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Project 2 

Implementation and Design 
This project implements a total of 14 functions and are described in detail below in sequential 

order. Functions 1 and 2 implement the hash functions, functions 3 through 8 carry out the insertion of 

elements into the hash table (note they are identical in function between the division and multiplication 

schemes), functions 9 and 10 implement an insertion function in the form of chaining when the bucket 

size of the hash table is three, functions 11 through 13 implement the three collision handling techniques 

(linear and quadratic probing and chaining) and function 14 prints the resulting hash table, relevant 

statistics, load factor, and any values that could not be hashed. 

This program requires the user to enter the name of the input text file, the bucket size, the 

hashing scheme of choice, modulo value for division scheme, and multiplication value and constant 

value for the multiplication scheme.  

 

Hash functions: 

division_hashing(number, m) 

Takes two arguments, a number from the input data set (number) and the modulo value (m). It 

performs a division hash function, returning the result of number mod m as the hash value. This function 

is called in the functions division_insert_linear1, division_insert_quadratic1, division_insert_chaining1, 

and division_insert_linear3. 

 

multiplication_hashing1(number, c, M) 

Takes three arguments: a number from the input data set (number), a constant value greater than 

0 and less than 1 (c, entered by the user), and the multiplication value (M). It performs a multiplication 

hash function, returning the result of M × (number × c % 1) as the hash value. This function is called in 

the functions multiplication_insertlinear1, multiplication_insert_quadratic1, and 

multiplication_insert_chaining1. 

 

Insertion into hash table: 

division_insert_linear1(hashTable, nums, m, b) 

Takes four arguments: an empty hash table with 120 slots (hashTable), the number data from the 

input file (nums), the modulo value (m), and bucket size of 1 (b). It inserts keys into the hash table by 

calling the division_hashing function and handling any collisions via linear probing. 
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The function begins by creating an initially empty array called “hash” to keep track of the values 

calculated by division_hashing, as well as initializing variables to store the hash value, the size of the 

data input, and the number of primary and secondary collisions.  

The outer for loop of this function traverses through the data set, having a range of 0 to the size 

of the data (i.e. how many keys are being hashed) or the size of the hash table, whichever is smaller. It 

calculates an initial hash value by calling the division_hashing function. The first if statement checks if 

this hash value has already been used and is already present in the “hash” array. If it is not, it gets 

appended to the “hash” array and the key is added to the hash table at this calculated slot. However, if 

the hash value is in the “hash” array, indicating the slot in the hash table is already full, then this 

constitutes a primary collision. In this latter case, a second for loop is entered, whose range is 0 to the 

size of the hash table (120). The primary collision is resolved by generating a new hash value by calling 

the linear_probing function (see function description below). This new hash value is then checked to 

see if it has also already been used. If so, it constitutes a secondary collision and the inner for loop 

continues until a hash value not yet in the “hash” array is calculated.  

This repeats for all of the numbers in the input array. Lastly, it calls the print_hashTable 

function (see description of function below).  

 

multiplication_insert_linear1(hashTable, nums, m, c, b) 

Identical to division_insert_linear1 above, this function takes five arguments: an initially empty 

hash table with 120 slots (hashTable), the number data from the input file (nums), the multiplication 

value (m), the constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1 

(b). This function also handles collisions by calling the linear_probing function.  

The only difference compared to division_insert_linear1 is that this function calculates its hash 

values by calling the multiplication_hashing function, which is described above. The remaining 

procedure and output are identical to that described for division_insert_linear1 and the function ends 

with a call to print_hashTable.  

 

division_insert_quadratic1(hashTable, nums, m, b) 

Identical to division_insert_linear1, this function takes four arguments: an initially empty hash 

table of 120 slots (hashTable), the numerical data from the input file (nums), the modulo value (m), and 

a bucket size of 1 (b). The division_hahsing function is called to generate the hash values.  

The only difference compared to division_insert_linear1 is that instead of handling collisions 

using the linear_probing function, this function uses the quadratic_probing function, which is 

described below. The remaining methodology is identical to the division_insert_linear1 function.  

 

multiplication_insert_quadratic1(hashTable, nums, m, c, b) 
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Identical to division_insert_quadratic1, this function takes five arguments: an initially empty 

hash table of 120 slots (hashTable), the numerical data from the input file (nums), the multiplication 

value (m), the constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1 

(b). This function calls the quadratic_probing function (described below) to handle collisions.  

The only difference compared to division_insert_quadratic1 is that this function calls the 

multiplication_hashing function to generate the hash values. The remaining methodology is identical to 

the division_insert_quadratic1 function.  

 

division_insert_chaining1(hashTable, nums, m, b) 

Takes four arguments: an initially empty hash table of 120 slots (hashTable), the numerical data 

from the input file (nums), the modulo value (m), and a bucket size of 1 (b). It inserts keys into the hash 

table by calling the chaining function (described below), which functions as the collision handling 

method.  

In this function, an initially empty array called “count” is initialized to keep track of the number 

of primary collisions. In this case, there are no secondary collisions since multiple values can be hashed 

to the same slot.  

There is only one for loop that has a range of 0 to the size of input file or the size of the hash 

table, whichever is smaller. The hash value is calculated by calling the division_hashing function (see 

above for description) and then the chaining function is called to append the key to the slot calculated 

by division_hashing. Every time a key is hashed to a slot in the hash table, the count array is 

incremented by one that that index, and a primary collision is recorded if there is a value greater than 1 

at that index in the count array. Lastly, the print_hashTable function is called, which is described 

below.  

 

multiplication_insert_chaining1(hashTable, nums, m, c, b) 

Identical to division_insert_chaining1, takes five arguments: an initially empty hash table with 

120 slots (hashTable), the numerical data from the input file (nums), the multiplication value (m), the 

constant value greater than 0 and less than 1 entered by the user (c), and a bucket size of 1 (b). 

The only difference compared to the division_insert_chaining1 function is that this function 

calculates the hash values by calling the multiplication_hashing function. The remaining methodology 

is identical to division_insert_chaining1.  

 

division_insert_linear3(hashTable, nums, m, b) 
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Takes four arguments: an initially empty hash table with 40 slots (hashTable), the numerical data 

from the input file (nums), the modulo value (m), and a bucket size of 3 per slot (b), for a total of 120 

spaces.  

Similar to the division_insert_chaining1 and multiplication_insert_chaining1 functions, this 

function utilizes an initially empty array called “count”, which keeps track of the number of primary 

collisions.  

The outer for loop of this function traverses through the input data, having a range from 0 to the 

size of the data or to the size of the hash table, which is less. It calculates a hash value by calling the 

division_hashing function. After calculating this value, it performs an error check to see if the 

calculated hash value exceeds the size of the hash table. If so, the linear_probing function is called to 

calculate a new hash value, and this continues until an appropriate hash value is calculated.   

Since this function is called when bucket size = 3, only three values per slot can be hashed to the 

hash table. Every time a value is hashed to the same slot, the corresponding index in the “count” array is 

incremented by 1. If there are less than three values in a given slot, the chaining function is called to 

append the key to that slot in the hash table and the corresponding index in “count” is incremented by 1.  

If the “count” array reaches three for a given index, then no more values can be hashed to that 

index in the hash table and a primary collision occurs. If this is the case, a second, inner for loop is 

entered, which has the range 0 to 41 (which is one more than the size of the hash table), and the 

linear_probing function is called to generate a new hash value. Once again, this hash value is checked 

to see if it exceeds the size of the hash table and if so, the linear_probing function is called to generate 

hash values until an appropriate one is reached. Once an acceptable hash value is calculated, if this new 

location in the hash table has a value less than three in its corresponding index in the “count” array, then 

the value can be hashed to that index. However, if the new hash value also corresponds to a full slot, 

then a secondary collision is recorded and the inner for loop continues. Lastly, this function calls the 

print_hashTable function.  

 

division_insert_quadratic3(hashTable, nums, m, b) 

Identical to division_insert_linear3 and takes four arguments: an initially empty hash table of 

size 40 (hashTable), the numerical data from the input file (nums), the modulo value (m), and a bucket 

size of 3 (b).  

The only difference compared to the division_insert_linear3 function is that instead of linear 

probing, this function calls the quadratic_probing function if a collision occurs to calculate a new hash 

value of if the hash value exceeds the size of the hash table, as described above. The remaining 

methodology is identical to division_insert_linear3.  

 

Collision handling: 
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linear_probing(hash_value, m, i) 

Takes three arguments: the hash value initially calculated in any of the insert functions described 

above (hash_value), the modulo or multiplication value (m), and i, the current index of the key in the 

data set. This function returns (hash_value + i) % m, which serves as the new hash value in response to a 

collision.  

 

quadratic_probing(hash_value, m, i) 

Takes three arguments: the hash value initially calculated in any of the insert functions described 

above (hash_value), the modulo or multiplication value (m), and i, the current index of the key in the 

data set. This function returns (hash_value + (0.5 × i) + (0.5 × (i2))) % m, which serves as the new hash 

value in response to a collision.  

 

chaining(hashTable, hash_value, num) 

Takes three arguments: the hash table being used (hashTable), the current hash value calculated 

by a call to division_hashing (hash_value), and the current number in the data set (num).  

This function appends the current number in the data set to its corresponding slot determined by 

the hash value in the hash table.  

If the bucket size is set to 1, there is no restriction on how many values can be hashed to the 

same slot, but the number of values that can be hashed is still restricted by the size of the hash table. If 

the bucket size is 3, only three values can be hashed to a single slot, and this restriction is handled in the 

division_insert_linear3 and division_insert_quadratic3 functions.  

 

Printing the hash table: 

print_hashTable(hashTable, nums, b, p, s, m, scheme, col, total) 

Takes nine arguments: the hash table (hashTable), the numerical data from the file input (nums), 

the bucket size (b), the number of primary collisions from the respective insert function (p), the number 

of secondary collisions from the respective insert function (s), the mod or multiplication value (m), the 

scheme used (scheme), the collision handling technique used in the respective insert function (col), and 

the total number of values able to be hashed (total). 

This function is called in every insert function (see above for their descriptions) and prints out 

the size of input data, the bucket size, the hashing scheme, the collision handling method, the number of 

primary and secondary collisions, the resulting hash table, the load factor, and if applicable, any values 

unable to be hashed. All of the results from each hashing function are appended to the end of the same 

output file, and each run is separated by asterisks and the statement “Next Run”.  
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Efficiency and Analysis 
There are various different hashing and collision handling techniques that can be implemented 

with hashing values to a hash table, each with its own benefits and shortcomings. In this project, only 

division and multiplication hash functions are utilized: 

Hashing by division is a simple and fast method, defined by the following hash function: 

ℎ(𝑘) = 𝑘 𝑚𝑜𝑑 𝑚 

Where k is the key in the input being hashed and m is the hash table size (pg. 263, Cormen et al, 

2009). The result of this modulo function gives the slot in the hash table to which the key k is hashed. 

The benefits of hashing by division are dependent on the value of m; prime numbers and numbers that 

are not a power of 2 can help prevent large amounts of collisions from occurring. (pg. 263, Cormen et al, 

2009).  

Next, hashing by multiplication is defined by the following hash function: 

ℎ(𝑘) =  ⌊𝑚(𝑘𝐴 𝑚𝑜𝑑1)⌋ 

Where m is the size of the hash table, k is the key to be hashed, and A is constant value between 

0 and 1, exclusive (pg. 263, Cormen et al, 2009). It is noteworthy that using multiplication, the value of 

m is not as influential to the result as it is in hashing by division, due to the fact that the value of m is 

being multiplied, not divided, and therefore uniformly impacting the result (pg. 264, Cormen et al, 

2009).  

Once a value is hashed by either of the two methods described above, a collision of keys to the 

same slot is inevitable as input size increases. There are multiple collision handling methods in hashing, 

and the three utilized in this program are linear probing, quadratic probing, and chaining via an open 

addressing scheme. The methods are described as follows: 

Linear probing uses a sequential search pattern to find the next open slot in the hash table by 

incrementing the hash value first by one, then by two and so on until, if necessary, the entire hash table 

has been probed (“Open Addressing”, 2022). While easy to understand and convenient in 

implementation, a downside is that primary clustering of values can take place, in which values get 

hashed in clusters within the table (i.e. in sequential slots) instead of being distributed in a more uniform 

fashion around the table (pg. 272, Cormen et al, 2009). This can increase the time it takes to probe for an 

empty spot, thus negatively impacting run time (pg. 272, Cormen et al, 2009). 

Similar to linear probing, quadratic probing searches for the next empty slot in the hash table 

quadratically using restricted constant values, thus decreasing the chance of hashing values in primary 

clusters in the hash table, mentioned above being an issue in linear probing (pg. 272, Cormen et al, 

2009). While able to distribute values more uniformly around the hash table, quadratic probing can still 

result in secondary clustering, in which two values being hashed have the same initially calculated probe 

position, indicating that they have the same probe sequence (pg. 272, Cormen et al, 2009). In both linear 

and quadratic probing, the number of distinct probe sequences (which are lists of slots that get calculated 
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when a collision occurs in hashing a value) are dependent on the size of the hash table (pg. 272, Cormen 

et al, 2009).  

Different from both linear probing and quadratic probing is chaining. When a collision occurs 

when hashing a key, instead of calculating a new hash value, chaining adds the value to a linked list in 

the same slot (“Implementation”, 2022). When using chaining, the number of values that can be hashed 

is still limited to the size of the hash table and the space available, but not limited in how many values 

can be hashed to the same slot, as appending in Python takes O(1) time (Mahajan, 2022).    

In the case of any of the collision handling methods described above, if the size of the input data 

exceeds the size of the hash table, then all values in the input will not be able to be hashed and the hash 

table will have a load factor greater than 1. When this occurs, the hash table must be resized (i.e. 

rehashed), in which its size is doubled to accommodate all of the values (Sehgal, 2022). While rehashing 

was not implemented in this program, it is important to keep the load factor at an acceptable value. 

To elaborate, the load factor of a hash table is defined as the quotient of the number of values 

hashed divided by the size of the hash table (Sehgal, 2022). Rehashing of a table can be set to occur if 

the load factor hits a certain threshold value, with a common default load factor value being 0.75 (“Load 

Factor”, 2022). The benefit of rehashing once this certain load factor value is hit is that it will reduce the 

number of collisions that take place. Theoretically, in the best case, calculating the hash value, inserting 

a value and deleting a value from a hash table take O(1) time (“Time and Space,”, n.d.). Also 

theoretically, in the worst case, inserting a value and deleting a value from the hash table could take 

O(n) time due to the number of collisions and the need to utilize linear probing, quadratic probing, or 

chaining many times, and if the value being deleted is located in the last slot of the table (respectively) 

(“Time and Space”, n.d.).  

Additionally, the time complexity of each function and therefore the time complexity of each 

function call are dependent on the size of the input file (i.e. how many values are being hashed). As the 

size of the input file increases, so will the number of collisions. As the hash table fills up and collisions 

become more frequent, if the table is rehashed more calls to the collision handling functions will be 

required, and in the worst case for this project and its given parameters, up to 120 calls of each collision 

handling method per scheme will be required to hash all values to the table, namely if the size of input 

file is the same size as the hash table (i.e. there are as many numbers to be hashed as there are slots in 

the hash table) or the number of input values exceeds the size of the hash table. In both cases, the hash 

table will be completely full. 

Deleting a value from a hash table, as mentioned above, takes O(1) in the best case and O(n) in 

the worst case. In the best case, deleting a value from a hash table would involve a search in the hash 

table where the resulting key is the first value or very close to the top of the hash table, with minimal 

traversals through the hash table needed. By comparison, if the value to be deleted is towards the bottom 

of the hash table, then the majority or entire hash table would have to be searched first in order to find 

the key to be deleted, taking up to n searches (hence, O(n)) (“Time and Space”, n.d.). Once a value is 

deleted, that slot in hash table is empty again for a new value to be hashed. However, since hash tables 

have O(n) space complexity, where n is the number of slots, this could potentially cause a problem when 

deleting values, especially if the hash table was rehashed. If enough values are deleted from a hash table 
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that was rehashed that the extra space is no longer required, the hash table then takes up excessive and 

unnecessary space, which could pose an issue if there is limited space in memory.  

When looking at the space complexity of hashing using the linear probing, quadratic probing, or 

chaining collision handling technique, it will always require O(n) space since each value in the hash 

table is stored in the memory, therefore n is the number of keys hashed (“Time and Space”, n.d.). 

 

Results 

To test this program, six file inputs were utilized, whose number of keys included 36, 60, 84, 

104, 120 and 150. As was observed, the number of collisions that occur for a given data set are directly 

dependent on the size of the data set. For small data sizes, collisions are less likely to occur due to the 

greater likelihood that the hash values calculated are going to be unique. Additionally, for small sized 

datasets, the resulting hash table for each hashing scheme will be very similar since very few collisions 

occur and therefore new hash values will not have to be calculated. However, as the size of the data 

increases, collisions become more and more frequent. It is also important to note that the numbers in the 

input file directly affect if they will they be able to be hashed or not. For example, if the values in the 

input are all the same, then they will all be hashed to the same slot in the table. Or if the values in the 

input are not very compatible with the mod value in a division hash function, then it is possible that 

some values will not be hashed.  

The following tables represent the run times for each hashing scheme and the corresponding 

collision handling methods for the six datasets of size: 36, 60, 84, 104, 120, and 150: 

 

Dataset size = 36  

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 1.66e-03 

Division modulo 120 1 Quadratic probing 1.33e-03 

Division modulo 120 1 Chaining 1.25e-03 

Division modulo 113 1 Linear probing 1.95e-03 

Division modulo 113 1 Quadratic probing 1.26e-03 

Division modulo 113 1 Chaining 1.42e-03 

Division modulo 41 3 Linear probing 1.93e-03 

Division modulo 41 3 Quadratic probing 1.12e-03 

Multiplication 120 1 Linear probing 1.73e-03 

Multiplication 120 1 Quadratic probing 1.62e-03 

Multiplication 120 1 Chaining 1.28e-03 

Table 1: observed run times for a dataset size of 36. 
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Dataset size = 60  

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 1.85e-03 

Division modulo 120 1 Quadratic probing 1.30e-03 

Division modulo 120 1 Chaining 1.62e-03 

Division modulo 113 1 Linear probing 1.57e-03 

Division modulo 113 1 Quadratic probing 1.35e-03 

Division modulo 113 1 Chaining 1.00e-03 

Division modulo 41 3 Linear probing 1.46e-03 

Division modulo 41 3 Quadratic probing 1.14e-03 

Multiplication 120 1 Linear probing 1.63e-03 

Multiplication 120 1 Quadratic probing 1.68e-03 

Multiplication 120 1 Chaining 9.75e-04 

Table 2: observed run times for a dataset size of 60. 

 

Dataset size = 84  

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 1.93e-03 

Division modulo 120 1 Quadratic probing 1.53e-03 

Division modulo 120 1 Chaining 1.33e-03 

Division modulo 113 1 Linear probing 1.95e-03 

Division modulo 113 1 Quadratic probing 2.14e-03 

Division modulo 113 1 Chaining 1.43e-03 

Division modulo 41 3 Linear probing 1.91e-03 

Division modulo 41 3 Quadratic probing 1.23e-03 

Multiplication 120 1 Linear probing 1.77e-03 

Multiplication 120 1 Quadratic probing 1.70e-03 

Multiplication 120 1 Chaining 9.77e-04 

Table 3: observed run times for a dataset size of 84. 

 

Dataset size = 104:  

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 2.65e-03 

Division modulo 120 1 Quadratic probing 1.45e-03 

Division modulo 120 1 Chaining 1.84e-03 

Division modulo 113 1 Linear probing 1.81e-03 
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Division modulo 113 1 Quadratic probing 1.29e-03 

Division modulo 113 1 Chaining 8.63e-04 

Division modulo 41 3 Linear probing 2.13e-03 

Division modulo 41 3 Quadratic probing 1.48e-03 

Multiplication 120 1 Linear probing 2.77e-03 

Multiplication 120 1 Quadratic probing 5.25e-03 

Multiplication 120 1 Chaining 8.45e-04 

Table 4: observed run times for a dataset size of 104. 

 

Dataset size = 120:  

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 4.49e-03 

Division modulo 120 1 Quadratic probing 2.47e-03 

Division modulo 120 1 Chaining 1.12e-03 

Division modulo 113 1 Linear probing 6.10e-03 

Division modulo 113 1 Quadratic probing 3.75e-03 

Division modulo 113 1 Chaining 8.03e-04 

Division modulo 41 3 Linear probing 1.57e-03 

Division modulo 41 3 Quadratic probing 1.92e-03 

Multiplication 120 1 Linear probing 3.57e-03 

Multiplication 120 1 Quadratic probing 3.10e-03 

Multiplication 120 1 Chaining 8.55e-04 

Table 4: observed run times for a dataset size of 120. 

 

Dataset size = 150: 

Hashing Scheme Bucket Size Collision Handling Observed Run Time (sec) 

Division modulo 120 1 Linear probing 3.55e-03 

Division modulo 120 1 Quadratic probing 2.11e-03 

Division modulo 120 1 Chaining 9.01e-04 

Division modulo 113 1 Linear probing 3.67e-03 

Division modulo 113 1 Quadratic probing 3.24e-03 

Division modulo 113 1 Chaining 9.88e-04 

Division modulo 41 3 Linear probing 1.71e-03 

Division modulo 41 3 Quadratic probing 1.51e-03 

Multiplication 120 1 Linear probing 5.03e-03 

Multiplication 120 1 Quadratic probing 1.18e-02 



Hazelyn Cates 

11/5/22 

EN.605.620.81.FA22 

 

11 

 

Multiplication 120 1 Chaining 1.81e-03 

Table 5: observed run times for a dataset size of 150. 

 

As can be observed in the above tables, the run times for all schemes are very similar for each of 

the six dataset sizes. This was a bit surprising, as it would be expected that as dataset size increased and 

the number of required collision handling calls also increased, that the run time would reflect this. 

Calculating a new hash value via linear probing, quadratic probing and chaining all take constant time 

(O(1)) in the best case and linear time (O(n)) in the worst case, the latter requiring probing all n slots in 

the table (“Hash Table”, n.d.). It also should be noted that the task appending the results of each run of 

the program to the end of the same file takes constant time and did not impact the run time as the runs 

were done sequentially (“Time and Space”, n.d.).   

From the above tables, the chaining collision handling methods for hash schemes 1, 2 and 4 ran 

slightly faster than the linear or quadratic probing schemes in all six datasets. This is likely attributed to 

the fact that chaining does not require a new hash value to be calculated and as mentioned above, 

appending takes O(1) time. For the six datasets, using a hash table with a bucket size of 3 versus 1 did 

not influence run time, since both tables still have 120 total slots.  

The run time of each scheme for each dataset size was plotted and were grouped by hash scheme 

to produce the following four graphs: 
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Graph 1: run times of each collision handling method using the hashing scheme division mod 120 on 

dataset sizes 36, 60, 84, 104, 120, and 150 with a bucket size equal to 1. Note that equations seen on the 

graph are color-coded and correspond to each respective trendline (dotted line).  
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Graph 2: run times of each collision handling method using the hashing scheme division mod 113 on 

dataset sizes 36, 60, 84, 104, 120, and 150 with a bucket size equal to 1. Note that equations seen on the 

graph are color-coded and correspond to each respective trendline (dotted line). 
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Graph 3: run times of each collision handling method using the hashing scheme division mod 41 on 

dataset sizes 36, 60, 84, 104, 120 and 150 with a bucket size equal to 3. Note that equations seen on the 

graph are color-coded and correspond to each respective trendline (dotted line). 
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Graph 4: run times of each collision handling method using the hashing scheme multiplication value 

120 on dataset sizes 36, 60, 84, 104, 120 and 150 with a bucket size equal to 1. Note that equations seen 

on the graph are color-coded and correspond to each respective trendline (dotted line). 
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trendlines associated with linear probing and quadratic probing have positive slops and an overall 

increasing trend in run time.  

In graph 2, which shows the results of the division mod 113 hash scheme for all dataset sizes 

with a bucket size of 1, all three hashing schemes follow almost the same trends. As can be seen in the 

graph, there is a decrease in run time between datasets of size 36 and 60, an increase in run time between 

datasets of size 60 and 84, a decrease between datasets of size 84 and 104, a sharp increase from dataset 

sizes 104 and 120, and a sharp decrease in runtime between datasets of size 120 and 150. It does make 

sense that the run time would be high with a dataset size of 120, since all slots in the hash table would be 

full and the collision handling schemes would run in the worst case, being called n times since rehashing 

does not occur. However, an increase in run time proportional to dataset size was expected, and like in 

graph 1, there is a decrease in run time between datasets of size 120 and 150, while the expected would 

be a continued increase and a peak run time for the dataset of size 150. Also, for each collision handling 

scheme, the respective trendlines and their associated equations are shown. All three trendline equations 

are linear and have a positive slope, indicating an overall increasing trend in run time with respect to 

dataset size.  

For graph 3, showing the results of the division mod 41 hash scheme for all dataset sizes with a 

bucket size of 3, the run times for linear probing (blue line) are erratic and follow no observable trend. 

The datasets of size 60, 120 and 150 have the smallest run times for linear probing and the data set of 

size 104 has the largest run time for linear probing. By comparison, the run times for quadratic probing 

(orange line) follow a more linear increasing trend for datasets of size 36, 60, 84, 104, and 120. 

However, like seen in graphs 1 and 2, there is a decrease in run time for the dataset of size 150, which 

was unexpected. Also, for both the linear and quadratic run times, the trendlines for each can be seen. 

The linear probing trendline has a negative slope, indicating an overall decreasing trend in run time with 

respect to dataset size. For quadratic probing, its trendline has a positive slop, indicating an overall 

increasing trend in run time with respect to dataset size. The reason for the dramatic differences in run 

time for the different datasets compared to the theoretical run time is unknown.   

Lastly, for graph 4, which shows the results of the multiplication hashing scheme with a value of 

120 and a bucket size of 1, the run times for all datasets follow a mostly linear increasing trend, namely 

the linear probing (blue) line. The quadratic probing line (orange) shows a sharp increase in run time for 

a dataset size of 84 to 104, a decrease from datasets 104 to 120, and then a sharp increase in run time 

between data sets of size 120 and 150. Interestingly, it can be observed that the run time using the 

chaining method (gray line) follows a somewhat constant trend for datasets of size 36, 60, 84, 104, and 

120 before increasing slightly for a dataset of size 150. This line most closely represents the most ideal 

and expected results of running in near constant time for the majority of dataset sizes. The trendlines 

associated with all three lines in this graph have positive slope values, indicating an overall increasing 

trend in run time respective to dataset size.  

It is important to note that the input values used in this program were randomly generated, and 

the values in the input can affect run time positively or negatively, depending on if they are powers of 2, 

prime, even, odd, etc. This in turn can dictate how many collisions occur and therefore how many times 
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the collision handling methods need to be called, which can potentially make a program go from running 

in constant time to running in linear time with respect to input size.  

Additionally, the constant value chosen by the user for the multiplication scheme does not seem 

to affect run time since it is just a constant value. However, it was observed to influence the calculated 

hash values. It was observed that if the value of the constant was changed between running the same 

input file, the resulting hash table changed, in some cases hashing all the values while in others being 

unable to hash up to 40 values. Its influence is also notably seen in the chaining collision handling 

function where depending on the constant value, the numbers are chained together in a select few slots 

instead of being more dispersed around the table. In the multiplication hash function, the multiplication 

value M stays the same, but as the constant value c changes, it influences the result of the multiplication 

with the value in the input file and the resulting mod, which is always 1.   

In order to account for any values that could not be hashed, the appropriate error handling 

methods were put in place to account for these values. In almost all cases, the values that couldn’t be 

hashed were entirely dependent on the dataset and their compatibility with the mod value. The number 

of values hashed were tracked in each insertion function using an array. In the print_hashTable 

function, the number of values that could not be hashed were calculated by subtracting the length of the 

hash table by the total number of values hashed. Additionally, an initial issue encountered when using a 

bucket size of 3 was that hash values greater than 39 (since indexing of the hash table starts at 0) were 

being calculated. Since with a bucket size of 3 the hash table is limited to 40 (i.e. 39 when indexing from 

0) addressable slots, error handling had to be put in place to detect any of these hash values. If a hash 

value over 39 was detected, the respective probing function was called again to calculate a new hash 

value.   

Given the results in the above tables and graphs, it is difficult to discern which hashing method 

and which collision handling method is superior above the next, but from the graphs described above, 

the multiplication hash scheme with a multiplication value of 120 gave the best results when using the 

chaining method. However, it should be noted that the division mod 113 scheme performed well up to a 

size of 120, where again the reason for the sudden decrease in run time for an input size of 150 is not 

entirely known.   

 

Bioinformatics Application 

 Hashing is a very useful tool for data collection, data querying, and data access, providing an 

efficient means of storing many different types of data, including that of DNA and RNA sequence data, 

genome assembly data, and sequence alignment data (Mohamadi et al, 2016).  

 A paper from 2016 by Mohamadi et al describes a hashing algorithm called “ntHash” whose use 

is processing DNA and RNA sequencing data, namely for calculating the hash values of sequential k-

mers. K-mers are substrings of a DNA sequence of length k and the counting of them plays an important 

role in genome sequencing, genome and transcriptome assembly, and error analysis of sequence reads 

(Melsted & Pritchard, 2011). The algorithm presented by Mohamadi et al is recursive, where the hash 

value of the next k-mer is obtained from the hash value of the one before it (2016). More specifically, 
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this paper described the ntHash algorithm as utilizing cyclic polynomial hashing, which is a type of 

rolling hash function (i.e. the hash function utilizes addition but not multiplication) to generate the hash 

values (Mohamadi et al, 2016; “String hashing”, 2022). It was stated by Mohamadi et al that the ntHash 

algorithm runs in O(l + k) time, compared to O(lk) time of conventional hash functions (where “l” is 

length and “k” is the k-mer) (2016). Additionally, this paper described various test cases with k-mers 

ranging in length from 50 to 250 nucleotides where ntHash outperformed other k-mer hashing 

algorithms (CityHash, MurmurHash, xxHash, and ntBase) by running up to 20 times faster than the 

competing algorithms (Mohamadi et al, 2016).   

 Another example of hashing’s use in bioinformatics is its application in a paper from 2016 by 

Wu, which describes the benefit of hashing and data compression of genome sequence data to increase 

the speed of genome alignment (Wu, 2016). A hash table can represent the sequence of a genome as lists 

of genomic positions for each k-mer or oligomer, and hash tables are used in this manner in various 

programs including BLAT and GMAP, which are both genome alignment tools (Wu, 2016). When 

aligning genomic sequences, hash tables can aid in aligning sequences that contain mismatches or single 

nucleotides polymorphisms (SNPs), since the potentially differing k-mers have the same corresponding 

genomic position (Wu, 2016).  

To continue, in the paper, Wu addresses the limitations of a lookup hash table, in which the hash 

table contains a list of k-mer positions, by describing a form of data compression called bitpacking 

(2016). When using a lookup hash table to store genomic information, an offset array, which stores 

pointer information of the current k-mer position and the proceeding k-mer position, grows 

exponentially in size, directly proportional with the size of k (Wu, 2016). By compressing the data 

stored in the offset array, more data can be stored in less memory (Wu, 2016). By bitpacking and 

vectorizing the offset array data (which is sorted in monotonically increasing order), that is, using the 

fewest bits possible to store each integer and process them in parallel (respectively), Wu introduced the 

data structures and algorithms BP32-columnar and BP64-columnar (2016). By compressing the data in 

the hash table using these two schemes, Wu found that they both resulted in increased retrieval speed of 

data for genomic alignment, with BP64-columnar having a more balanced time-to-space tradeoff (2016).  

Similar in idea to the article by Wu, a paper from 2018 by Girotto et al describes a hashing 

approach of DNA sequences by using spaced-seed hashing, which is essentially a pattern for string 

matching that uses 1’s for absolute matches and 0’s for positions that are adaptable (i.e. can tolerate 

mismatches), and are used in sequence alignment. In order for a DNA k-mer to be hashed, it must first 

be converted into a binary string, in which the spaced seed can now be used to find matches within that 

DNA k-mer, as shown in figure 1 from the paper by Girotto et al (2018): 
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Figure 1 (Girotto et al, 2018) 

Girotto et al describes the Fast Indexing for Spaced seed Hashing (FISH) algorithm, which was 

developed to increase the speed at which hash values of spaced seeds are computed, while at the same 

time maximizing the probability of a match between the spaced seed and the DNA k-mer and 

maximizing the sensitivity of the search (Girotto et al, 2018). Girotto et al found that depending on the 

length of the input, FISH can increase this speed between 1.9 and 6.03 times faster than traditional 

methods and that for longer reads, the speed of FISH increases, having implications for bioinformatic 

tools like BLAST, which use k-mers for local alignment of sequences (2018).    

 

Reflection 

This project was very challenging and required a lot of planning and a solid understanding of 

hashing before implementation into code.  

If I were to redo this project, I would attempt to consolidate the functions into fewer functions to 

improve readability and potentially efficiency of the code. For example, in this program, the division 

and multiplication insert schemes are written separately even though they carry out identical methods. 

While combining them would not improve efficiency, it would improve the readability of the code. 

Related to that, when the bucket size is set to 1 by the user, each insert function for the division and 

multiplication schemes carry out the three collision methods separately, although since each collision 

method was written as a separate function, the could in theory all be included in one function and called 

at the same time. Also, the linear probing and quadratic probing methods were implemented in separate 

functions, but they too could also have been consolidated in one.  

Additionally, the output of this program was written to a single file. Each time the program is 

run, if the file is not deleted, the results are appended to the end of the file. This can make readability 

difficult, especially if the program is run many times without deleting the file, where the file gets fairly 
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long, and the newest results are at the bottom. To fix this, multiple output files could be used, but that 

has the potential of becoming convoluted and confusing for the user.  

The design choice described in the first section of this report was for the benefit of the 

programmer, that is, to organize the functions individually to ensure all requirements were included and 

implemented properly. Consolidation of the functions, as described above, was considered but 

ultimately not taken into effect in the final code to prevent any potential accidental loss of functionality.  

Entering this project, I was already familiar with defining functions and calling them elsewhere, 

and this project also provided another opportunity to use regex and the time library This project allowed 

me to become much more familiar and comfortable in dealing with arrays, function calls, function 

arguments, and file input and output. Ultimately, while this project was very difficult and took a lot of 

trial and error, it improved my programming skills and my critical thinking skills on how to identify and 

solve a problem(s) successfully. 

And just by the nature of this project, I now have a much greater appreciation and understanding 

of hashing and its uses both in general and in a bioinformatics context. 
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