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1 Abstract 

Algebraic Query Language (AQL) was developed at the Jet Propulsion 

Laboratory to track, study, and preserve engineering data products. It is a close 

implementation of E. F. Codd’s relational algebra [9]. AQL is a relational DBMS      

based neither upon a natural language syntax nor upon strict data integrity 

constraints. We contrast AQL with SQL and present a formal definition of the 

former. We demonstrate that AQL is both a computational and a query language.  

To implement relational algebra in AQL, it was necessary to invent a datatype 

management system. This system is called the Automatic Type Database (ATD) 

and is described.  
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2 Note to the reader 

For readers who are familiar with relational databases, or for those who only want 

to read about the AQL language, please proceed to the section titled “The AQL 

Database Model”. For those interested in the history of E. F. Codd and relational 

theory, or would prefer a historical explanation of AQL, please continue reading from 

here. In either case, some discussion of the background of E. F. Codd, SQL, and the 

relational model is necessary to properly explain AQL. 

To keep the discussion from getting lost in technical details, wherever possible, 

we have tried to begin from an elementary staring point and then proceed to more 

advanced topics. Also, rigorous mathematical definitions are not provided accept by 

links and references to other sources. 

3 AQL and the relational database 

3.1 Introduction 

This paper examines notable aspects of Algebraic Query Language (AQL) and the 

database management system based upon it (the AQL DBMS or hereafter ADBMS). 

We compare AQL with SQL since both are relational languages that share common 

historical roots and yet take dramatically different approaches to language 

and database design. Marc Kidwell Pestana developed AQL for the GPS Earth 

Observatory (GEO) group at the Jet Propulsion Laboratory. AQL has been under 

development since 2010. It is fully operational and used in science and engineering 

research at JPL. AQL is the intellectual property of the California Institute of 

Technology in Pasadena. 

Although relational databases and SQL are considered synonymous, both 

AQL and SQL have their roots in the relational model. By exploring the history 

of the relational model, we will discover the point of departure which 

differentiates them. This survey is crucial to understanding what AQL is and why 

it was developed. 
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3.2 Background 

E. F. Codd was the inventor and evangelist of the relational database model 

[3][4]. In the early 1970’s he specified the relational model for database design while 

working for IBM in San Jose, California [6]. Codd proposed a universal data format 

and methodology by which databases were to be manipulated with the CRUD 

architecture (Create, Read, Update, Delete)).Codd’s relational model is a 

mathematical model for database design. The relation was the mathematical notion 

Codd used as his starting point and the basis for his universal data format. Using the 

relation, Codd invented models for both languages and programs designed to access 

relational databases under CRUD. The languages he invented are called relational 

algebra and predicate calculus [7]. 

The relation 

The relation (see Figure 1) is at the heart of the relational model. It is defined 

mathematically as a specialized kind of set (The formal definition for those interested 

can be found here [4, p. 4-5]) or on the Algebraisk website.) A relation combines data 

from one or more related sources into a homogeneous mathematical structure. By 

way of a very literal and informal example, consider the following statement assumed 

as a fact “Tom is the son of John.” Here we are talking about both the mathematical 

structure and the abstract relationship between father and son. Using the table as a 

visualization, this statement takes the following form: 

Figure  SEQ Figure \* ARABIC 1 – The Formal 

Model of the Relation in AQL [cite]. This model is 

equivalent to Codd's mathematical model of the relation. 

Figure 1. shows the set theoretic notation of a relation, its more common 

visualization as a table, and its representation in database design. The terms table 

and relation are often used interchangeably. 
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Son Father 

Tom John 

 

Of course, we can extend this relation with more factual statements of the same kind: 

“Mark is the son of Luke,” and “Fred is the son of Mathew”. Each of these statements 

become additional rows or records in the table. Inclusion of these statements in our 

example yields: 

Son Father 

Tom John 

Marc Luke 

Fred Mathew 

 

The headers “Son” and “Father” are called the attributes of the relation. The 

attributes of a relation serve many functions: they label and/or describe the 

domain of the entries that lie in the column beneath them, they provide a unique 

path to each row, and they serve as a means of combining two relations together 

that share common attributes.  

 

 

Figure 2. Employee Table of Chamberlain and Boyce  

Relations are often used to represent even more complicated statements of 

fact with up to hundreds of attributes relating hundreds of individual datum. 

Consider a less complicated relation whose attributes are “Employee”, “Salary”, 

and “Manager”. Here we are defining a relation via its attributes. Assuming the 

fact that “Jones makes $40,000.00 a year and works for Smith”, we group 

together the datum that fit these attributes to build a record in the table (see 

second row in Figure 2). Records, or rows, are also called tuples in formal 

mathematics and these terms are used interchangeably.  

Codd went further in his development of his relational model. He exploited the 

fact that relations, defined as abstract sets, are naturally endowed with the set 
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operations of union, intersection, complementation, and difference. Codd modified 

these set operations by adding to them the property of closure. By enforcing closure, 

the set operations were changed into what he called relational operations.  

Closure means that relations when combined by relational operations, produce 

relations. And if the operations are executed on properly defined relations, their 

composition creates new logical inferences. Codd used the relational operations to 

develop data sublanguages or query languages [7][8]. Relational algebra and 

predicate calculus were his two primary examples. 

In summary, using the relation, Codd wrote a database model that specified the 

relation as the criteria for a universal data format and a data sublanguage for data 

access. The relation exhibits what he called data independence [2]. The relation 

exhibits data independence because it is self-contained, has a fixed homogeneous 

structure, and relies only on mathematical concepts that are independent of any 

machine representation or organization.  He further recognized that it could be used to 

store assertions about abstract ideas. The relation could be used to package ideas into 

factual statements, or units of knowledge. Also, the relational operations could be 

used to form new inferences by combining these assertions. 

Thus, in Codd’s relational model, the relation functions on two levels. First, it 

provides a uniform, self-contained mathematical structure that can store and retrieve 

data, and can participate in relational operations. Second, it describes the factual 

relationships that exist between the various attributes of the data it stores and can be 

used to derive inferences from those relationships. 

While the relation in AQL is equivalent to Codd’s, our definition of the relation is 

based on the model of De Hann [10] whose defined a modified form of a relation and 

called it a skeleton. More importantly, our conception of the relational database model 

is significantly different as we shall see. 
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Codd’s Database Model 

Codd defined a database as a set of relations and their logical connections 

under the control of a data sublanguage (such as SQL) [1][4]. The relations in his 

model were time-varying, but their number, form, and interrelationships were 

fixed. In Codd’s model, a database could be viewed as a fixed circuit in which 

relations are conduits for data, and the DBMS controls the data flow [3]. An 

entity-relationship diagram, or ERD, is used to model a relational database. ERDs 

depict a kind of data circuit diagram and serve as a description of the components 

of the database and their interrelationships (see figure 3). 

However, Codd’s model was not only about abstract mathematical structures and 

mathematical models for query languages. It was also about controlling the 

user/machine interface. To this end, he added data integrity constraints to his model. 

These constraints defined the access privileges of users, tight rules governing the 

operations performed on the data by users, and the rules for how users define every 

data structure in the database. The relational model regulated the user’s relationship 

with the database. In other words, the relational model was about social engineering. 

 

Figure 3. Codd’s relational database in diagrammatic form illustrates the process of 

database design and access. 

 

Moreover, Codd’s social engineering criteria guaranteed that critical data 

of any kind, be it financial or organizational, is rigorously protected while still 
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permitting appropriate access. Five forms of data integrity constraints were 

developed to protect data from malicious users as well as control the access of 

authorized users [4]. The relational operations were also governed by the integrity 

constraints so that these operations would produce consistent results while not 

damaging existing data.  

In addition, most users were presumed to be either averse or uninterested in 

understanding the underlying mathematical concepts of relational systems, and 

hence needed a layer of control, supervision, and a query tool they would be 

willing to understand. The data integrity constraints were embedded in the data 

sublanguage to make it extremely difficult to avoid them [3]. Thus, the integrity 

constraints also adhered to the notion of data independence. The database 

structure used to store the data, and the data sublanguage used to access and 

protect the data were self-contained and independent of any host language within 

which they were accessed. 

 We should acknowledge that the notion of a fixed ERD implemented in SQL 

has loosened substantially in recent years. Today, the SQL user can add tables 

more easily than in earlier versions. Also, the user can perform operations on 

those tables without restriction. However, the issue of typing new tables persists 

in that the user must supply typing information for new tables inline with the SQL 

commands that create them.  This issue has, in most cases, been dealt with by 

AQL’s automatic type system discussed below. 

 

AQL’s Database Model 

Fundamental differences with Codd’s relational model have shaped the 

AQL database model. The initial purpose of AQL was to support scientific 

research, not business systems. Thus, we re-examined Codd’s social engineering 

concepts of data integrity by stressing free access to data and we make different 

assumptions about the users. To do this, we had to make the database model 

much more malleable, moving from a fixed system to a more dynamic concept. 

In an AQL database the number of relations, their interrelationships, inferences, 

and data can vary with time. The number of attributes of a relation can grow or 
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decline, change, and shift values. The relation can change its type and get a new 

primary key. Referential relationships can be broken and new one established. The 

relation becomes a true variable. 

Thus, we have dispensed with a fixed ERD and relationships, and instead, given 

each relation a datatype used to compute the inferences needed to perform queries. 

We type entire relations as individual units in the database. While this seems trivial, 

it permits the flexibility that we wanted in our database model. Whenever an AQL 

operation creates a new relation, its datatype is also created and stored in an 

Automatic Type Database (ATD) for later use. This process is essential to AQL’s 

ability to perform algebraic operations upon relations (see figure 4). 

Figure 4. The AQL Database model in diagrammatic form illustrates the process of 

database design and access. 

 

 In our model, referential connections between relations may not initially be 

known in an AQL database. Instead, they can be tested by means of the AQL 

operators. AQL’s algebraic operators use the datatypes of the relations to determine 

potential referential connections between them. In other words, the suite of AQL 

operators is used to mine the database to verify and quantify the interrelationships 

between or within relations. In addition, the AQL assignment operators can be used to 

save intermediate and final results of a query at almost any point in the search 
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expression. These intermediate results can be used to locate and diagnose errors. This 

constitutes what we call the open architecture and open workflow of the ADBMS. 

 Furthermore, we implement relational algebra in place of predicate calculus, thus 

branching from the early path taken in the development of SQL. AQL supports the 

basic operations for search that Codd specified. However, it emphasizes computation 

over description and therefore implements relational algebra, which is preferable for a 

computational approach in a data sublanguage. AQL has a full set of relational 

operators and many non-relational ones. As we will see, AQL’s algebraic syntax 

allows querying concurrently with numerical computation, which Codd specifically 

rejected [3]. 

Thus, the AQL relational model grew from Codd’s, but stresses a more intuitive 

workflow, simplicity, computation, speedy access, and encourages experimentation 

with data. It gives the user full access to the data and assumes the user can understand 

the mathematical details of query operations. Yet, its syntax is simple enough so that 

users don’t necessarily have to understand all the details. 

 

3.3 Data Sublanguages and Natural Language 

 

Figure 5. Codd Model, Sublanguages and Resultant Query Languages. Here we see the 

point of departure for AQL within his model. 

Codd created models for data sublanguages [5] that are used to query 

databases. He showed how to determine the degree to which they adhere to his 

relational paradigm. He created two of these models: one called relational 

algebra, and the other called Alpha that was based on predicate calculus. 

Structured Query Language (SQL) was modeled after Alpha [6]. AQL, written by 

the author of this paper, was modeled after relational algebra.  
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SQL was designed to implement Codd’s relational model, and today it is 

the lingua franca of the relational database world. It was originally pioneered by 

Donald Chamberlin and Ray Boyce while working under Codd at the IBM 

research facility in San Jose, California in 1972 [6]. SQL itself was derived from 

SEQUEL: Structured English Query Language [8].  Early efforts in SEQUEL 

development reflected their choices of English language programming. 

With SQL, Chamberlain and Boyce hoped to put database query 

languages into the hands of a broad audience [6]. Chamberlain studied three 

candidate syntaxes shown in Figure 6 that would query a database consisting of 

the single relation shown in Figure 2. Each example would answer the following 

query: “Which employees make more than their managers?” He was trying to 

show here that while relational algebra and predicate calculus were concise, they 

were steeped in technically complicated mathematical notation. In SQL, they 

believed they had created a language free of burdensome mathematical notation 

and concepts, while still conforming to Codd’s relational model. They hoped 

[6]… 

“…that, with a little practice, users could learn to read queries like this 

almost as though they were English prose. Their example shown in 

[figure 4] could be read as follows: ‘Find an employee (let’s call him ‘e’) 

and another employee (let’s call him ‘m’) where e’s manager matches m’s 

name (in other words, e’s manager is m) and e’s salary is greater than m’s 

salary (in other words, e earns more than his manager); then print e’s 

name (for every such employee).”  
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Figure 6. Chamberlain's "Three Versions of the Query" 

To further enforce their concept of social engineering, Codd et al. also felt 

that a query language should describe the information sought but not provide a 

detailed plan for how to find that information. They saw the interpreter's job as 

translating the declarative query into an optimized search, thus hiding procedural 

details from the user [3]. Further, Codd intentionally rejected computation in his 

relational model, specifically in his models of data independence and integrity 

[4]. 

Thus, SQL was designed around the notion that a query language based on a 

natural language would make queries easier for humans to read and write than 

either relational algebraic or predicate calculus queries. In addition, it would 

exclude mathematical details irrelevant to making a query. SQL is as close a 

translation of predicate calculus into an English-like language as possible, 

creating a query language with English-like syntax. 

As SQL evolved, it conformed more closely to Codd’s relational model via 

integrity constraints and left behind the trappings of predicate calculus becoming 

a more English-like natural language [5].  

 

4 AQL: An Implementation of Relational Algebra 
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We maintain that the English syntax of SQL, is more awkward and 

confusing than algebraic expressions because they encumber mathematical 

expressions with extraneous semantics and syntax that require additional mental 

gymnastics to frame. Moreover, using an English syntax strips the mathematical 

notation of its natural and elegant concision. By eliminating the mathematical 

syntax, we believe that Codd et al. removed mathematics’ useful and intuitive 

qualities from query languages.  

In contrast to SQL, AQL’s syntax has a small set of concise and intuitive 

rules that can be easily used to create query expressions. Using these rules as 

implemented in AQL, we can generate an infinite number of query expressions. 

This is because the rules mutually feed into one another permitting the indefinite 

expansion of AQL queries. This is known in linguistics as recursion [11]. For 

example, consider two of the rules taken from the formal definition of the AQL 

language that follows immediately after this section. 

1) If L is an AQL fundamental operator and Q an AQL search expression, then L 

= Q is an AQL search expression 

2) If Q and P are AQL search expressions, and + is a binary AQL operator, then 

Q + P is also an AQL search expression. 

Rule 1 means that any individual operand (R) can be replaced with L= Q in any 

AQL expression. likewise, rule 2 means that any individual operand (R) can be 

replace with Q+P. The following expansion of a simple query illustrates the 

process of one rule feeding another, generating longer and more complex 

expressions: 

     L=Q Rule 1 

L=R+P Rule 2 Q → R+P 

L=(R+P)+W Rule 2 R+P → (R+P)+W 

L=(M=R+P)+W Rule 1  R+P → M=R+P 

L=(M=R+P)+(X+Y) Rule 2  W → X+Y 

L=(M=R+P)+(Z=X+Y) Rule 1 X+Y→ Z=X+Y 

and so on…  

 

 In addition, it is possible to refactor a complex AQL expression into a 

sequence of simpler expressions that still gives the same result: 
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L=(M=R+P)+(Z=X+Y) Single AQL expression 

M=R+P Refactoring from the 

Z=X+Y Inside out. 

L=M+Z The result is identical 

 

 Of course, both English and SQL have recursion. Recursion is a property of 

all natural languages and algebra. SQL’s recursion might be more limited than in 

English. But the extent of SQL’s recursion is of no importance because the real 

problem lies in the amount of unneeded baggage that is introduce each time a 

recursion is performed. For example, imagine the complexity resulting from 

putting any of the command shown in figure 16 into any of the other commands. 

We contend that using English language forms for what are essentially 

mathematical objects creates a burdensome query language.  

Chamberlain’s example above is used to imply that relational algebra is 

incomprehensible compared to SEQUEL or SQL. We took a different approach to 

implement relational algebra, which resulted in an even simpler form suitable for 

command-line input. To this end, note that the relational algebraic expression 

found in Figure 6: 

𝜋𝑒.𝑛𝑎𝑚𝑒 (𝜎𝑒.𝑠𝑎𝑙𝑎𝑟𝑦>𝑚.𝑠𝑎𝑙𝑎𝑟𝑦 (𝜌𝑒(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒) ⋈𝑒.𝑚𝑎𝑛𝑎𝑔𝑒𝑟=𝑚.𝑛𝑎𝑚𝑒 𝜌𝑚(𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑒))) 

 

can be re-stated with a little massaging into AQL as: 

 

((𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒 &&  𝑀𝑎𝑛𝑎𝑔𝑒𝑟) ∷ @𝑒𝑠𝑎𝑙𝑎𝑟𝑦 >  @𝑚𝑠𝑎𝑙𝑎𝑟𝑦) ∶> @𝑛𝑎𝑚𝑒 

 

In the AQL expression above, && is a binary operator that combines the two 

relations Employee and Manager, :: and :> are scalar operators, and Employee 

and Manager are references to AQL tables. Finally, @esalary, @msalary, and 

@name are assumed to be attributes of relations Employee and Manager. This 

operation is more fully explained and computed subsequently. 

In our social engineering model, AQL’s users do not benefit from a built-

in lack of computation or hiding mathematical and operational details. They are 
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treated as intelligent practitioners who want to use the power of mathematics, 

with all the benefits and caveats that follow from the openness of AQL’s design. 

5 Formal AQL Definition 

Now, we move on from our introduction to a formal definition of AQL. 

AQL is a query language based on relational algebra, supporting the entire set of 

relational operators, including additional non-relational operators. It uses Leibnitz 

notation for function operators, standard notation for binary operators, and scalar 

operators as motivated by those from linear spaces.  The following definition is 

recursive, and the depth of embedding is limited only by the machine resources 

available to the user.  

The following is an abstract language definition. To simplify this 

definition, we will group the binary and unary operators into the following 

categories, and introduce a simplified meta-language or pseudo-code: 

+      representing all join operators 

&&    ||     < &&     && >   < ||    || >    ∗∗     @&&    @||    >>     
 

→     representing all scalar operators 

: :      ∶>      ><      −>      <> 
 

=      representing all assignment operators 

=     ^ =     && =     || = 
 

Also note the following conventions for search expressions: 

● 𝐿 for the name of an AQL file, containing a single relation on disk, which is a 

basic AQL search expression and is also called the fundamental operator. 

● $𝐿 for an AQL symbol, a single relation in memory, also a basic AQL search 

expression or fundamental operator. 

● 𝑄 and 𝑃 for AQL search expressions, which can be as simple as a fundamental 

operator or a complex expression with many operators and operands. 

● 𝐹(•) for function operators, which are AQL search expressions 
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Here are the AQL pseudo code conventions for components of the language used to 

build search expressions: 

 

● 𝑆 for scalar expressions (including strings, mathematical and statistical 

expressions) 

● 𝐶 for a conditional expression 

● 𝐶𝑆 for a conditional statement 

● 𝐴 for an attribute list (@a:@b:@c for example) 

● 𝐴𝐿 for an attribute expression list 

Here are the rules that define AQL as an algebraic language over the set of 

relations under the following operations: 

1. L and $L are AQL search expressions 

2. L = Q is an AQL search expression 

3. 𝑄 +  𝑃 is an AQL search expression 

4. 𝑄 → 𝐶, 𝑄 → 𝐴  𝑜𝑟  𝑄 → 𝐴𝐿 are AQL search expressions 

5. F(Q,…) and F(Q, P,…) are AQL search expressions. Their comma-separated 

parameters (…) may include one or more scalar expressions S, attribute 

expression lists AL, conditional expressions C, conditional statements CS, and 

AQL file names L  

6. (Q) and [Q] are AQL search expressions. Thus, AQL permits the use of 

parentheses and brackets in expressions to override the rules of precedence for 

AQL operators 

(AQL is built upon the BerkeleyDB key-value store and is not innovative at that 

level). 
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5.1 AQL Usage 

While the basic concepts of AQL usage are straightforward, an in-depth 

discussion is outside the scope of this paper, but we will now briefly expand on 

this language definition with three straightforward use cases that demonstrate the 

rules. L, Q, and P are the same abstract symbols used in the formal definition 

above in the examples below. They are realized in specific examples in the names 

E and F. We repeat the rules demonstrated for emphasis. The rules are repeated 

for convenience. 

1. L is an AQL search expression. The relation is the fundamental unit of an AQL 

expression. Therefore, consider the entry point to be L (the name of an AQL file 

storing a relation also called the fundamental operator). For example, the 

following code snippet uses only the name of a relation E: 

AQL shell> E<return> 

 

Submitting it to the AQL interpreter will result in its contents being loaded into 

memory by the ADBMS and displayed on the screen. (Note that this operation 

does not change the file contents in any way or rewrite it to disk.) 

 

Figure 7. The Fundamental Search Expression 

This query was performed in the AQL shell. On the table’s left side, you will 

notice a column with the name “Logical Key.” In AQL, the term logical key is 

equivalent to the standard term “primary key.” This column is added to the table 

as a convenience. The logical key often consists of more than one attribute. In this 

example however, “row” is the only attribute in the logical key. The input tables 
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are not changed by this operation. It still contains only four attributes. The closed 

interval is the range of the logical key values. 

2. L = Q is an AQL search expression. The assignment operator, =, is one of the 

most essential operators found in AQL. It is a binary operator that allows the user 

to store the results of an AQL search expression either to disk or memory. In the 

following simplest example, we will make a copy of E on the disk and name it F. 

We will also create the symbol $F for E.  

 

AQL shell> F = E<return> 

 

 

Figure 8. The Assignment Operator 

 

There are safeguards against a file overwrite if we try to write to E again: 
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Figure 9. Unintentional Overwrite Protection 

Note that the interpreter will always try to return the result of a search even if the 

expression produced an error. In this case, overwrite can be forced with the 

overwrite assignment operator ^= thus: 

 

AQL shell> F ^= E<return> 

 

With the results: 

 

 

Figure 10. The Overwrite Assignment Operator 

We can use the assignment operator to create AQL symbols that reference 

relations that have been stored in memory. It is used in precisely the same way we 
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created the disk file F, i.e. $F = E. Also shown is how the symbol can be 

referenced as a simple AQL expression, and how it can be cleared from memory:  

 

AQL shell> $F = E<return> 

 

 

Figure 11. Using Symbols: Assignment, Access, and Removal from the Symbol Table 

The AQL shell is equipped with many of the standard Unix shell commands (ls, 

cd, rm, etc.). 

 

3. Q + P is an AQL search expression. For example, the inner join && operator 

matches common attributes between each record in E and M. Here we view the 

contents of E and M by stating them as fundamental operators: 

 

AQL shell> E<return> 

and 

AQL shell> M<return> 
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Figure 12. Displaying E and M 

Note that E and M share the “Manager” attribute in common so that the join will 

likely produce results: 

AQL shell> M && E<return> 

 

Figure 13.  Joining E and M 

Records that match their common attributes are merged and put into the output 

relation. In other words, this operation will match and merge records that have the 

same value for the “Manager” attribute. These records correspond to Codd’s 

inferences made from the input facts in M and E. The above command, again, 
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does not change either E or M or create a new relation, and in SQL parlance is 

simply a view of what that join would be. If we wish to save these results, we use 

an assignment operator to create a new relation storing the results in our database. 

The following command would accomplish that task: 

AQL shell>A = M && E<return> 

The AQL file A would store the output of  M && E. 

5.2 Comparing AQL’s with SQL’s syntax 

Now we will contrast the syntax of AQL with that of SQL. Figure 15 shows a 

table of AQL expressions, and their query results. Figure 16 is the translation of each 

of the expressions in Table I into an equivalent SQL statement. The SQL translations 

are true to the implementation of SQL by Oracle.  

The details of implementing the database required to render each of the 

expressions as operational queries is not provided. To assist the reader unfamiliar 

with the details of AQL syntax, here is a summary of language objects that appear in 

the AQL queries below: 

● @a, @b, @c are the attributes of a table (relation). In AQL, we think in 

terms of attribute names when referring to the columns of a table. This is 

obvious as the notion of a column originates with the table which is only a 

visualization of a relation. However, relations don’t have columns, they 

have domains, and those domains are given names called attributes. In 

AQL we think in terms of attributes. So, its syntax combines the 

ampersand and an attribute name to refer to what in SQL would be called 

a column. 

● .eq. and <= are the ordering operators that test the relationship between 

two quantities (strings for the former, and numbers for the latter). AQL 

has a full suite of ordering operators for strings and numbers. 

● AQL uses commas and colons as delimiters in lists of various kinds. So 

@a:@b:@c is a list of attributes (suitable for the projection operator). 

Commas are used as separators for the parameters of the function 

operators. 

● The scalar and binary operators act on relations and are given two or three 

character symbols: &&, :>,::, ||=  
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Figure 15. A table of AQL queries and their meaning is defined by their query results. 

These are translated into SQL in figure 16. 
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Figure 16. The translation from AQL to their SQL equivalent. In some cases, the 

translation may be approximate. 
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5.3 AQL Operators 

Assignment Operators enable the user to write query results into new or pre-

existing relations. The assignment operator was suggested in a textbook by 

Marvin Perlman [12]: 

● Simple Assignment P  =  Q 

● Overwrite Assignment P  ^=  Q 

● Intersection Assignment P  &&=  Q 

● Union Assignment P  ||=  Q 

 

Join Operators take records from two relations, joining them together by merging 

their records: 

 

● Union Join  P  ||  Q 

● Intersection (Natural) Join  P  &&  Q 

● Union Sided Join  P  ||>  Q or P  <||  Q 

● Intersection Sided Join P  &&>  Q or P  <&&  Q 

● Cartesian Join P  **  Q 

● Relative Complement  P  --  Q 

● Distributed Join**  @&& P1 P2 … Pn  or  @|| P1 P2 … Pn  

● Template  Q  >>  P 

 

Scalar operators use conditional expressions, attribute lists, and attribute 

expression lists to modify records from the input relation. Their notation is a 

linearization of Codd’s original relational algebra. Consider the following 

expression in relational algebra extracted from figure 6. This is the projection 

operator: 

𝜋𝑒.𝑛𝑎𝑚𝑒(𝐸) 

The corresponding AQL expression uses AQL’s projection operator :> as 

follows: 

E :> @name 

We have moved the subscript up to the same line and created a binary operation 

between E and @name. Using the symbol :> to represent a binary projection 

operator that corresponds to 𝜋  in Codd’s relational algebra. We call such 
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operators, scalar operators after their counterpart (scalar multiplication) from 

vector spaces. 

 These are the selection scalar operators since they use ‘scalars’ that select 

records from the table operand Q: 

● Predicate  Q ::  C 

● Projection  Q  :>  =[]  or  Q  :>  ~A 

● Splice  Q  ><  str=<val1>end=<val2> 

 

These are the update scalar operators because they modify an input relation by 

either adding new records or changing attribute names: 

●  Injection :< 

●  Rename <>  

 

Function Operators extend the expressiveness and utility of the AQL 

language. Their syntax is based on the Leibnitz standard notation for functions. In 

keeping with the closure requirement, the output of each operator is a relation. In 

most cases, the first element in the argument list (represented here by a dot •, is an 

AQL expression. Some of these operators take two AQL expressions as inputs. 

● create(•) 

● text2aql(•) 

● delete(•) 

● globalreplace(•) 

● partition(•) 

● remove(•) 

● replace(•) 

● quickstats(•) 

● stats(•) 

● update(•) 

● colocate(•) 

● split(•) 

● convert(•) 

● fuzzyjoin(•) 

● extract(•) 

● aql_xlsx(•) 

● xlsx_aql(•) 

 

Matrix Operators are recent additions to the AQL function operators. They either 

create or operate on relations of the AQL data type “matrix”. 
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● add(•) 

● mult(•) 

● *invert(•) 

● diag(•) 

● *solve(•) 

● matrix(•) 

● (* currently under development) 

6 AQL’s Automatic Type Database 

Fundamentally, the above definition of AQL, and that of relational 

algebra, depends on the concept of closure. Closure is a property of all operators 

in AQL which means that no matter what kind or how many operators are 

involved, the outcome of any algebraic operation on one or more relations, 

produces a relation. Closure in AQL is achieved through defining types for 

relations and tracking the many forms that they take. 

In programming languages, a type-system is a collection of rules that assign a 

property called type to language constructs such as variables, expressions, 

functions, or modules in a computer program. The type-system aids in the design 

of computer programs and it reduces errors by defining interfaces between 

different parts of the program and then checking that the parts have been 

connected in a consistent way. Thus, type systems often impose compatibility 

constraints between their operators and operands. For example, in Python, the 

expression x/y is valid so long as both x and y are floats. It fails if they are 

integers. The compatibility between operators and operands is also a central issue 

in the definition of relational operators in AQL. The Automatic Type Database 

(ATD) is the mechanism that checks for type compatibility in AQL. 

The ATD is AQL’s foremost engineering innovation (currently under a 

US patent held by Caltech US-2017-0043691-A1) and is critical to implementing 

relational algebra in AQL.  
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6.1 The Roots of the ATD 

Implementing relational algebra in a database management system 

presents two difficulties for computer systems. These problems concern how to 

enforce algebraic closure. First, there are resource limitations associated with 

performing binary operations between relational operands that produce a 

relational result.  For practical applications, these operands might be huge which 

places heavy demands on machine resources. Further, the results of an operation 

might be even larger than the inputs. Resource limitation were one of the reasons 

Codd originally doubted the feasibility of implementing relational algebra on the 

computer. Yet, resource limitations have been dealt with due to vast 

improvements in the manufacturing of computer memory components, and 

equally vast improvements in computer operating systems and memory 

management.  

 The second problem is determining the form of the result. Part of the role 

of typing in computer science is to assign formats to datatypes. But in the case of 

two arbitrary relations, how to track the datatype of the result of an operation 

must be determined, especially considering the likelihood that in general, the 

results are undefined. Yet whether an operator can assign a type to the result of 

the operation determines if that operation is closed (valid) or undefined. This is 

precisely the role of the ATD in AQL. Via the ATD, operators determine the 

types of all operands in a query expression, and compute the datatype of the 

result, and stores it. 

 

6.2 How the ATD Works 

AQL’s built-in Automatic Typing Database (ATD) solves the problems 

associated with typing relations. The problems associated with typing in AQL 

have been solved by tracking inherent properties in a special system database set 

aside for this purpose. These properties are those that specify the relation that 

yielded Codd’s data independence. In brief, relations are typed by: 
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● their set of domain attributes 

● logical key attributes 

● attribute domain constraints 

● a name given to the datatype being specified 

This information is packaged in records written to the ATD, which is 

itself a relational database in the ADBMS. The properties we used to define 

relational datatypes maintain data independence, since that information comes 

from the relation itself. Only information needed to access the data and perform 

query operations is used. Furthermore, as queries are processed, new types are 

computed concurrently with query results and stored in the ATD.  

It is through the ATD that AQL enforces closure. It holds this information 

ready to be used by the AQL operators at the time of execution. Therefore, we 

think of AQL as an operator-centric language. Its operators are type sensitive and 

determine if the operation produces a relation that may be typed, simply empty, or 

left undefined. (When operations violate closure, the offending operation is said 

to be undefined, as with division by zero in ordinary arithmetic). 

 

6.3 Advantages of the ATD 

The ATD gives the user of AQL a free computational workflow. With few 

exceptions, the user need not supply complete typing information currently with 

the query commands. Algebraic statements in AQL are a way to propose entity 

relationships, which are then tested or validated by execution. The AQL user need 

not define the form of their result before making a query. In this sense, AQL can 

be thought of functionally as a database calculator, allowing direct computation 

without predicting outcomes, declaring tables, or using functions that are not 

directly related to a simple query. This notion of “AQL as calculator” is further 

supported by the inherent recursion supported in AQL expressions, and by their 

arbitrary length and complexity. 

The closure implied in Codd’s relational model enforced not just a 

relational structure, but a coherence of information. He felt that even to be called 

a relational operator, it must provide inferences that fit into a schema of design, 
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hence the vital role of the ERD in the use of SQL. This could be thought of as 

strongly “relation-centric”. In AQL, the ATD allows users to find inferences that 

are not predefined in that sense, to make novel use of operators to discover 

unexpected results without having to manage burdensome typing details. This is 

another way in which AQL is said to be “operator-centric” and have an open 

workflow.  

7 AQL at JPL 

AQL was originally written by Marc Kidwell Pestana to assist with the 

GPS Earth Observatory (GEO) group at JPL, and to track GEO occultation data 

through the GEO Occultation Analysis System (GOAS) [5]. 

The GEO program is involved in climate, weather, and ionospheric 

research. Here, the global positioning system (GPS) is exploited via radio 

occultation techniques to obtain profiles of refractivity, temperature, pressure, and 

water vapor in the neutral atmosphere and electron density in the ionosphere. 

These profiles are called "occultations". A single spacecraft can generate up to 

600-700 occultations in a day. In processing these signals, care must be taken to 

separate the numerous factors that can affect the occulted signal. These include 

the motion of the satellites, clock drifts, relativistic effects, the separation of the 

ionosphere and the neutral atmosphere, and the contribution of the upper 

atmosphere where the sensitivity of the GPS signal is weak [13]. 

This program generates an enormous variety of atmospheric models and 

data products. Over 150 databases exist in the occultation system. The total 

occultation database is close to 4 TB in size. Scripts are embedded in six locations 

within the system that write new data records to the GEO Database Interface. 

AQL is then used to create and manage occultation databases that track the profile 

processing results throughout the system and to determine the reason for any 

deviations that may arise from atmospheric data sets generated by other data 

centers. Satellite, latitude, and longitude of occultation, computational strategy, 
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date, start time, end time, status, failure mode, and the occultation reference 

satellite are among the parameters involved, along with several others. 

In this environment, AQL is used for: 

 

● Co-locating occultations from different satellites based on latitude and 

longitude positioning and epoch 

● Diagnosing system failures 

● Throughput comparison of the GOAS system against the UCAR system.  

● World distribution map of occultations over a 5◦x5◦ grid  

● Database administration: 8 – 24 million transactions updating every record in 

the GEO Database performed in less than a day while maintaining data 

integrity constraints (this is a prime example of rapid database migration) 

8 Forward into Matrix Algebra, Machine Learning and A.I. 

Due to the similarities between relations, matrices, and tensors, AQL has 

been recently expanded to include matrix and tensor algebra. This allows search 

and computation on matrices, tensors, and relations in the same expression, 

opening an exciting path for future research and development. New smart 

function operators can allow for experimentation and computation with machine 

learning algorithms and AI models. Combining machine learning and inferential 

query throughout the pipeline could have a major impact on the development of 

machine intelligence. 

It has been noted that AQL was developed firstly for scientific applications. This 

may lead to the conclusion that AQL could only be used in this way. However, AQL 

is not in any way restricted to a particular class of data. The ADBMS has the same 

mathematical foundation as SQL: the relation and relational algebra. AQL uses 

relations to group facts into units of knowledge, be they scientific facts, financial 

facts, or otherwise. Both models are agnostic as to the type of data they store. The 

omission of some of Codd’s data integrity constraints in the current implementation 

of AQL was a choice made by the developer, not an inherent limitation of the AQL 

database model. Those constraints were omitted to provide for maximum ease of use 



 

32 

 

and easy access to data, but they could be restored if needed. These integrity 

constraints are access controls, referential integrity, and business rules. 

Although development is pending, it seems to be most practical to use the ATD as 

a starting point for the implementation of integrity constraints. The ATD already 

enforces three of Codd’s integrity constraints. The AQL operators use the ATD to 

check the validity of each operation being executed, therefore the other two 

constraints can be checked in a similar way. Using the ATD has the additional benefit 

of maintaining the AQL workflow and operator centrism.  

For example, access constraints could be made a part of the datatype of each 

relation in the database. Access control could be managed by the ATD by extending 

the type of each relation with permissions, providing the designer with more granular 

control.  

Second, referential integrity constraints could be implemented in each operator 

via the ATD. Whether or not to enforce referential integrity between two relations 

would be designated in their types. Thus, the ATD would control the enforcement of 

referential integrity at the level of each AQL operator.  

Third, business rules could be enforced with AQL expressions interpreted as 

constraints. Imagine the following constrain operator expressed in AQL pseudocode: 

 

constrain( (A  &&  B)  ::  @a < 100 & @b .eq. “Mary” ) 

 

This operator would take an AQL expression as a single argument. The argument 

shown above is an inner join (or theta join) of A and B between all records from table 

A where the attribute ‘a’ is less than 100, and records from table B where the attribute 

b is equal to the name “Mary”.  However, interpreted as a condition, it disallows any 

insertion or deletion that would result in satisfying the predicate.  

Moreover, the following expression would enforce the constraint for the negation 

of this condition: 

constrain( (A  &&  B)  ::  !( @a < 100 & @b .eq. “Mary”) ) 
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Here the not operator “!” would negate the condition. Again, the ATD would 

check the validity of each operation. Thus, business rules could be expressed using 

the same language used for search expressions, only interpreting them as constraints, 

while still maintaining an open workflow. 

 While the imposition of Codd’s data integrity constraints might slow down data 

access in any DBMS due to increased overhead, they don’t necessarily preclude 

AQL’s open workflow. In fact, making these constraints part of the datatype of each 

relation in the system permits a mixture of relations both under and not under 

integrity control. Thus, open workflow and open architecture apply to integrity 

constraints as well. 

 To expand on this concept, we could add constraints beyond Codd’s integrity 

constraints. They can be anything for any reason, so long as they can be written as 

valid AQL expressions. The use of a constrain operator in deep learning might aid in 

the training process. 

9 Conclusion 

In this paper we have briefly covered notable aspects of Algebraic Query 

Language (AQL) by looking at the background of relational database 

management, contrasting AQL’s model, purpose and use with SQL’s, providing a 

formal AQL definition with use cases, discussing its innovative Automatic Type 

Database (ATD), the ramifications to user workflow and a look at current and 

future developments in search and machine intelligence and business 

applications. We hope that AQL can be made available to a wide variety of users, 

not just scientists and engineers. AQL will soon be available in the cloud to use 

on a trial basis for prospective users to evaluate. Please contact the Caltech Office 

of Technology Transfer website: https://ott.jpl.nasa.gov email: ott@jpl.nasa.gov 

for licensing information, and the author Marc Kidwell Pestana at Algebraisk, 

LLC website: http://www.algebraisk.com email: scient@algebraisk.com for 

support and research assistance. 

 

https://ott.jpl.nasa.gov/
mailto:ott@jpl.nasa.gov
http://www.algebraisk.com/
mailto:scient@algebraisk.com
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