
How
 to
 Use
 Scripting
 to
 Require
 Additional

Fields
 on
 a
 Screen

Posted on March
 20,
 2015 by Alnoor
 Cassim

Scripting
 Tips
 for
 Sage
 100
 ERP

by Alnoor
  Cassim, xkzero Technical
 Services

When creating a new Customer, Vendor, Sales Order, Purchase Order, Invoice, Receipt, or the like in

Sage 100 ERP, a common business process requirement is to ensure specific standard fields or user

defined fields (UDFs) are populated.

First of all, in Sage 100 ERP, the software itself has its own built-in requirements. As an example,

Sage 100 ERP requires a user to have logged in with a salesperson code to to be able to create a

new customer.

Your
 company
 may
 have
 set
 up
 other
 business
 requirements,
 such
 as
 this:

Before an order can be placed, your business rules may require the following fields to be

populated: Price Level and Email Address.

Also, you may need to temporarily place the customer on credit hold and apply a $1 credit limit until

the credit hold is cleared by the finance department.

Or, perhaps you have an imprecise, manual process in place that relies on all users to follow and

remember these rules. You may have even defined tasks and security events in Role Maintenance to

accomplish a portion of the automation, then thought, “I wish there were a clean way to enforce all

these rules!” In fact, there is a way! Once again (like we showed you in the previous blog), scripting
can
 save
 the
 day! The answer to your frustrations could be creating a fairly straightforward script.

What
  kind
 of
 script
  do
 you
 need
 to
 create?

Create an  event script  (a.k.a. User Defined Script) that runs in Customer Maintenance

when  the  Accept button is pressed.

ERP
 apps
thoughts on improving your business by xkzero

Note that you are not limited to requiring only the fields mentioned above. You are also not limited to
Customer Maintenance. The event type you will create is called Table Pre-Write. All of the “Pre”
events (Pre-Write, Pre-Validate, Pre-Delete) are typically used to add your own user defined validation
and prevent
 an
 action
 from
 occurring.

How
  do
  you
 create
 this
 script?

Follow 
 these 
 steps:

1.
 Go
 to
 the Custom
 Office/Main
 Menu.
Make these selections:
“User-Defined Field”
“Table Maintenance”

2.
 Go
 to
 the
  “Accounts
 Receivable”
  heading.
Choose:   “AR Customer Master.”
Right-click and choose:   “User Defined Scripts.”

3.
 You
 are
 now
 in 
 the
  “User
 Defined
 Script” 
 window.
Click: “Add”

4.
 This
 will
 open
 the
 “User-Defined
 Script
 –
 Add
 Script” 
 window. (See image below.)
Choose: Event: “Table – Pre-Write”
Type a name for your script, such as this: “Required Fields for New Customer”

5.
 This
 will
 bring
 you
 to
 a 
 message
  indicating
 that 
 the
 script
 file
 does
 not 
 exist.
It will be followed by a question, “Do you want to create it?  Yes/No?”
Yes, you  do  want to create the script!  
Click: “Yes.”

6.
 Now
 the
 “Edit
 Script”
 window
 will
 appear.
Copy  the following code  and paste it  into  your script editor window:

NOTE:
 It
 is
 important
 to
 use
 the
 code exactly as
 shown
 below,
 including
 line
 breaks
 and
spaces.

'Alnoor Cassim - xkzero - Require Additional Fields in Customer Maintenance

'Init VARs
sEmailAddress = "" : sPriceLevel = "" : sCustomerNo = "" : nCreditLimit = 1

'Check if current user is member of the Finance_Dept role.
In_Finance = oSession.AsObject(oSession.Security).IsMember("Finance_Dept")

'Enforce new customer rules for any non-Finance_Dept roles (In_Finance = 0)
'If we wanted to run only for Finance_Dept check for In_Finance > 0

If In_Finance = 0 and oBusObj.EditState = 2 Then

 retVal = oBusObj.GetValue("EmailAddress$", sEmailAddress)
 retVal = oBusObj.GetValue("PriceLevel$", sPriceLevel)
 retVal = oBusObj.GetValue("CustomerNo$", sCustomerNo)

 If sPriceLevel = "" Then

 sMsg = "The Price Level is blank." & vbCrLf & _
 "Please enter a Price Level for customer " & sCustomerNo
 'retVal = oSession.WriteLog ("M", Replace(sMsg,vbCrLf,CHR(138))'Write to Activity Log
 retVal = oScript.SetError(sMsg) 'Prevent the Accept and show the message
 retVal = oScript.InvokeButton("fldr.pAddl") 'Click the Additional tab folder
 Exit Sub

 End If

 If sEmailAddress = "" Then

 sMsg = "The Email Address is blank." & vbCrLf & _
 "Please enter an Email Address for customer " & sCustomerNo
 'retVal = oSession.WriteLog ("M", Replace(sMsg,vbCrLf,CHR(138)) 'Write to Activity Log
 retVal = oScript.SetError(sMsg) 'Prevent the Accept and show the message
 retVal = oScript.InvokeButton("fldr.pMain") 'Click the Main tab folder

 Exit Sub

 End If

 'Put the Customer on Credit Hold and set the Credit Limit = $1.
 'This will overwrite whatever was previously entered for these 2 fields.
 retVal = oBusObj.SetValue("CreditHold$", "Y")
 retVal = oBusObj.SetValue("CreditLimit", nCreditLimit)

End If

How
 does
 this
 work?

To  better understand the logic  behind the script’s functionality, read this:
“Init VARs”
In the first section, we “initialize” (init)  the  variables  to  prepare for use  later  in  the script.

“IF/THEN/ELSE” 
Through these stated  conditions,  we run our main logic.  In this particular script, we want

the  conditions  to be as follows:

Check if we’re a member of the role called “Finance_Dept.”

Check if the customer on the screen is a “new customer.”

How
  do
 we
 find
 out
 if
 the
 current
 user
 is
 a
 member
 of
 “Finance_Dept”
 role?

Use the special IsMember() security function you see in the code block. If the value to the left of the

equals sign is more than 0 the current user is a member of that role. Otherwise, they are not a

member.

How
  do
 we
 find
 out
 if
 the
 customer
 is
 new
 or
 existing?

We
 do
 this
  by
 checking
 the
  “edit
 state”
 as
 indicated
 by
 the
  following 
 values:

2  =  new customer

1  =  existing customer

0  =  no customer on the screen

Get
 the
 values
 of
 the
 Price
 Level,
 Email
 Address,
 and
 Customer
 No
 fields.
If
 either
 of
 the
 first
 2
 fields
 are
 blank,
 take
 these
 steps
 to
 prevent
 the
 customer
 from
 being
saved:

1. Check
 for
 a
 blank
 price
 level.
Notice the If
 /
 End
 If block to check for a blank Price Level.

Execute the SetError(msg) function.

This is a 2-part function that will both prevent the Accept button from being clicked and show a
message box to the user with your own user defined message. A good message could be this,

“Oops!
 The
 Price
 Level
 is
 blank.”

2. Auto-click
 the
 Additional
 tab
 folder.
Run the InvokeButton() function as a way of auto-clicking the Additional tab folder.

3. Exit
 the
 script.
To immediately exit the script, run the Exit Sub command This is not required for preventing the

Accept.

4. Check
 for
 a
 blank
 email
 address.
To check for a blank email address, the If
 /
 End
 If
 block runs similarly, except the Main tab is

auto-clicked.
5. Write
 message
 to
 the
 Activity
 Log.

Do you want to write the message to the Activity Log? Then remove the single quote character
from the line where you see the WriteLog() function.Next,
 Put
 the
 Customer
 on
 Credit
 Hold
and
 set
 the
 Credit
 Limit
 =
 $1
The two SetValue() lines at the end accomplish these tasks.
Note: You should not follow this up with a Write() command because the Pre-Write script runs
before the standard Sage 100 Write() command runs, which will write / save the record for us.
If we ran on Post-Write event then we would issue a Write().

You’re
  almost 
 done! 

6. Accept
 the
 script.
Now
 you
 can “Accept”
 the
 script.
This will  return you to the “Add Script” window.

7. Return
 to
 the
 User
 Defined
 Scripts
 window.
Close this screen and  return to the “User Defined Scripts” window.
To do so, click: “OK.”

8. Go
 to
 the
 Script
 Compile
 window.
Next,  go back to the main “User Defined Field” and “Table Maintenance” window.
To do so, click: “Close.”Here,  you must also click “Close”  again  to  see  the “Script Compile”
window.
IMPORTANT:  When the “Script Compile” window  appears,  click
 the “Compile”
 button.
You
 can
 further
 edit
 the
 script,
 if
 necessary.  To do so, from the “Custom Office/Main”
menu, choose the “User Defined Script Maintenance” task. When done editing the script, to
syntax check the script, click “Check
 Script,” then to save the script, click “Accept.”

9. Compile.
 Close.
The next step is to click the “Compile” button in the lower-left of the screen. When the Script
Compile window appears, click the Compile
 button
 again followed by the Close
 button.
You’re
 done!

This is the second of  many  scripting  examples we will share  through the xkzero blog. If you
need  help  with scripting,  programming or technical issues with your Sage ERP, no matter
how  complex, please feel free to contact us:  

xkzero Technical
 Services
Email:  info@xkzero.com

Call: 847-416-2009

This entry was posted in Sage
 100
 ERP, xkzero
 Technical
 Services and tagged Alnoor
 Cassim,
scripting by Alnoor
 Cassim. Bookmark the permalink
 [http://erpappsblog.com/?p=1435]
 .

About
 Alnoor
 Cassim
Director, xkzero Technical Services for Sage 100 ERP. Providing companies solutions to
utilize and enhance their ERP software to grow their business, identify and create solutions
that streamline business processes, improve productivity, increase profitability, and provide
win-win scenarios for all.
View
 all
 posts
 by
 Alnoor
 Cassim
 →

