Soil Moisture Sensor

Project Intermediate #3

By: RJ Bailey, Justin Au, Brian Holland

Design Problem

Develop a practical moisture sensor that meets the needs of the client. It is essential that the design is practical, portable, and safe to use in outreach programs.

Background Research

Which Sensor to Use?

Resistive sensor

Vs.

Capacitive sensor

Which Filament to Use?

ASA

- UV, temperature, chemical, impact, water resistant
- Least hygroscopic
- Anti-static
- Food safe (for particular brands)
- Challenging to print
- Most expensive

OR

PLA

- Anti-static
- UV & chemical resistant
- Easiest to print & coat
- Relatively strong material
- Food safe
- Cheapest filament
- Hygroscopic
- Not impact, and heat resistant

How will this Sensor be used?

Initial Drawings, Models, and Designs

2 Parts: Case Top Case Base

Initial hand drawn Isometric drawings for top

Flaws:

- Battery holder
- Cramped
- Brittle
 - Top heavy: may compromise stakes and then sensor
- Not kid friendly
 - Battery pack outside and exposed

Initial 3D rendering of top of case

This would hold:

- LCD
- Buzzer
- LED
- Potentiometer
- Battery
- Wiring
- Moisture sensor

Initial Hand drawn drawings for base

Flaws:

- Brittle
- Small
- Hinges
- Not kid friendly

3D rendering of base of case

This would hold:

- Breadboard
- Deeper to hold Bulk of wiring

What we changed

Previous Drawings, Models, Designs, and Changes

4 Parts: Part 1: Arduino Housing Top Part 2: Arduino Housing Base Part 3: Sensor Housing Base Part 4: Sensor Housing Top

Orthographic sketch of Arduino Housing Top

This will house:

- LCD screen
- LED
- Buzzer
- ON/OFF switch
- Read Rate Button

Isometric sketch of Arduino Housing Top

Before

After

Moved around the location of the LED, LCD, Buzzer, and Battery.

Replaced the hinges with screws for better waterproofing.

AutoCad drawing And 3D Model of Arduino Housing Top

Orthographic sketch of Arduino Housing Base

This will house:

- Battery
- Arduino
- Breadboard
- Charger module
- SD card module
- Wiring

Isometric sketch of Arduino Housing Base

Before

After

Added a charging port (rechargeable batteries), and SD card reader slot, ventilation, and a sizable handle.

Made the housing compartment larger to accommodate for more components.

AutoCad Drawing And 3D Model of Arduino Housing Base

Orthographic sketch of Sensor Housing Base

This will house:

- The capacitive soil moisture sensor

Isometric sketch of Sensor Housing Base:

AutoCad drawing And 3D Model of Sensor Housing Base

Orthographic sketch of Sensor Housing Top

This will serve as:

- A cap for the Sensor

Isometric sketch of Sensor Housing Top:

AutoCad drawing And 3D Model of Sensor Housing Top:

Current Drawings, Models, Designs, and Changes

Part 1: Arduino Housing Base Part 2: Arduino Housing Top Part 3: Arduino Housing Shelf Part 4: Sensor Housing Base Part 5: Sensor Housing Top

Arduino Housing Base CAD sketch:

Updates:

- Wider to compensate for a bigger battery since we will be recording for up to 12 hours.
- Taller for better cable management.
- Removable shelf (see in future slide).
- Added storage rails for the sensor housing units to rest in.
- Changed from a usb-c port to a barrel connector for charging for easier use.

Arduino Housing base 3d Model:

Arduino Housing Top CAD sketch:

Updates:

- Added recording state switch
- Added an additional LED which works in parallel to the recording state.

Arduino Housing Shelf CAD sketch and 3D model:

This will be a removable shelf which the arduino will sit and or mount to.

Arduino Housing Shelf 3d Model:

AutoCad drawing & 3D Model of Sensor Housing Base

AutoCad drawing & 3D Model of Sensor Housing Top:

Prototype Functionality

Input device descriptions and interactions

Refresh Rate Button

- A toggleable button with five options
- Affects LCD and data logging file

Recording Switch

- Allows program to log data
- Starts on a clean slate for every new recording

Rate: 0.50 sec	
Nate. 0:00 Sec	

Name	Date modified	Туре	Size
al E	4/25/2023 9:26 AM	Text Document	1 KB
DATALOG	1/1/2000 12:00 AM	Microsoft Excel Co	13
max_ADC	4/24/2023 12:17 PM	Text Document	1 KB
max_GWC	4/24/2023 12:19 PM	Text Document	1 KB
min_ADC	4/24/2023 12:16 PM	Text Document	1 KB
min_GWC	4/22/2023 10:42 AM	Text Document	1 KB

% Moisture Mode

Calibration Mode

% Moisture Mode

- Displays qualitative readings based on the moisture value
- Less accurate but no calibration needed.

Calibration Mode

- Represented by ADC/GWC
- Can change calibration formula via SD card
- More accurate but calibration is needed.

	A	DI	0		6	0	7				
	R	a.	te	2		ø	Ì	5	0	se	

Name	Date modified	Type	Size
🔲 cal_E	4/25/2023 9:26 AM	Text Document	1)
DATALOG	1/1/2000 12:00 AM	Microsoft Excel Co	1 KE
max_ADC	4/24/2023 12:17 PM	Text Document	10
max_GWC	4/24/2023 12:19 PM	Text Document	13
min_ADC	4/24/2023 12:16 PM	Text Document	1)
min_GWC	4/22/2023 10:42 AM	Text Document	11

Demonstration of Prototype For more information, contact <u>bjh25383@email.vccs.edu</u>, <u>rjb24732@email.vccs.edu</u>, or <u>ja81988@email.vccs.edu</u>

For professor: check speaker notes

Questions?

