lg] snyk Products v Resources v Company v Pricing @ EN Login v Sign up Book a live demo

< Snyk Blog

What's so wild about exploits in the
wild - and how can we prioritize
accordingly?

Written by: §§ Rachel Cheyfitz €} Shani Gal

November 21, 2019 9 mins read Snyk Top 10:
Vulnerabilites you
Not all vulnerabilities are created equal.While it's true that you shouldn’t ever ignore an open-source should know

vulnerability, it might take some time before some of them can be manipulated and used to hack your system.
Find out which types of

vulnerabilities are most likely to
appear in your projects based on
In a world of steadily increasing vulnerabilities, it is challenging to find and attend quickly enough to them all, Snyk scan results and security .

On the other hand, some known vulnerabilities really do pose a great and immediate risk.

and we can assume that so many maintainers may be giving up before they're even out of the gate just from research.

heer frustration in the numbers.

To distinguish and prioritize the different vulnerabilities, we should evaluate the risk posed by each, decide

what the minimum risk is that we want to tackle, and then start from there

One of the main risk factors is how easy it is to hack a specific vulnerability. When someone demonstrates how

a vulnerability can be taken advantage of, this is called an exploit. When the exploit is widely published, through
sources such as blog posts, forums, exploit-db, or exploitation frameworks like metasploit, it is commonly

referred to as an exploit in the wild.

Only a small percentage of known vulnerabilities will be exploited, or in other words, used to hack into a
system. Vulnerabilities that pose the highest risk are those that have a higher chance of being exploited and

therefore should be prioritized and attended to first, as seen in the diagram:

All disclosed
vulnerabilities

Exploited >
vulnerabilities

&

[

Vulnerabilities in /
your environment
K

In this post, we detail how exploits in the wild translate into greater risk, how we can evaluate that risk, and how

ey vulnerabilities
to be worried
about

to prioritize and quickly handle your vulnerabilities accordingly.

@quche Struts: an exploit in the wild that led to a real-life hack

You've probably heard of the breach to Equifax a well-known credit-scoring firm that exposed the highly

personal data of 145.5 millions of its customers. The breach originated from a known vulnerability in an Apache H

s ' ¥ [P - et oa s P ' . . [-1

SIrUTS package 1or wnicn tnere Were associatea exploits In mne wiia punisnea only a rew aays pDeTtore mne

attack. The availability of the exploit code helped hackers to later breach the Equifax systems, which was 5
attacked two months after the exploit was published — and the results were devastating. See the attacks on [y

Apache Struts in the timeline below:

Apache Struts 2 attack timeline

Apache _
rejeases a . A Kt
i for th ttack begins
T Apache is i y immediarely 1500
wvulnerability
notified of after the exploit
the Struts is made available
vulnerabilicy ¥ i iplok 1000
is made ’
available
through ’ 500
Exploit-DB ’
i o >—o %o @
FEB 14 MARG MART WAR 12 MAR 22 WAR 30 APRE hPR 18 APR 29

What is exploit code maturity and how does it influence the risk
of a vulnerability?

We refer to the maturity of any exploit code (exploit maturity for short) to measure how practical a vulnerability
really is in the real world, relative to:
+ Whether the exploit has been published (is it “in the wild"?); and

+ The actual "helpfulness” of those published exploits - meaning, whether the vulnerability really can be
taken advantage of more easily due to those publications.

@n other words, if there is no exploit available at all, it will most likely be more difficult to take advantage of a
vulnerability; while at the same time, even if there is an exploit available, that also does not necessarily mean

that the vulnerability can still be easily breached.

Factors that influence the risk posed by a published exploit

For this post, let's discuss two of the factors that influence the maturity of exploit code.
Factor I: how practical is it to exploit this vulnerability?

The first factor is whether there is a gap between the academic theory versus its practical implementation, and

how big that gap is. To understand the risks posed by an exploit in the wild, we should evaluate whether it is:

* Practical and can be applied in the real world, or if it's currently only a theory; and

= whether it can be applied to all cases or is limited by certain conditions

@ An exploit that has only been discussed in theory might present far less risk than a published exploit that has
been tested and proven. Likewise, an exploit that is applicable to only 1% of use cases in which the vulnerability
appears poses far less risk than an exploit demonstrating how to easily hack the vulnerability regardless of

circumstance.

Factor II: What expertise level is required?

The second factor is the level of expertise necessary to actually exploit the vulnerability. Do you need to be an
expert hacker to manipulate this vulnerability, or can even beginners implement it? The easier it is to use, the

higher the chances are that someone will.

Now that we've put things into perspective, it's easier to understand how a published exploit is typically

correlated with vulnerabilities that are ultimately hacked. It's no wonder thatthis study shows that when there is
a published exploit available, the vulnerability is four times more likely to actually be exploited. Additional

studies have even asserted that the publication of an exploit increases the risk by 7 times!!

If we already have CVSS why do we need exploit maturity too?

The Common Vulnerability Scoring System (CVSS score) already weighs a few risk factors in its calculation,
including code maturity, which measures if a relevant public exploit code is available. However, as the number
of known vulnerabilities increases exponentially over time, the comprehensive scoring system does not always

reflect the true risk (or lack thereof) that any given vulnerability may present. In his blog_post earlier this year,

Liran Tal observed that while the CVSS "vulnerability score is determined by any of a number of recognized
parties, the complex system is comprised of over a dozen key characteristics and without proper guidance,

experience and supporting information, mistakes are easy to make”

Prioritizing according to exploit maturity is not only right, but
also effective

When prioritizing specifically according to exploit maturity we can effectively pinpoint the riskiest

vulnerabilities, narrowing the prioritized set down to only about 10% of the total. Amongst Snyk customers, only
@12% of their vulnerabilities have a mature exploit available, with this number varying according to ecosystem

(see the table below). This finding is consistent with additional numbers, such as the stat found here,

indicating that 5.5% of published vulnerabilities have exploits which have been observed in the wild.

Read Next 2 vulnerabilities out of all vulnerabilities can vary between ecosystems, depending

le below we can see the average data among Snyk customers from sample key

How to prioritize vulnerabilities
based on risk

able vulnerabilities
(aggregated data from Snyk)

Ecosystem
Java Script 19.1%

Java 3.9%

@ Python 11.6%

Should we fix other vulnerabilities? Well, of course. There's risk in any vulnerability (albeit, some higher than

others) and there are many other ways to prioritize - all of which we'll cover in the future. Bottom line though:

since every vulnerability poses a risk, we must be vigilant in prioritizing and the best way to get started is by

evaluating exploit code maturity.

So how do | know which of my vulnerabilities have exploits in the
wild?

In order to support our users and protect them, we are now enabling them to prioritize the detected

vulnerabilities in their projects according to exploit maturity!

@'e‘ve decided to use three vectors that we based on our research and on CVSS:

+ Mature: a published code exploit that can easily be used for this vulnerability is available.

+ Proof of concept: a published, theoretical proof-of-concept or detailed explanation that demonstrates

how to exploit this vulnerability is available.

+ No known exploit: neither a proof-of-concept code nor an exploit were found for this vulnerability, or are
not publicly available.

When viewing your project vulnerabilities you can now see if a specific vulnerability is an exploit in the wild. You
can also filter and prioritize your scan results and then remediate accordingly, and view an aggregate report. In

this way, you can prioritize and attend to the most important and risky vulnerabilities first.

Q, Search issues Choose how to fix these vulnerabilities and open a pull request.

[High -
(] Low

@ Arbitrary File Write via Archive Extraction (Zip Slip)
@ Explolt macuricy Vulnerable module: adm-zip

Introduced through: adm-zip@0.4.7

(=] Medium

) Mature » +
Exploit maturity: Mature
[¥] Proof of concept 3 3
%] Noknown exploit > u [1 Focchis vulnerabilicy
=] Hodwakx - Detailed paths and remediation
Stanus » Introduced through: goof@0.0.3 » adm-zip@0.4.7
Remediation: Upgrade to adm-zip@0.4.11
(=] Open 40
Vulnerable Functions
Patched Ll
odn-zip.module_exports. getEntry
Ignared]

Overview

Get started now!
It's easy to get started:

1. Log in to Snyk and go to the detailedProjects page for any of your projects:

Duhbowd R Projecs Iregaiom Sewngs
AzureRepos (@) | | BitbuckecCloud (@) | | CfCU @& | | DockerHub (&) | | ECR (8 GitHub (&)
> E@ ' GoCKErimage|mysquuiatest Lo N RS
> [1 dockerimage|node@.14.2-slim [~ [IGE ™ []
» & 1 lkarnisnyk/magic
Yo B newest [[

> L 2 nginx (SR
» W 1 rachelsnykinpm-lockfiles CEC -G @
> @ 1 rachelsnykisnyk-goofmaster EEEmEE @
») 1 racheyfi/DockerTests [- [~ @
» () 1 racheyfillenkinsTests @
> @1 rcheyfiTestDackerfile EEEmEE @
s €)1 racheyfifTestTeamCity FEI-ECE @

2. You can see the new filters on the left side:

Exploit maturity

Mature[~ | 4

A published code exploit that can easily
be used for this vulnerability is available

Proof of concept v 3

A published, theoretical proof-of-concept
or detailed explanation that

10w to exploit this
vulnerability is available

No known exploit + 44

Neither a proof-of-con
exploit were found
or are not publicly

No data v 2
No data

nsunnorred ecosvsrems or far araiecrs

ill show for licenses,

.

are-scan. See docs for more

3. ClickMature to view the riskiest, based on exploit maturity, and you're ready to get started remediating

@ee our docs for more details.

What's next?

Now that we've released the ability to prioritize according to exploit maturity, we'll continue to present

additional prioritization methods for vulnerability remediation, supporting our users in the effective protection

of their dependencies.

Get started in capture the flag

Learn how to solve capture the flag challenges by
watching our virtual 101 workshop on demand.

/
Posted in: | Vulnerability Insights
PRODUCTS & SOLUTIONS OUR RESOURCES OUR ECOSYSTEM COMPANY & COMMUNITY WHY SNYK
What is Snyk? Resource library Snyk Learn About Snyk Snyk With GitHub
Developer Security Platform Blog Snyk User Docs Contact us Snyk vs Veracode
Pricing The Secure Developer Podcast Snyk Support Book a demo Snyk vs Checkmarx
Snyk Vuln Database Careers Snyk vs Synopsys
Snyk Updates Events & webinars
Ambassadors

lﬁ] snyk The developer security

platform
X al@@@ Q'n o

Snyk gives you the visibility, context, and control you
need to work alongside developers on reducing
application risk.

e J Hi there! How can we help you
4 Snyk Limited Legal terms + Privacy Notice + Website Terms of Use + For Californ today? i
I

stered in England and Wales

