 39 was detected, the respective probing function was called again to calculate a new hash

value.

Given the results in the above tables and graphs, it is difficult to discern which hashing method

and which collision handling method is superior above the next, but from the graphs described above,

the multiplication hash scheme with a multiplication value of 120 gave the best results when using the

chaining method. However, it should be noted that the division mod 113 scheme performed well up to a

size of 120, where again the reason for the sudden decrease in run time for an input size of 150 is not

entirely known.

Bioinformatics Application

 Hashing is a very useful tool for data collection, data querying, and data access, providing an

efficient means of storing many different types of data, including that of DNA and RNA sequence data,

genome assembly data, and sequence alignment data (Mohamadi et al, 2016).

 A paper from 2016 by Mohamadi et al describes a hashing algorithm called “ntHash” whose use

is processing DNA and RNA sequencing data, namely for calculating the hash values of sequential k-

mers. K-mers are substrings of a DNA sequence of length k and the counting of them plays an important

role in genome sequencing, genome and transcriptome assembly, and error analysis of sequence reads

(Melsted & Pritchard, 2011). The algorithm presented by Mohamadi et al is recursive, where the hash

value of the next k-mer is obtained from the hash value of the one before it (2016). More specifically,

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

18

this paper described the ntHash algorithm as utilizing cyclic polynomial hashing, which is a type of

rolling hash function (i.e. the hash function utilizes addition but not multiplication) to generate the hash

values (Mohamadi et al, 2016; “String hashing”, 2022). It was stated by Mohamadi et al that the ntHash

algorithm runs in O(l + k) time, compared to O(lk) time of conventional hash functions (where “l” is

length and “k” is the k-mer) (2016). Additionally, this paper described various test cases with k-mers

ranging in length from 50 to 250 nucleotides where ntHash outperformed other k-mer hashing

algorithms (CityHash, MurmurHash, xxHash, and ntBase) by running up to 20 times faster than the

competing algorithms (Mohamadi et al, 2016).

 Another example of hashing’s use in bioinformatics is its application in a paper from 2016 by

Wu, which describes the benefit of hashing and data compression of genome sequence data to increase

the speed of genome alignment (Wu, 2016). A hash table can represent the sequence of a genome as lists

of genomic positions for each k-mer or oligomer, and hash tables are used in this manner in various

programs including BLAT and GMAP, which are both genome alignment tools (Wu, 2016). When

aligning genomic sequences, hash tables can aid in aligning sequences that contain mismatches or single

nucleotides polymorphisms (SNPs), since the potentially differing k-mers have the same corresponding

genomic position (Wu, 2016).

To continue, in the paper, Wu addresses the limitations of a lookup hash table, in which the hash

table contains a list of k-mer positions, by describing a form of data compression called bitpacking

(2016). When using a lookup hash table to store genomic information, an offset array, which stores

pointer information of the current k-mer position and the proceeding k-mer position, grows

exponentially in size, directly proportional with the size of k (Wu, 2016). By compressing the data

stored in the offset array, more data can be stored in less memory (Wu, 2016). By bitpacking and

vectorizing the offset array data (which is sorted in monotonically increasing order), that is, using the

fewest bits possible to store each integer and process them in parallel (respectively), Wu introduced the

data structures and algorithms BP32-columnar and BP64-columnar (2016). By compressing the data in

the hash table using these two schemes, Wu found that they both resulted in increased retrieval speed of

data for genomic alignment, with BP64-columnar having a more balanced time-to-space tradeoff (2016).

Similar in idea to the article by Wu, a paper from 2018 by Girotto et al describes a hashing

approach of DNA sequences by using spaced-seed hashing, which is essentially a pattern for string

matching that uses 1’s for absolute matches and 0’s for positions that are adaptable (i.e. can tolerate

mismatches), and are used in sequence alignment. In order for a DNA k-mer to be hashed, it must first

be converted into a binary string, in which the spaced seed can now be used to find matches within that

DNA k-mer, as shown in figure 1 from the paper by Girotto et al (2018):

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

19

Figure 1 (Girotto et al, 2018)

Girotto et al describes the Fast Indexing for Spaced seed Hashing (FISH) algorithm, which was

developed to increase the speed at which hash values of spaced seeds are computed, while at the same

time maximizing the probability of a match between the spaced seed and the DNA k-mer and

maximizing the sensitivity of the search (Girotto et al, 2018). Girotto et al found that depending on the

length of the input, FISH can increase this speed between 1.9 and 6.03 times faster than traditional

methods and that for longer reads, the speed of FISH increases, having implications for bioinformatic

tools like BLAST, which use k-mers for local alignment of sequences (2018).

Reflection

This project was very challenging and required a lot of planning and a solid understanding of

hashing before implementation into code.

If I were to redo this project, I would attempt to consolidate the functions into fewer functions to

improve readability and potentially efficiency of the code. For example, in this program, the division

and multiplication insert schemes are written separately even though they carry out identical methods.

While combining them would not improve efficiency, it would improve the readability of the code.

Related to that, when the bucket size is set to 1 by the user, each insert function for the division and

multiplication schemes carry out the three collision methods separately, although since each collision

method was written as a separate function, the could in theory all be included in one function and called

at the same time. Also, the linear probing and quadratic probing methods were implemented in separate

functions, but they too could also have been consolidated in one.

Additionally, the output of this program was written to a single file. Each time the program is

run, if the file is not deleted, the results are appended to the end of the file. This can make readability

difficult, especially if the program is run many times without deleting the file, where the file gets fairly

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

20

long, and the newest results are at the bottom. To fix this, multiple output files could be used, but that

has the potential of becoming convoluted and confusing for the user.

The design choice described in the first section of this report was for the benefit of the

programmer, that is, to organize the functions individually to ensure all requirements were included and

implemented properly. Consolidation of the functions, as described above, was considered but

ultimately not taken into effect in the final code to prevent any potential accidental loss of functionality.

Entering this project, I was already familiar with defining functions and calling them elsewhere,

and this project also provided another opportunity to use regex and the time library This project allowed

me to become much more familiar and comfortable in dealing with arrays, function calls, function

arguments, and file input and output. Ultimately, while this project was very difficult and took a lot of

trial and error, it improved my programming skills and my critical thinking skills on how to identify and

solve a problem(s) successfully.

And just by the nature of this project, I now have a much greater appreciation and understanding

of hashing and its uses both in general and in a bioinformatics context.

Hazelyn Cates

11/5/22

EN.605.620.81.FA22

21

References:

Hash Table and Hash Map. (n.d.). Stepik. https://stepik.org/lesson/31445/step/7

Load Factor and Rehashing. (2022). GeeksforGeeks. https://www.geeksforgeeks.org/load-factor-and-

rehashing/

Mahajan, Rahul. (2022). Append in Python. Scaler Topics. https://www.scaler.com/topics/append-in-

python/

Melsted, Páll & Jonathan K Pritchard. (2011). Efficient counting of k-mers in DNA sequences using a

bloom filter. BMC Bioinformatics, 12(333). https://doi.org/10.1186/1471-2105-12-333

Mohamadi, Hamid et al. (2016). ntHash: recursive nucleotide hashing. Bioinformatics, 32(22), 3492-

3494. 10.1093/bioinformatics/btw397

Open Addressing Collision Handling technique in Hashing. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/open-addressing-collision-handling-technique-in-hashing/

Samuele Girotto et al. (2018). Efficient computation of spaced seed hashing with block indexing. BMC

Bioinformatics, 19(Suppl 15), 441. https://doi.org/10.1186/s12859-018-2415-8

Sehgal, Anmol. (2022). Load Factor and Rehashing. Scaler Topics. https://www.scaler.com/topics/data-

structures/load-factor-and-rehashing/

String hashing using Polynomial rolling hash function. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/string-hashing-using-polynomial-rolling-hash-function/

Time and Space Complexity of Hash Table operations. (n.d.). OpenGenus.

https://iq.opengenus.org/time-complexity-of-hash-

table/#:~:text=The%20hash%20key%20is%20calculated,complexity%20is%20O(1)

Wu, Thomas D. (2016). Bitpacking techniques for indexing genomes: I. Hash tables. Algorithms for

Molecular Biology, 11(5). https://doi.org/10.1186/s13015-016-0069-5

Resources used for writing the program:

Cormen, H. Thomas et al. (2009). Introduction to Algorithms. 3rd ed. The MIT Press.

Hash Functions and list/types of Hash functions. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/hash-functions-and-list-types-of-hash-functions/

Hash Table. (n.d.). Programiz. https://www.programiz.com/dsa/hash-table

Implementation of Hashing with Chaining in Python. (2022). GeeksforGeeks.

https://www.geeksforgeeks.org/implementation-of-hashing-with-chaining-in-python/

