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Remembering...




What we do know:
» Red dots = observations
We can hypothesize M = blue area

Fundamental niche (red ellipse) is
unknown unless we have experiments

» We don't have experiments

What do algorithms estimate?
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» Projection is a region in G where the values of E are in the
Bioclim "Box"
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Random Forest Method

» Use of several predictor variables with estimates of importance of each one
» Accuracy even with missing data
» High overfit

» Requires absence data

All data

2/3 of all data in random subset
1/3 ‘out of the bag’, later used in evaluation
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Machine learning methods

MaxEnt

It gives each pixel a value that is a probability

The sum of all output values is 1

Regularization protocol that restricts overadjustment

Good predictive performance

Unlike other methods, it provides environmental suitability, not probability of occurrence
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Projection indicates that the points in G are similar to those of observation

Probability density of
presence environment

Probability density of
total available
environment

Adapted from Elith et al. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.



Table 4. Modelling methods implemented. \\
g \
Method Class of model, Data' Software Std Contact 022 \
and explanation errors?>  person \\
BIOCLIM envelope model p DIVA-GIS no CG, RH \\
BRT boosted decision trees pa R, gbm package no JE \\
BRUTO rf}gression, a fast implementation pa R and Splus, mda package yes JE 0.20 1 \\ MARS
of a gam
DK-GARP  rule sets from genetic algorithms; pa DesktopGarp no ATP N\ GLM
desktop version 1 \\ BRUTO
DOMAIN multivariate distance p DIVA-GIS no CG, RH \
GAM regression: generalised additive model pa S-Plus, GRASP add-on yes AG,AL.,JE \
GDM generalised dissimilarity modelling; pacomm Specialized program not general released; no SF 0.18 - \\
uses community data uses Arcview and Splus % X
GDM-SS generalised dissimilarity modelling; pa as for GDM no SF 5 —DKGARP — .-
implementation for single specics 1 [N .
GLM regression; generalised linear model pa S-Plus, GRASP add-on yes AG.AL.JE
LIVES multivariate distance p Specialized program not general released  no JLi
MARS regression; multivariate adaptive pa R, mda package plus new code to handle  yes JE. FH 0.16 -1
regression splines binomial responses MARS-INT
MARS- as for MARS, but implemented with ~ pacomm as for MARS yes JE —BlgcLIM-—-
COMM community data 1
MARS-INT  as or MARS; interactions allowed pa as for MARS yes JE
MAXENT maximum entropy pa Maxent no SP r
MAXENT-T maximum entropy with threshold pa Maxent no SP 0.14 - ‘ LIVES
features
OM-GARP  rule sets derived with genetic pa new version of GARP not yet available no ATP
algorithms; open modeller version
' p =only presence data used: pa =presence and some form of absence required — e.g. a background sample: comm =community 0.12 ’ y
data contribute to model fitting. )
2 any method can have an uncertainty estimate derived from bootstrapping the modelling; these data refer to estimates that are 0.65 0.67
available as a statistical part of the method.

ECOGRAPHY 29: 129151, 2006

Novel methods improve prediction of species’ distributions from
occurrence data

Jane Elith*, Catherine H. Graham*, Robert P. Anderson, Miroslav Dudik, Simon Ferrier, Antoine Guisan,
Robert J. Hijmans, Falk Huettmann, John R. Leathwick, Anthony Lehmann, Jin Li, Lucia G. Lohmann,
Bette A. Loiselle, Glenn Manion, Craig Moritz, Miguel Nakamura, Yoshinori Nakazawa, Jacob McC. Overton,
A. Townsend Peterson, Steven J. Phillips, Karen Richardson, Ricardo Scachetti-Pereira, Robert E. Schapire,
Jorge Soberéon, Stephen Williams, Mary S. Wisz and Niklaus E. Zimmermann




Available online at www.sciencedirect.com
SCIENCE @DIRECT'

ELSEVIER Ecological Modelling 190 (2006) 231-259

ECOLOGICAL
MODELLING

www.elsevier.com/locate/ecolmodel

Maximum entropy modeling of species geographic distributions
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Describe data and modeling choices

Overview / « Model objective

Conce ptu alisation * Taxon, location, predictors, scale
* Conceptual underpinning

* Software, codes and data availability

GENERAL
SPECIFICATIONS

> ODMAP Predictions (5) (2) Data

* Biodiversity data

* Data partitioning

* Environmental data
* Transfer data

(3) Model fitting

* Prediction output
* Uncertainty quantification

Assessment Q

TECHNICAL DETAILS

* Performance statistics * Variable selection
* Plausibility: response shapes, * Model settings and model complexity
expert judgement * Model estimates, variable importance

* Model selection, averaging, ensembles
* Non-independence analyses
* Threshold selection

Zurell et al., 2020



ODMAP section

ODMAP subsection

ODMAP elements

Overview

Data

Model

Assessment

Prediction

Authorship

Model objective/model purpose

Taxon
Location
Scale of analysis

Biodiversity data overview
Type of predictors

Conceptual model/hypotheses

Assumptions
SDM algorithms

Model workflow
Software, codes and data
Biodiversity data

Data partitioning

Predictor variables

Transfer data for projection

Variable pre-selection

Multicollinearity

Model settings/model
complexity

Model estimates

Maodel selection/model
averaging/ensembles

Non-independence
correction/analyses

. Threshold selection

Performance statistics

Plausibility check
Prediction output
Uncertainty quantification

Authors, contact email, title, doi

SDM objective/purpose (inference, mapping, transfer), main target output

Focal taxon

Location of study area

Spatial extent (lon/lat), spatial resolution, temporal extent/time period,
temporal resolution, type of extent boundary (e.g. rectangular, natural,
political)

Observation type, response/data type

Climatic, topographic, edaphic, habitat, etc.

Hypotheses about biodiversity-environment relationships

State critical model assumptions (cf. Table 2)

Model algorithms, justification of model complexity, is model averaging/
ensemble modelling used?

Brief description of modelling steps

Specify software, availability of codes, availability of data

Taxon names, taxonomic reference system, ecological level, biodiversity
data sources, sampling design, sample size per taxon, country/region
mask, details on scaling, data cleaning/filtering, absence data collection,
pseudo-absence and background data, potential errors and biases in data

Selection of training data (for model fitting), validation data and test (truly
independent) data

State predictor variables used, data sources, spatial resolution and extent of
raw data, map projection, temporal resolution and extent of raw data, data
processing and scaling, measurement errors and bias, dimension reduction

Data sources, spatial resolution and extent, temporal resolution and extent,
models and scenarios used, data processing and scaling, quantification of
novel environments

Details on pre-selection of variables

Methods for identifying and dealing with multicollinearity

Models settings for all selected algorithms and for extrapolation beyond
sample range

Model coefficients, variable importance

Model selection strategy, method for model averaging, ensemble method

Spatial autocorrelation in residuals, temporal autocorrelation in residuals,
nested data

Details on threshold selection

Performance statistics estimated on training data, on validation data and on
test (truly independent) data

Response plots; expert judgements (e.g. map display)

Prediction unit; post-processing steps

Uncertainty through algorithms, input data, parameters, scenarios;

visualisation/treatment of novel environments

[ 1Obligatory; 7] Objective: mapping/interpolation; EEZ] Objective: forecast/transfer; [ Optional/context dependent.

Zurell et al., 2020



UNCERTAINTY




» What if we don't know the reality to

Wh at iS U n Ce rtai n ty? compare with the models?

» You can't measure the variation

» Uncertainty!

» Lack of knowledge of how well a model represents reality

» It is associated with, but not the same thing as, the error or variation of

the models
a b c d

PRECISAO: NAQO PRECISAO: SIM PRECISAO: NAO PRECISAOQ: SIM
EXATIDAO: NAO EXATIDAO: NAO EXATIDAO: SIM EXATIDAO: SIM

Uncertainty in a and ¢ >>> uncertainty in b and d




Sources of uncertainty

What points of occurrence?

Accuracy of the points of occurrence?
What modeling parameters?

Which algorithms?
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What environmental data?
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Mistakes in niche models

» In the data ° 8

» Taxonomic

» Geographical Distribulcic’)n
{(rea n

» Absence?
» In the procedures Ooog
» In the biology and ecology of species o@
Omision Comision




Variation origin

» Sampling » Parameters

» Environmental data

» Extrapolation (time and/or space)

Replicate samples of

available occurrence points
b]

Representative concentration
pathways (RCPs)
- ? AR

\

Specific parameter
settings

General circulation models
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Statistical quantification of variation

1. Data extraction and organization
» Random sampling points in the study area
» Point data extraction

» Group data according to factors

GCM 1
RCP45 < 10 Rep.
[ 10 Rep. |

Presente
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GCM 1 GCM 2 GCM 3
RCPB.S  —
o B B

Peterson et al., 2018



Statistical quantification of variation

80
O Across M

e 2. Hierarchical Partition Analysis of Variance

» Independent and combined effect of each of the factors on the recorded
variance

60 —

3. Bootstrap

40

» Random sampling of data to detect variation in measured effects

Independent effects (%)

4, Statistical significance

20

» Comparison of measured effects with a null distribution created by

1 randomizing data across factors

Replicates RCPs GCMs Parameters Speciation Extinction

50

Independent factors

*

% Independent effects

Aradjo & Guisan, 2006
Qiao et al., 2016
Peterson et al., 2018

Dispersal Niche Climate Dispersal Niche Climate




So...

Errors and variations generate uncertainty in the NMS
Uncertainty can be reduced by avoiding mistakes, but it cannot be eliminated
Variation is an important part of models and should be considered

Representing the variation allows you to reflect levels of uncertainty;

» it is better to represent it than to assume that a single model is showing reality
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