

Algebraic Query Language (AQL): An

Implementation of Relational Algebra

Written by:

Marc Kidwell Pestana

Edited by:

Kevin David Mitchell

and Arvin Donner

Algebraisk, LLC

www.algebraisk.com

scient@algebraisk.com

mailto:scient@algebraisk.com

1

Table of Contents

1 ABSTRACT .. 2

2 NOTE TO THE READER .. 3

3 AQL AND THE RELATIONAL DATABASE .. 3

3.1 INTRODUCTION .. 3

3.2 BACKGROUND ... 4

The relation .. 4

Codd’s Database Model ... 7

AQL’s Database Model ... 8

3.3 DATA SUBLANGUAGES AND NATURAL LANGUAGE ... 10

4 AQL: AN IMPLEMENTATION OF RELATIONAL ALGEBRA ... 12

5 FORMAL AQL DEFINITION ... 15

5.1 AQL USAGE .. 17

5.2 COMPARING AQL’S WITH SQL’S SYNTAX .. 22

5.3 AQL OPERATORS .. 25

6 AQL’S AUTOMATIC TYPE DATABASE ... 27

6.1 THE ROOTS OF THE ATD ... 28

6.2 HOW THE ATD WORKS ... 28

6.3 ADVANTAGES OF THE ATD ... 29

7 AQL AT JPL .. 30

8 FORWARD INTO MATRIX ALGEBRA, MACHINE LEARNING AND A.I. .. 31

9 CONCLUSION... 33

10 ACKNOWLEDGEMENTS ... 34

11 CITATIONS ... 35

2

1 Abstract

Algebraic Query Language (AQL) was developed at the Jet Propulsion

Laboratory to track, study, and preserve engineering data products. It is a close

implementation of E. F. Codd’s relational algebra [9]. AQL is a relational DBMS

based neither upon a natural language syntax nor upon strict data integrity

constraints. We contrast AQL with SQL and present a formal definition of the

former. We demonstrate that AQL is both a computational and a query language.

To implement relational algebra in AQL, it was necessary to invent a datatype

management system. This system is called the Automatic Type Database (ATD)

and is described.

3

2 Note to the reader

For readers who are familiar with relational databases, or for those who only want

to read about the AQL language, please proceed to the section titled “The AQL

Database Model”. For those interested in the history of E. F. Codd and relational

theory, or would prefer a historical explanation of AQL, please continue reading from

here. In either case, some discussion of the background of E. F. Codd, SQL, and the

relational model is necessary to properly explain AQL.

To keep the discussion from getting lost in technical details, wherever possible,

we have tried to begin from an elementary staring point and then proceed to more

advanced topics. Also, rigorous mathematical definitions are not provided accept by

links and references to other sources.

3 AQL and the relational database

3.1 Introduction

This paper examines notable aspects of Algebraic Query Language (AQL) and the

database management system based upon it (the AQL DBMS or hereafter ADBMS).

We compare AQL with SQL since both are relational languages that share common

historical roots and yet take dramatically different approaches to language

and database design. Marc Kidwell Pestana developed AQL for the GPS Earth

Observatory (GEO) group at the Jet Propulsion Laboratory. AQL has been under

development since 2010. It is fully operational and used in science and engineering

research at JPL. AQL is the intellectual property of the California Institute of

Technology in Pasadena.

Although relational databases and SQL are considered synonymous, both

AQL and SQL have their roots in the relational model. By exploring the history

of the relational model, we will discover the point of departure which

differentiates them. This survey is crucial to understanding what AQL is and why

it was developed.

4

3.2 Background

E. F. Codd was the inventor and evangelist of the relational database model

[3][4]. In the early 1970’s he specified the relational model for database design while

working for IBM in San Jose, California [6]. Codd proposed a universal data format

and methodology by which databases were to be manipulated with the CRUD

architecture (Create, Read, Update, Delete)).Codd’s relational model is a

mathematical model for database design. The relation was the mathematical notion

Codd used as his starting point and the basis for his universal data format. Using the

relation, Codd invented models for both languages and programs designed to access

relational databases under CRUD. The languages he invented are called relational

algebra and predicate calculus [7].

The relation

The relation (see Figure 1) is at the heart of the relational model. It is defined

mathematically as a specialized kind of set (The formal definition for those interested

can be found here [4, p. 4-5]) or on the Algebraisk website.) A relation combines data

from one or more related sources into a homogeneous mathematical structure. By

way of a very literal and informal example, consider the following statement assumed

as a fact “Tom is the son of John.” Here we are talking about both the mathematical

structure and the abstract relationship between father and son. Using the table as a

visualization, this statement takes the following form:

Figure SEQ Figure * ARABIC 1 – The Formal

Model of the Relation in AQL [cite]. This model is

equivalent to Codd's mathematical model of the relation.

Figure 1. shows the set theoretic notation of a relation, its more common

visualization as a table, and its representation in database design. The terms table

and relation are often used interchangeably.

5

Son Father

Tom John

Of course, we can extend this relation with more factual statements of the same kind:

“Mark is the son of Luke,” and “Fred is the son of Mathew”. Each of these statements

become additional rows or records in the table. Inclusion of these statements in our

example yields:

Son Father

Tom John

Marc Luke

Fred Mathew

The headers “Son” and “Father” are called the attributes of the relation. The

attributes of a relation serve many functions: they label and/or describe the

domain of the entries that lie in the column beneath them, they provide a unique

path to each row, and they serve as a means of combining two relations together

that share common attributes.

Figure 2. Employee Table of Chamberlain and Boyce

Relations are often used to represent even more complicated statements of

fact with up to hundreds of attributes relating hundreds of individual datum.

Consider a less complicated relation whose attributes are “Employee”, “Salary”,

and “Manager”. Here we are defining a relation via its attributes. Assuming the

fact that “Jones makes $40,000.00 a year and works for Smith”, we group

together the datum that fit these attributes to build a record in the table (see

second row in Figure 2). Records, or rows, are also called tuples in formal

mathematics and these terms are used interchangeably.

Codd went further in his development of his relational model. He exploited the

fact that relations, defined as abstract sets, are naturally endowed with the set

6

operations of union, intersection, complementation, and difference. Codd modified

these set operations by adding to them the property of closure. By enforcing closure,

the set operations were changed into what he called relational operations.

Closure means that relations when combined by relational operations, produce

relations. And if the operations are executed on properly defined relations, their

composition creates new logical inferences. Codd used the relational operations to

develop data sublanguages or query languages [7][8]. Relational algebra and

predicate calculus were his two primary examples.

In summary, using the relation, Codd wrote a database model that specified the

relation as the criteria for a universal data format and a data sublanguage for data

access. The relation exhibits what he called data independence [2]. The relation

exhibits data independence because it is self-contained, has a fixed homogeneous

structure, and relies only on mathematical concepts that are independent of any

machine representation or organization. He further recognized that it could be used to

store assertions about abstract ideas. The relation could be used to package ideas into

factual statements, or units of knowledge. Also, the relational operations could be

used to form new inferences by combining these assertions.

Thus, in Codd’s relational model, the relation functions on two levels. First, it

provides a uniform, self-contained mathematical structure that can store and retrieve

data, and can participate in relational operations. Second, it describes the factual

relationships that exist between the various attributes of the data it stores and can be

used to derive inferences from those relationships.

While the relation in AQL is equivalent to Codd’s, our definition of the relation is

based on the model of De Hann [10] whose defined a modified form of a relation and

called it a skeleton. More importantly, our conception of the relational database model

is significantly different as we shall see.

7

Codd’s Database Model

Codd defined a database as a set of relations and their logical connections

under the control of a data sublanguage (such as SQL) [1][4]. The relations in his

model were time-varying, but their number, form, and interrelationships were

fixed. In Codd’s model, a database could be viewed as a fixed circuit in which

relations are conduits for data, and the DBMS controls the data flow [3]. An

entity-relationship diagram, or ERD, is used to model a relational database. ERDs

depict a kind of data circuit diagram and serve as a description of the components

of the database and their interrelationships (see figure 3).

However, Codd’s model was not only about abstract mathematical structures and

mathematical models for query languages. It was also about controlling the

user/machine interface. To this end, he added data integrity constraints to his model.

These constraints defined the access privileges of users, tight rules governing the

operations performed on the data by users, and the rules for how users define every

data structure in the database. The relational model regulated the user’s relationship

with the database. In other words, the relational model was about social engineering.

Figure 3. Codd’s relational database in diagrammatic form illustrates the process of

database design and access.

Moreover, Codd’s social engineering criteria guaranteed that critical data

of any kind, be it financial or organizational, is rigorously protected while still

8

permitting appropriate access. Five forms of data integrity constraints were

developed to protect data from malicious users as well as control the access of

authorized users [4]. The relational operations were also governed by the integrity

constraints so that these operations would produce consistent results while not

damaging existing data.

In addition, most users were presumed to be either averse or uninterested in

understanding the underlying mathematical concepts of relational systems, and

hence needed a layer of control, supervision, and a query tool they would be

willing to understand. The data integrity constraints were embedded in the data

sublanguage to make it extremely difficult to avoid them [3]. Thus, the integrity

constraints also adhered to the notion of data independence. The database

structure used to store the data, and the data sublanguage used to access and

protect the data were self-contained and independent of any host language within

which they were accessed.

 We should acknowledge that the notion of a fixed ERD implemented in SQL

has loosened substantially in recent years. Today, the SQL user can add tables

more easily than in earlier versions. Also, the user can perform operations on

those tables without restriction. However, the issue of typing new tables persists

in that the user must supply typing information for new tables inline with the SQL

commands that create them. This issue has, in most cases, been dealt with by

AQL’s automatic type system discussed below.

AQL’s Database Model

Fundamental differences with Codd’s relational model have shaped the

AQL database model. The initial purpose of AQL was to support scientific

research, not business systems. Thus, we re-examined Codd’s social engineering

concepts of data integrity by stressing free access to data and we make different

assumptions about the users. To do this, we had to make the database model

much more malleable, moving from a fixed system to a more dynamic concept.

In an AQL database the number of relations, their interrelationships, inferences,

and data can vary with time. The number of attributes of a relation can grow or

9

decline, change, and shift values. The relation can change its type and get a new

primary key. Referential relationships can be broken and new one established. The

relation becomes a true variable.

Thus, we have dispensed with a fixed ERD and relationships, and instead, given

each relation a datatype used to compute the inferences needed to perform queries.

We type entire relations as individual units in the database. While this seems trivial,

it permits the flexibility that we wanted in our database model. Whenever an AQL

operation creates a new relation, its datatype is also created and stored in an

Automatic Type Database (ATD) for later use. This process is essential to AQL’s

ability to perform algebraic operations upon relations (see figure 4).

Figure 4. The AQL Database model in diagrammatic form illustrates the process of

database design and access.

 In our model, referential connections between relations may not initially be

known in an AQL database. Instead, they can be tested by means of the AQL

operators. AQL’s algebraic operators use the datatypes of the relations to determine

potential referential connections between them. In other words, the suite of AQL

operators is used to mine the database to verify and quantify the interrelationships

between or within relations. In addition, the AQL assignment operators can be used to

save intermediate and final results of a query at almost any point in the search

10

expression. These intermediate results can be used to locate and diagnose errors. This

constitutes what we call the open architecture and open workflow of the ADBMS.

 Furthermore, we implement relational algebra in place of predicate calculus, thus

branching from the early path taken in the development of SQL. AQL supports the

basic operations for search that Codd specified. However, it emphasizes computation

over description and therefore implements relational algebra, which is preferable for a

computational approach in a data sublanguage. AQL has a full set of relational

operators and many non-relational ones. As we will see, AQL’s algebraic syntax

allows querying concurrently with numerical computation, which Codd specifically

rejected [3].

Thus, the AQL relational model grew from Codd’s, but stresses a more intuitive

workflow, simplicity, computation, speedy access, and encourages experimentation

with data. It gives the user full access to the data and assumes the user can understand

the mathematical details of query operations. Yet, its syntax is simple enough so that

users don’t necessarily have to understand all the details.

3.3 Data Sublanguages and Natural Language

Figure 5. Codd Model, Sublanguages and Resultant Query Languages. Here we see the

point of departure for AQL within his model.

Codd created models for data sublanguages [5] that are used to query

databases. He showed how to determine the degree to which they adhere to his

relational paradigm. He created two of these models: one called relational

algebra, and the other called Alpha that was based on predicate calculus.

Structured Query Language (SQL) was modeled after Alpha [6]. AQL, written by

the author of this paper, was modeled after relational algebra.

11

SQL was designed to implement Codd’s relational model, and today it is

the lingua franca of the relational database world. It was originally pioneered by

Donald Chamberlin and Ray Boyce while working under Codd at the IBM

research facility in San Jose, California in 1972 [6]. SQL itself was derived from

SEQUEL: Structured English Query Language [8]. Early efforts in SEQUEL

development reflected their choices of English language programming.

With SQL, Chamberlain and Boyce hoped to put database query

languages into the hands of a broad audience [6]. Chamberlain studied three

candidate syntaxes shown in Figure 6 that would query a database consisting of

the single relation shown in Figure 2. Each example would answer the following

query: “Which employees make more than their managers?” He was trying to

show here that while relational algebra and predicate calculus were concise, they

were steeped in technically complicated mathematical notation. In SQL, they

believed they had created a language free of burdensome mathematical notation

and concepts, while still conforming to Codd’s relational model. They hoped

[6]…

“…that, with a little practice, users could learn to read queries like this

almost as though they were English prose. Their example shown in

[figure 4] could be read as follows: ‘Find an employee (let’s call him ‘e’)

and another employee (let’s call him ‘m’) where e’s manager matches m’s

name (in other words, e’s manager is m) and e’s salary is greater than m’s

salary (in other words, e earns more than his manager); then print e’s

name (for every such employee).”

12

Figure 6. Chamberlain's "Three Versions of the Query"

To further enforce their concept of social engineering, Codd et al. also felt

that a query language should describe the information sought but not provide a

detailed plan for how to find that information. They saw the interpreter's job as

translating the declarative query into an optimized search, thus hiding procedural

details from the user [3]. Further, Codd intentionally rejected computation in his

relational model, specifically in his models of data independence and integrity

[4].

Thus, SQL was designed around the notion that a query language based on a

natural language would make queries easier for humans to read and write than

either relational algebraic or predicate calculus queries. In addition, it would

exclude mathematical details irrelevant to making a query. SQL is as close a

translation of predicate calculus into an English-like language as possible,

creating a query language with English-like syntax.

As SQL evolved, it conformed more closely to Codd’s relational model via

integrity constraints and left behind the trappings of predicate calculus becoming

a more English-like natural language [5].

4 AQL: An Implementation of Relational Algebra

13

We maintain that the English syntax of SQL, is more awkward and

confusing than algebraic expressions because they encumber mathematical

expressions with extraneous semantics and syntax that require additional mental

gymnastics to frame. Moreover, using an English syntax strips the mathematical

notation of its natural and elegant concision. By eliminating the mathematical

syntax, we believe that Codd et al. removed mathematics’ useful and intuitive

qualities from query languages.

In contrast to SQL, AQL’s syntax has a small set of concise and intuitive

rules that can be easily used to create query expressions. Using these rules as

implemented in AQL, we can generate an infinite number of query expressions.

This is because the rules mutually feed into one another permitting the indefinite

expansion of AQL queries. This is known in linguistics as recursion [11]. For

example, consider two of the rules taken from the formal definition of the AQL

language that follows immediately after this section.

1) If L is an AQL fundamental operator and Q an AQL search expression, then L

= Q is an AQL search expression

2) If Q and P are AQL search expressions, and + is a binary AQL operator, then

Q + P is also an AQL search expression.

Rule 1 means that any individual operand (R) can be replaced with L= Q in any

AQL expression. likewise, rule 2 means that any individual operand (R) can be

replace with Q+P. The following expansion of a simple query illustrates the

process of one rule feeding another, generating longer and more complex

expressions:

 L=Q Rule 1

L=R+P Rule 2 Q → R+P

L=(R+P)+W Rule 2 R+P → (R+P)+W

L=(M=R+P)+W Rule 1 R+P → M=R+P

L=(M=R+P)+(X+Y) Rule 2 W → X+Y

L=(M=R+P)+(Z=X+Y) Rule 1 X+Y→ Z=X+Y

and so on…

 In addition, it is possible to refactor a complex AQL expression into a

sequence of simpler expressions that still gives the same result:

14

L=(M=R+P)+(Z=X+Y) Single AQL expression

M=R+P Refactoring from the

Z=X+Y Inside out.

L=M+Z The result is identical

 Of course, both English and SQL have recursion. Recursion is a property of

all natural languages and algebra. SQL’s recursion might be more limited than in

English. But the extent of SQL’s recursion is of no importance because the real

problem lies in the amount of unneeded baggage that is introduce each time a

recursion is performed. For example, imagine the complexity resulting from

putting any of the command shown in figure 16 into any of the other commands.

We contend that using English language forms for what are essentially

mathematical objects creates a burdensome query language.

Chamberlain’s example above is used to imply that relational algebra is

incomprehensible compared to SEQUEL or SQL. We took a different approach to

implement relational algebra, which resulted in an even simpler form suitable for

command-line input. To this end, note that the relational algebraic expression

found in Figure 6:

𝜋𝑒.𝑛𝑎𝑚𝑒 (𝜎𝑒.𝑠𝑎𝑙𝑎𝑟𝑦>𝑚.𝑠𝑎𝑙𝑎𝑟𝑦 (𝜌𝑒(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒) ⋈𝑒.𝑚𝑎𝑛𝑎𝑔𝑒𝑟=𝑚.𝑛𝑎𝑚𝑒 𝜌𝑚(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒)))

can be re-stated with a little massaging into AQL as:

((𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 && 𝑀𝑎𝑛𝑎𝑔𝑒𝑟) ∷ @𝑒𝑠𝑎𝑙𝑎𝑟𝑦 > @𝑚𝑠𝑎𝑙𝑎𝑟𝑦) ∶> @𝑛𝑎𝑚𝑒

In the AQL expression above, && is a binary operator that combines the two

relations Employee and Manager, :: and :> are scalar operators, and Employee

and Manager are references to AQL tables. Finally, @esalary, @msalary, and

@name are assumed to be attributes of relations Employee and Manager. This

operation is more fully explained and computed subsequently.

In our social engineering model, AQL’s users do not benefit from a built-

in lack of computation or hiding mathematical and operational details. They are

15

treated as intelligent practitioners who want to use the power of mathematics,

with all the benefits and caveats that follow from the openness of AQL’s design.

5 Formal AQL Definition

Now, we move on from our introduction to a formal definition of AQL.

AQL is a query language based on relational algebra, supporting the entire set of

relational operators, including additional non-relational operators. It uses Leibnitz

notation for function operators, standard notation for binary operators, and scalar

operators as motivated by those from linear spaces. The following definition is

recursive, and the depth of embedding is limited only by the machine resources

available to the user.

The following is an abstract language definition. To simplify this

definition, we will group the binary and unary operators into the following

categories, and introduce a simplified meta-language or pseudo-code:

+ representing all join operators

&& || < && && > < || || > ∗∗ @&& @|| >>

→ representing all scalar operators

: : ∶> >< −> <>

= representing all assignment operators

= ^ = && = || =

Also note the following conventions for search expressions:

● 𝐿 for the name of an AQL file, containing a single relation on disk, which is a

basic AQL search expression and is also called the fundamental operator.

● $𝐿 for an AQL symbol, a single relation in memory, also a basic AQL search

expression or fundamental operator.

● 𝑄 and 𝑃 for AQL search expressions, which can be as simple as a fundamental

operator or a complex expression with many operators and operands.

● 𝐹(•) for function operators, which are AQL search expressions

16

Here are the AQL pseudo code conventions for components of the language used to

build search expressions:

● 𝑆 for scalar expressions (including strings, mathematical and statistical

expressions)

● 𝐶 for a conditional expression

● 𝐶𝑆 for a conditional statement

● 𝐴 for an attribute list (@a:@b:@c for example)

● 𝐴𝐿 for an attribute expression list

Here are the rules that define AQL as an algebraic language over the set of

relations under the following operations:

1. L and $L are AQL search expressions

2. L = Q is an AQL search expression

3. 𝑄 + 𝑃 is an AQL search expression

4. 𝑄 → 𝐶, 𝑄 → 𝐴 𝑜𝑟 𝑄 → 𝐴𝐿 are AQL search expressions

5. F(Q,…) and F(Q, P,…) are AQL search expressions. Their comma-separated

parameters (…) may include one or more scalar expressions S, attribute

expression lists AL, conditional expressions C, conditional statements CS, and

AQL file names L

6. (Q) and [Q] are AQL search expressions. Thus, AQL permits the use of

parentheses and brackets in expressions to override the rules of precedence for

AQL operators

(AQL is built upon the BerkeleyDB key-value store and is not innovative at that

level).

17

5.1 AQL Usage

While the basic concepts of AQL usage are straightforward, an in-depth

discussion is outside the scope of this paper, but we will now briefly expand on

this language definition with three straightforward use cases that demonstrate the

rules. L, Q, and P are the same abstract symbols used in the formal definition

above in the examples below. They are realized in specific examples in the names

E and F. We repeat the rules demonstrated for emphasis. The rules are repeated

for convenience.

1. L is an AQL search expression. The relation is the fundamental unit of an AQL

expression. Therefore, consider the entry point to be L (the name of an AQL file

storing a relation also called the fundamental operator). For example, the

following code snippet uses only the name of a relation E:

AQL shell> E<return>

Submitting it to the AQL interpreter will result in its contents being loaded into

memory by the ADBMS and displayed on the screen. (Note that this operation

does not change the file contents in any way or rewrite it to disk.)

Figure 7. The Fundamental Search Expression

This query was performed in the AQL shell. On the table’s left side, you will

notice a column with the name “Logical Key.” In AQL, the term logical key is

equivalent to the standard term “primary key.” This column is added to the table

as a convenience. The logical key often consists of more than one attribute. In this

example however, “row” is the only attribute in the logical key. The input tables

18

are not changed by this operation. It still contains only four attributes. The closed

interval is the range of the logical key values.

2. L = Q is an AQL search expression. The assignment operator, =, is one of the

most essential operators found in AQL. It is a binary operator that allows the user

to store the results of an AQL search expression either to disk or memory. In the

following simplest example, we will make a copy of E on the disk and name it F.

We will also create the symbol $F for E.

AQL shell> F = E<return>

Figure 8. The Assignment Operator

There are safeguards against a file overwrite if we try to write to E again:

19

Figure 9. Unintentional Overwrite Protection

Note that the interpreter will always try to return the result of a search even if the

expression produced an error. In this case, overwrite can be forced with the

overwrite assignment operator ^= thus:

AQL shell> F ^= E<return>

With the results:

Figure 10. The Overwrite Assignment Operator

We can use the assignment operator to create AQL symbols that reference

relations that have been stored in memory. It is used in precisely the same way we

20

created the disk file F, i.e. $F = E. Also shown is how the symbol can be

referenced as a simple AQL expression, and how it can be cleared from memory:

AQL shell> $F = E<return>

Figure 11. Using Symbols: Assignment, Access, and Removal from the Symbol Table

The AQL shell is equipped with many of the standard Unix shell commands (ls,

cd, rm, etc.).

3. Q + P is an AQL search expression. For example, the inner join && operator

matches common attributes between each record in E and M. Here we view the

contents of E and M by stating them as fundamental operators:

AQL shell> E<return>

and

AQL shell> M<return>

21

Figure 12. Displaying E and M

Note that E and M share the “Manager” attribute in common so that the join will

likely produce results:

AQL shell> M && E<return>

Figure 13. Joining E and M

Records that match their common attributes are merged and put into the output

relation. In other words, this operation will match and merge records that have the

same value for the “Manager” attribute. These records correspond to Codd’s

inferences made from the input facts in M and E. The above command, again,

22

does not change either E or M or create a new relation, and in SQL parlance is

simply a view of what that join would be. If we wish to save these results, we use

an assignment operator to create a new relation storing the results in our database.

The following command would accomplish that task:

AQL shell>A = M && E<return>

The AQL file A would store the output of M && E.

5.2 Comparing AQL’s with SQL’s syntax

Now we will contrast the syntax of AQL with that of SQL. Figure 15 shows a

table of AQL expressions, and their query results. Figure 16 is the translation of each

of the expressions in Table I into an equivalent SQL statement. The SQL translations

are true to the implementation of SQL by Oracle.

The details of implementing the database required to render each of the

expressions as operational queries is not provided. To assist the reader unfamiliar

with the details of AQL syntax, here is a summary of language objects that appear in

the AQL queries below:

● @a, @b, @c are the attributes of a table (relation). In AQL, we think in

terms of attribute names when referring to the columns of a table. This is

obvious as the notion of a column originates with the table which is only a

visualization of a relation. However, relations don’t have columns, they

have domains, and those domains are given names called attributes. In

AQL we think in terms of attributes. So, its syntax combines the

ampersand and an attribute name to refer to what in SQL would be called

a column.

● .eq. and <= are the ordering operators that test the relationship between

two quantities (strings for the former, and numbers for the latter). AQL

has a full suite of ordering operators for strings and numbers.

● AQL uses commas and colons as delimiters in lists of various kinds. So

@a:@b:@c is a list of attributes (suitable for the projection operator).

Commas are used as separators for the parameters of the function

operators.

● The scalar and binary operators act on relations and are given two or three

character symbols: &&, :>,::, ||=

23

Figure 15. A table of AQL queries and their meaning is defined by their query results.

These are translated into SQL in figure 16.

24

Figure 16. The translation from AQL to their SQL equivalent. In some cases, the

translation may be approximate.

25

5.3 AQL Operators

Assignment Operators enable the user to write query results into new or pre-

existing relations. The assignment operator was suggested in a textbook by

Marvin Perlman [12]:

● Simple Assignment P = Q

● Overwrite Assignment P ^= Q

● Intersection Assignment P &&= Q

● Union Assignment P ||= Q

Join Operators take records from two relations, joining them together by merging

their records:

● Union Join P || Q

● Intersection (Natural) Join P && Q

● Union Sided Join P ||> Q or P <|| Q

● Intersection Sided Join P &&> Q or P <&& Q

● Cartesian Join P ** Q

● Relative Complement P -- Q

● Distributed Join** @&& P1 P2 … Pn or @|| P1 P2 … Pn

● Template Q >> P

Scalar operators use conditional expressions, attribute lists, and attribute

expression lists to modify records from the input relation. Their notation is a

linearization of Codd’s original relational algebra. Consider the following

expression in relational algebra extracted from figure 6. This is the projection

operator:

𝜋𝑒.𝑛𝑎𝑚𝑒(𝐸)

The corresponding AQL expression uses AQL’s projection operator :> as

follows:

E :> @name

We have moved the subscript up to the same line and created a binary operation

between E and @name. Using the symbol :> to represent a binary projection

operator that corresponds to 𝜋 in Codd’s relational algebra. We call such

26

operators, scalar operators after their counterpart (scalar multiplication) from

vector spaces.

 These are the selection scalar operators since they use ‘scalars’ that select

records from the table operand Q:

● Predicate Q :: C

● Projection Q :> =[] or Q :> ~A

● Splice Q >< str=<val1>end=<val2>

These are the update scalar operators because they modify an input relation by

either adding new records or changing attribute names:

● Injection :<

● Rename <>

Function Operators extend the expressiveness and utility of the AQL

language. Their syntax is based on the Leibnitz standard notation for functions. In

keeping with the closure requirement, the output of each operator is a relation. In

most cases, the first element in the argument list (represented here by a dot •, is an

AQL expression. Some of these operators take two AQL expressions as inputs.

● create(•)

● text2aql(•)

● delete(•)

● globalreplace(•)

● partition(•)

● remove(•)

● replace(•)

● quickstats(•)

● stats(•)

● update(•)

● colocate(•)

● split(•)

● convert(•)

● fuzzyjoin(•)

● extract(•)

● aql_xlsx(•)

● xlsx_aql(•)

Matrix Operators are recent additions to the AQL function operators. They either

create or operate on relations of the AQL data type “matrix”.

27

● add(•)

● mult(•)

● *invert(•)

● diag(•)

● *solve(•)

● matrix(•)

● (* currently under development)

6 AQL’s Automatic Type Database

Fundamentally, the above definition of AQL, and that of relational

algebra, depends on the concept of closure. Closure is a property of all operators

in AQL which means that no matter what kind or how many operators are

involved, the outcome of any algebraic operation on one or more relations,

produces a relation. Closure in AQL is achieved through defining types for

relations and tracking the many forms that they take.

In programming languages, a type-system is a collection of rules that assign a

property called type to language constructs such as variables, expressions,

functions, or modules in a computer program. The type-system aids in the design

of computer programs and it reduces errors by defining interfaces between

different parts of the program and then checking that the parts have been

connected in a consistent way. Thus, type systems often impose compatibility

constraints between their operators and operands. For example, in Python, the

expression x/y is valid so long as both x and y are floats. It fails if they are

integers. The compatibility between operators and operands is also a central issue

in the definition of relational operators in AQL. The Automatic Type Database

(ATD) is the mechanism that checks for type compatibility in AQL.

The ATD is AQL’s foremost engineering innovation (currently under a

US patent held by Caltech US-2017-0043691-A1) and is critical to implementing

relational algebra in AQL.

28

6.1 The Roots of the ATD

Implementing relational algebra in a database management system

presents two difficulties for computer systems. These problems concern how to

enforce algebraic closure. First, there are resource limitations associated with

performing binary operations between relational operands that produce a

relational result. For practical applications, these operands might be huge which

places heavy demands on machine resources. Further, the results of an operation

might be even larger than the inputs. Resource limitation were one of the reasons

Codd originally doubted the feasibility of implementing relational algebra on the

computer. Yet, resource limitations have been dealt with due to vast

improvements in the manufacturing of computer memory components, and

equally vast improvements in computer operating systems and memory

management.

 The second problem is determining the form of the result. Part of the role

of typing in computer science is to assign formats to datatypes. But in the case of

two arbitrary relations, how to track the datatype of the result of an operation

must be determined, especially considering the likelihood that in general, the

results are undefined. Yet whether an operator can assign a type to the result of

the operation determines if that operation is closed (valid) or undefined. This is

precisely the role of the ATD in AQL. Via the ATD, operators determine the

types of all operands in a query expression, and compute the datatype of the

result, and stores it.

6.2 How the ATD Works

AQL’s built-in Automatic Typing Database (ATD) solves the problems

associated with typing relations. The problems associated with typing in AQL

have been solved by tracking inherent properties in a special system database set

aside for this purpose. These properties are those that specify the relation that

yielded Codd’s data independence. In brief, relations are typed by:

29

● their set of domain attributes

● logical key attributes

● attribute domain constraints

● a name given to the datatype being specified

This information is packaged in records written to the ATD, which is

itself a relational database in the ADBMS. The properties we used to define

relational datatypes maintain data independence, since that information comes

from the relation itself. Only information needed to access the data and perform

query operations is used. Furthermore, as queries are processed, new types are

computed concurrently with query results and stored in the ATD.

It is through the ATD that AQL enforces closure. It holds this information

ready to be used by the AQL operators at the time of execution. Therefore, we

think of AQL as an operator-centric language. Its operators are type sensitive and

determine if the operation produces a relation that may be typed, simply empty, or

left undefined. (When operations violate closure, the offending operation is said

to be undefined, as with division by zero in ordinary arithmetic).

6.3 Advantages of the ATD

The ATD gives the user of AQL a free computational workflow. With few

exceptions, the user need not supply complete typing information currently with

the query commands. Algebraic statements in AQL are a way to propose entity

relationships, which are then tested or validated by execution. The AQL user need

not define the form of their result before making a query. In this sense, AQL can

be thought of functionally as a database calculator, allowing direct computation

without predicting outcomes, declaring tables, or using functions that are not

directly related to a simple query. This notion of “AQL as calculator” is further

supported by the inherent recursion supported in AQL expressions, and by their

arbitrary length and complexity.

The closure implied in Codd’s relational model enforced not just a

relational structure, but a coherence of information. He felt that even to be called

a relational operator, it must provide inferences that fit into a schema of design,

30

hence the vital role of the ERD in the use of SQL. This could be thought of as

strongly “relation-centric”. In AQL, the ATD allows users to find inferences that

are not predefined in that sense, to make novel use of operators to discover

unexpected results without having to manage burdensome typing details. This is

another way in which AQL is said to be “operator-centric” and have an open

workflow.

7 AQL at JPL

AQL was originally written by Marc Kidwell Pestana to assist with the

GPS Earth Observatory (GEO) group at JPL, and to track GEO occultation data

through the GEO Occultation Analysis System (GOAS) [5].

The GEO program is involved in climate, weather, and ionospheric

research. Here, the global positioning system (GPS) is exploited via radio

occultation techniques to obtain profiles of refractivity, temperature, pressure, and

water vapor in the neutral atmosphere and electron density in the ionosphere.

These profiles are called "occultations". A single spacecraft can generate up to

600-700 occultations in a day. In processing these signals, care must be taken to

separate the numerous factors that can affect the occulted signal. These include

the motion of the satellites, clock drifts, relativistic effects, the separation of the

ionosphere and the neutral atmosphere, and the contribution of the upper

atmosphere where the sensitivity of the GPS signal is weak [13].

This program generates an enormous variety of atmospheric models and

data products. Over 150 databases exist in the occultation system. The total

occultation database is close to 4 TB in size. Scripts are embedded in six locations

within the system that write new data records to the GEO Database Interface.

AQL is then used to create and manage occultation databases that track the profile

processing results throughout the system and to determine the reason for any

deviations that may arise from atmospheric data sets generated by other data

centers. Satellite, latitude, and longitude of occultation, computational strategy,

31

date, start time, end time, status, failure mode, and the occultation reference

satellite are among the parameters involved, along with several others.

In this environment, AQL is used for:

● Co-locating occultations from different satellites based on latitude and

longitude positioning and epoch

● Diagnosing system failures

● Throughput comparison of the GOAS system against the UCAR system.

● World distribution map of occultations over a 5◦x5◦ grid

● Database administration: 8 – 24 million transactions updating every record in

the GEO Database performed in less than a day while maintaining data

integrity constraints (this is a prime example of rapid database migration)

8 Forward into Matrix Algebra, Machine Learning and A.I.

Due to the similarities between relations, matrices, and tensors, AQL has

been recently expanded to include matrix and tensor algebra. This allows search

and computation on matrices, tensors, and relations in the same expression,

opening an exciting path for future research and development. New smart

function operators can allow for experimentation and computation with machine

learning algorithms and AI models. Combining machine learning and inferential

query throughout the pipeline could have a major impact on the development of

machine intelligence.

It has been noted that AQL was developed firstly for scientific applications. This

may lead to the conclusion that AQL could only be used in this way. However, AQL

is not in any way restricted to a particular class of data. The ADBMS has the same

mathematical foundation as SQL: the relation and relational algebra. AQL uses

relations to group facts into units of knowledge, be they scientific facts, financial

facts, or otherwise. Both models are agnostic as to the type of data they store. The

omission of some of Codd’s data integrity constraints in the current implementation

of AQL was a choice made by the developer, not an inherent limitation of the AQL

database model. Those constraints were omitted to provide for maximum ease of use

32

and easy access to data, but they could be restored if needed. These integrity

constraints are access controls, referential integrity, and business rules.

Although development is pending, it seems to be most practical to use the ATD as

a starting point for the implementation of integrity constraints. The ATD already

enforces three of Codd’s integrity constraints. The AQL operators use the ATD to

check the validity of each operation being executed, therefore the other two

constraints can be checked in a similar way. Using the ATD has the additional benefit

of maintaining the AQL workflow and operator centrism.

For example, access constraints could be made a part of the datatype of each

relation in the database. Access control could be managed by the ATD by extending

the type of each relation with permissions, providing the designer with more granular

control.

Second, referential integrity constraints could be implemented in each operator

via the ATD. Whether or not to enforce referential integrity between two relations

would be designated in their types. Thus, the ATD would control the enforcement of

referential integrity at the level of each AQL operator.

Third, business rules could be enforced with AQL expressions interpreted as

constraints. Imagine the following constrain operator expressed in AQL pseudocode:

constrain((A && B) :: @a < 100 & @b .eq. “Mary”)

This operator would take an AQL expression as a single argument. The argument

shown above is an inner join (or theta join) of A and B between all records from table

A where the attribute ‘a’ is less than 100, and records from table B where the attribute

b is equal to the name “Mary”. However, interpreted as a condition, it disallows any

insertion or deletion that would result in satisfying the predicate.

Moreover, the following expression would enforce the constraint for the negation

of this condition:

constrain((A && B) :: !(@a < 100 & @b .eq. “Mary”))

33

Here the not operator “!” would negate the condition. Again, the ATD would

check the validity of each operation. Thus, business rules could be expressed using

the same language used for search expressions, only interpreting them as constraints,

while still maintaining an open workflow.

 While the imposition of Codd’s data integrity constraints might slow down data

access in any DBMS due to increased overhead, they don’t necessarily preclude

AQL’s open workflow. In fact, making these constraints part of the datatype of each

relation in the system permits a mixture of relations both under and not under

integrity control. Thus, open workflow and open architecture apply to integrity

constraints as well.

 To expand on this concept, we could add constraints beyond Codd’s integrity

constraints. They can be anything for any reason, so long as they can be written as

valid AQL expressions. The use of a constrain operator in deep learning might aid in

the training process.

9 Conclusion

In this paper we have briefly covered notable aspects of Algebraic Query

Language (AQL) by looking at the background of relational database

management, contrasting AQL’s model, purpose and use with SQL’s, providing a

formal AQL definition with use cases, discussing its innovative Automatic Type

Database (ATD), the ramifications to user workflow and a look at current and

future developments in search and machine intelligence and business

applications. We hope that AQL can be made available to a wide variety of users,

not just scientists and engineers. AQL will soon be available in the cloud to use

on a trial basis for prospective users to evaluate. Please contact the Caltech Office

of Technology Transfer website: https://ott.jpl.nasa.gov email: ott@jpl.nasa.gov

for licensing information, and the author Marc Kidwell Pestana at Algebraisk,

LLC website: http://www.algebraisk.com email: scient@algebraisk.com for

support and research assistance.

https://ott.jpl.nasa.gov/
mailto:ott@jpl.nasa.gov
http://www.algebraisk.com/
mailto:scient@algebraisk.com

34

10 Acknowledgements

We would like to give a thank you to the following people and

organizations for their support in helping us develop AQL, the generosity of

sharing their expertise, and their help in getting this whitepaper done:

NASA

CalTech

Jet Propulsion Laboratory

Dr. Richard Gross

Tony Mannucci

Olga Verkhoglyadova

Kevin Mitchell

Marvin Perlman

Michael Rael

Jason Moore

Valerie Hinton

And a special thanks to Joseph Ledette. Without your support, I could never have

done this. - MKP

35

11 Citations

[1] L. Chao, "Database Development and

Management," in Database Development and

Management, 1st Edition ed., T. &. F. Group,

Ed., Boca Raton, Florida: Auerback

Publications, 2006.

[2] M. L. Scott, "Programming Language

Pragmatics," in Programming Language

Pragmatics, 3d Edition ed., Burlington,

Massachusetts: Morgan Kaufmann Publishers,

2009.

[3] E. F. Codd, "A Relational Model of Data for

Large Shared Data Banks," Communications

of the ACM, vol. 13, no. 6, p. 377–387, June

1970.

[4] E. F. Codd, "The Relational Model For

Database Management," in The Relational

Model For Database Management, vol. 2,

Menlo Park, California: Addison-Wesley,

1990, p. 538.

[5] G. A. Hajj, "CHAMP and SAC-C atmospheric

occultation results and intercomparisons,"

Journal of Geophysical Research, vol. 109, p.

24, 29 October 2004.

[6] D. D. Chamberlin, "Early History of SQL,"

IEEE Annals of the History of Computing, pp.

78-82, October-December 2012.

[7] E. F. Codd, "A Data Base Sublanguage

Founded on the Relational Calculus"," in

Proceedings of the ACM SIGFIDET

Workshop on Data Description, Access, and

Control, 1971.

[8] D. D. Chamberlin, "SEQUEL: A Structured

English Query Language," in SIGFIDET '74:

Proceedings of the 1974 ACM SIGFIDET

36

(now SIGMOD) workshop on Data

description, access and control, 1974.

[9] E. F. Codd, "Relational Completeness of the

Data Base Sublanguages," in Courant

Computer Science Symposia 6 Data Base

Systems, San Jose, California: Prentice Hall,

1972, p. RJ 987 (#17041).

[10] L. De Hann and T. Koppelaars, "Database

Skeleton," in Applied Mathematics fro

Database Professionals, 1st Edition ed., J.

Gennick, Ed., New York, New York: Apress,

2006, pp. 144-147.

[11] Akmajian, Demers, Farmer and Harnish,

Syntax, Cambridge, Massachusetts: The MIT

Press, 1955, pp. 192-3.

[12] M. Perlman, "Abstract Algebra," in Abstract

Algebra, La Canada, California.

[13] "University Corporation for Atmospheric

Research," [Online]. Available:

http://www2.ucar.edu.

