Future stock trends- Analysis and

Forecast
51 April, 2023

1 Abstract

The data set | plan to use for my project displays date, open, high, low, close, volume, and
name of JPM stock throughout 5 years. The main objective of my project is to perform time
series forecasting of JPM stock data by using the last 5 years of stock data to make informed
estimates that will provide predictive direction of the future stock trends for JPM stock. This
is important because it would allow consumers and the company to understand the future of
their stock price which is relevant to a multitude of financial decisions that will be made.

For analysis and forecast, the data has been.divided into two sectionsjnamely ‘training data’
and ‘test data’. This helps the model-to make accurate predictions. After the analysis, the
creation of the time series plot:shows an obvious trend in-which there is a seasonal
component and the variange varied. In the next step, the model has’been made approximately
normal. The Arima model'has been selected as the best model for forecast of future closing
stock trends.

2-ntroduction

Stock price, opening and closing rates fluctuates throughout the year. Buyers and sellers of
financial assets such as bonds, currencies, and equities trade in the stock market. Shares are
one of the most popular assets. They are units of ownership in a company that investors
purchase in order to receive dividends or profit from future price increases. Companies can
also raise capital by selling their shares.

A company cannot trade on the stock exchange unless it has a certain amount of capital,
shareholders, and other requirements. Brokers are essential players in the stock market. They
are qualified professionals who connect buyers and sellers and execute trades for a
commission. Companies and individuals interested in investing in the stock market should
use a broker. The price of shares changes based on supply and demand and in that aspect it’s
similar to any other product. In addition, there are several other factors such as information,
the economy, a company’s financial health and some external events such as the impression
about the company’s performance etc. S0, my analysis is basically based on showing the
futuristic trends of the stock closing price so that buyers and sellers can look at those trends
and decide whether to sell or keep the shares. After running the time series analysis, the
model with the lowest AIC has been selection and the predictive analysis has been run. The
forecasted points that lie within the 95% confidence interval have been carefully examined.
The results depict that the model is accurate enough to predict future stock closing price
values.
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3 Time series analysis:

Time series is a series of data points in which each data point is associated with a timestamp.
The analysis has been carried out in the following sections.

3.1 Original dataset plots

| started by plotting a time series plot with the original data. However, | have modeled the
data by only having closing prices and also by excluding the dates. The reason of cutting off
those dates is to plot the daily JPM closing stock price with ease and smoothness. Including
the dates would skew the results, and would cause inconsistency with the rest of the data.

First of all, the data has been imported into R studio and the table below shows the overview
of the imported dataset. The dataset has 1259 observations and 7 columns.

date open high low close volume Mame
1 2013-02-08 483300 486900  48.2600 45.63 13217438  JPM
2 2013-02- 435100 48.9000 _A8@00 45.66 13934325 JPM
3 2013-02-12 485000 @9.3100 48.6000 4544 183873668 JPM
4 2013-02-13 4935087 494300 485000 Ahe8 21635732  JPM
5 2013-02-144° 454000 #&9.2898 0 483700 45,22 BOATEIE JPM
6 2013-02403 4933007 454600 485700 45.58 20015681 JPM
T 2013-02.0% 497200 496800 49,0200 4943 20445200 IPM
B 2013-02-200y, 293500455400 8.5 600 45.81 Z4TETEED  JPM
9 2013-02-2 434100 484300 478300 45.23 24436578 JPM
10 2013-02-22 | 48,6300 489100 484100 45.51 23383917 JPM
11 2013-02-23 45,1000 492000 47.6300 47.70 32749013 JPM

Showing 1 to 12 of 1,259 entries, ¥ total columns

The null values have been removed by using na.omit function in the pre-processing step and
the dataset has been divided into training data and test data. The training dataset has 1247
observations while the test dataset has 12 observations.

The time series has been plotted with a frequency of 251 to generate 1261 observations.

The original dataset and the time series plots are shown below:
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| started by plotting a time series plot.with-the original data. However, | have modeled the
data by only having stock closing price and also by excluding the dates between the years
2013 and 2018. Instead of these years, the time series has been created of 1261 observations.
rest of the data.
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3.2 Plotting the training dataset

In order to make sure our model was relatively accurate; the data has been sectioned into
training dataset and test dataset. |1 removed the last 12 observations, in order to compare the
forecasted values with the original data values later in the analysis.
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After observing the time series plot, it can be said that the trend‘is generally increasing and
decreasing but the overall trend is increasing especially at'the end of the interval, the value of
closing stock price reaches-the highest value. There'is also a seasonal component. The
histogram is right skewed and the“variance is non-constant. Based on these observations, |
would say it would be best to perform a Box-Cox transformation.
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In the next step, the variance of the original stock_train dataset, the boxcox stock_train
dataset and the log transformed stock_train dataset has been compared after the
transformation process.
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> var(stock_train[,2]) has the higest variance
[1] Variance= 229.5218

> var(stock_train.bc)

[2] Variance= 210.3812

> var(stock_train.log) has the lowest variance. So, we will choose the logarithmically
transformed dataset for further analysis.

[3] Variance= 0.04309588

Looking at the 95% confidence interval for the true lambda and by looking at all the plots, we
could see that either no transformation or logarithmic transformation is suggested. Looking at
the plots we could see that the LOG plot actually didn’t have as sharp dips and tips. This was
most prominent around time 200, 400 and 600. Also, when looking at the variances, we could
see the Box-Cox transformation slightly decreases the variance whereas the log transform
drastically decreases the variance.

The histograms showing the trends of the various transformations are shown below:

The histogram that least resembles the normal distribution is that of the logarithmic
transformation. Hence, based on the variances, histograms and the plots, the logarithmic
transformation has been selected for further analysis.
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3.3 Decomposition of log transformed training dataset
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In the aforementioned graph, there is clear trend and a jumbled up seasonal component. To
correct this, differencing has been performed which will be explained in the following steps.
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3.4 Differencing

The differencing has been done two times. The plot of no difference and differenced at 12
and at 12, then 1 are shown below:

NO difference, Variance: 0.04309588 o Differenced at 12
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The green line is the fitted line whereas the blue line shows the mean value. By looking at the
three plots mentioned above, it can be clearly seen that the plot ‘Differenced at lag 12, then 1’
had the least common or apparent trend and the least apparent seasonality. The variance of
the plot differenced at 12, then 1 is lower (approx. 0.0003) than the variance of the plot
differenced at 12 (0.00177) but the visual depiction of the data is clearer for the plot
differenced at 12. The mean of the plot ‘Differenced at 12, then 1’ is closest to 0 which is
0.00003495.

3.5 Plots of ACF differences

The ACF plots of no difference, differenced at 12 and differenced at 12, then 1 are shown
below:
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ACF of LOG ACF of LOG difference at 12
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Comparing the ACF’s of the three graphs, the non-differenced and differenced at 12 still
contains some seasonality, and the ACF has decayed slowly which indicated non-stationarity.
The ACF of the log plot differenced at 12, then 1 had no apparent seasonality and the decay
corresponded to a stationary process. The histograms of the three processes are as follows:
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After analyzing the histograms, it is clear that the histogram of log differenced at 12, then 1
has the most normal like distribution so it has been chosen for further analysis.

3.6 ACF and PACF of log differenced at 12, then 1

ACF of LOG difference at 12 then1 PACF of LOG difference at 12 then
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Looking at the ACF and PACF plots, | have made the following deductions:
ACF outside confidence intervals: 1 and 12
PACF chosen outside confidence intervals: 2 and 12

SARIMA for log: s=12, D=1, d=1, Q=0 or 1, g=0, P=0 or 1, p=0.
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3.7 Trying models:
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AlCc

-6374.694
-6372.712
-6372.712
-6370.702
-6771.910
-6769.902
-6763.902
-6767.889
-7200.961
-7199.006

AlCc

-7195.008
-7196.994
-7199.601

-7197.647
-7197.649
-F195.635

The best model with the lowest AICc is when p=0, =0, P=0 and Q=1. The AICc in this case
is -7200.961 and the second.lowest is -7199:601 when p=0, q=0, P=1 and Q=1.The second

one will be taken as an alternative model.

3.8 Models

The first model is:

fit4.1

it

## Call:

## arima(x = stock_train.log, order = c(0, 1, 9), seasonal = list(order =
c(o,

it 1, 1), period = 12), method = "ML")
HH#

## Coefficients:

## smal

it -1.0000

## s.e. 0.0161
##

## sigma”2 estimated as 0.000163:

97

The second model is:

fitd

log likelihood = 3602.49,

aic

= -7200.
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##

## Call:

## arima(x = stock_train.log, order = c(@, 1, 9), seasonal = list(order =
c(1,

it 1, 1), period = 12), method = "ML")
##

## Coefficients:

## sarl smal

## -90.0232 -1.0000

## s.e. 0.0287 0.0182

##

## sigma~2 estimated as 0.0001628: log likelihood = 3602.81, aic = -7199
.62

3.9 Diagnostic checking 15t model:
## Shapiro-Wilk normality test

##

## data: res

## W = 0.96574, p-value < 2.2e-16

# p-value 1s less thang@,05 so it does™notspass the shagpiro.test
Box.test(res, 9, c('Box-Pierce"), 4 3)

##

## Box-Pierce test

##

## data: res

## X-squared = 10.845, df

6, p-value = 0.0933
Box.test(res, 9, c("Ljung-Box"), 3)

#it

## Box-Ljung test

#it

## data: vres

## X-squared = 10.916, df

6, p-value = 0.091
Box.test(res”2, 9, c("Ljung-Box"), )

##

## Box-Ljung test
##

## data: res”2

## X-squared = 98.369, df = 9, p-value < 2.2e-16

Passes the Box_Pierce and Ljung-Box tests, since p-values of these two are larger than
0.05.

The histogram of residual, time series plot and normal Q-Q plot for model 1 has been plotted
below:
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Histogram of res Time-Series Plot
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Call:

## ar(x = res, aic = TRUE, order.max = NULL, method = c("yule-
walker™))

##

##

## Order selected © sigma”2 estimated as ©.0001616

3.10 Diagnostic checking of Model 2:

## Shapiro-Wilk normality test

H#

## data: res

## W = 0.96591, p-value < 2.2e-16

# p-value is less than 0.05 so it does not pass_the Shapiro test
Box.test(res, 9, C("BoxaRi®TCe™); fitdf =02)

##

## Box-Pierce test

##

## data: res

## X-squared = 10.538, df

75, p-value = 0.1601
Box.test(res, <9, c("Ljung-Box#y, 2)

#i#

## Box-Ljung test

##

## data: res

## X-squared = 10.608, df

7, p-value = 0.1567
Box.test(res”2, 9, c("Ljung-Box"), 0)

#it

## Box-Ljung test

#it

## data: res”2

## X-squared = 98.234, df = 9, p-value < 2.2e-16

It passes the first and second Box test i.e., Box-Pierce and Ljung-

Box test because the p-values for these tests are larger than 0.05.

The histogram of residual, time series plot and normal Q-Q plot for model 1 has been plotted
below:
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Histogram of res Time-Series Plot
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## Call:

## ar(x = res, aic = TRUE, order.max = NULL, method = c("yule-
walker™))
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##
## Order selected © sigma”2 estimated as ©0.0001614

When performing the different types of tests on the two models, we saw that the models
passed two of the Box Cox tests because it’s p-values were greater than the significance level
of 0.05. Moreover, both the models failed the Shapiro test and residual squared Ljung-Box
test. Looking at the time series plot, we saw that there were no trends, no change in variances
nor seasonal components. After carefully analyzing the Q-Q plots and histograms, we could
see that they were approximately normally distributed. In the final ACF and PACF there were
minor lags outside the confidence intervals. Based on all the evidence, | have decided to go
with the model with the least AICc which is the first model, although the second model could
have also been chosen since both the models almost resemble the normal distribution.
Another benefit of the first model is that it had one less coefficient as shown in the analysis of
the first model. Hence the first model is best for forecast.

3.11 Forecast
According to the forecast function, the forecasted dataset-isas-fallows:

Point Forecast Lo'80 Hi 80 Lo 95 Hi 95
1242 4. 741280 4.724839 4. 754721 4 F16135 4.766424
1249 4 740063 4716813 4763316 & 04505 4 775624
1250 4 741786 4 713310 4 770263 4 698235 4 785337
1251 4 743925 4 71043 4. 776806 4 693637 4.794213
1252 4744116 4. 707353 4. 780879 4 6878593 4. 800339
1253 A 746000 4 705729 4 F86272 4 684411 4 807550
1254 J0 367328 4 703240 4.790236 4 680214 4. 813262
1255 4 746158 4699657 4. 792659 4. 673041 4 817275
1256 4. 745083 4695762 4.794405 4. 669652 4 820515
1257 4 746689 4 694699 4 798678 4 667177 4 826200
Point Forecast Lo 80 H_i_ 80 Lo 95 H_i_ifJ'S
1258 4 746808 4 692281 4. 801335 4663416 4. 830200
1259 4 747321 4690370 4. 804273 4. 660221 4. 834422
1260 4. 7459512 4690191 4 808833 4 658788 4. 840236
1261 4 748297 4 6866597 4. 809897 4 654088 4. 842505
1262 4 750019 4 BEGZ22Z 4 813815 4 652451 4 247586
1263 4. 752157 4 686238 4 818077 4651342 4. 8525973
1264 4. 752348 4. 684372 4. 820325 4 6423387 4. 856310
12635 4. 754233 4 684260 4. 824206 4647218 4 861248
1266 4. 754970 4 683056 4 826885 4 644987 4 864554
1267 4. 754390 4. 680586 4. 828195 4641516 4 B67265
Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1268 4.753316 4 677668 4 828964 4637623 4. 869009
1269 4. 754921 4677474 4 832368 4. 636477 4 873366
1270 4. 755041 4 673836 4. 834246 4633907 4 876174
1271 4 755554 4 674629 4 8364759 4631790 4 879318
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The 12 points have been forecasted for the daily closing price of stocks. The plots of the tlog
differenced and original training datasets are as follows:

Log Differenced training set
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The plot of original data points along with the forecasted data is as follows:
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Forecasted daily JPM stock close price trend
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4 Conclusion
To conclude, the forecasted daily closing stock price has-been evaluated. The goal has been
achieved by using the first model instead of the second one. In the evaluation process, firstly,
the dataset was divided inte-two_parts; training data and test data. Then it was log
transformed and then differenced at 12 and differenced at 12, then 1. After that, diagnostic
checking has been done and after confirmation, the model has been used to predict the future
closing price values which are close to the original data. With this analysis the customers can
make informed decisions about the stocks they are interested in.

5 References
Data source: Kaggle.com
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Appendix:

#reading the data

library(tidyverse)

library(dplyr)

stock.csv <- read.csv(file = "JPM_data.csv")

#Time series

stock=ts(stock.csv,c(2013,1),c(2018,1),252)

ts.plot(stock.csvSclose,main = "Original data", ylab ="Closing price")
plot.ts(stock)

nt=length(stock)

abline(h = mean(stock), col="4")

legend("bottomright", legend = c("Fitted Line", "Mean"), pch="rép(15, 4), col'=3:4)
#Training and test dataset

stock_train <- stock[c(1:1247),c(1,5)]

stock_train.csv<-stock[c(1:1247)]

stock_test <- stock[c(1247:1261),c(1,5)]

#Plotting the training dataset

par(mfrow=c(1,2))

ts.plot(stock_train[,2], main = "Training Set", ylab = "Closing stock price")

#fit <- Im(stock_train ~ as.numeric(1:length(stock_train[,2])));abline(fit, col="3")
#legend("bottomright", legend = ¢("Fitted Line"),pch, col = 3)

hist(stock_train, col = "light blue", xlab ="", main = "Histogram of training set")

## Transformations:

library(MASS)

bcTransform <- boxcox(stock_train™~ as.numeric(1:length(stock_train.csv)))
lambda=bcTransformSx[which(bcTransformSy == max(bcTransformSy))]

stock_train.bc = (1/lambda)*(stock_train[,2]*lambda-1)

stock_train.log <- log(stock_train[,2])

par(mfrow=c(2,2))

plot.ts(stock_train[,2],ylab="0riginal closing price", main = "Original, Variance: 229.5218")
plot.ts(stock_train.bc, main = "Box-Cox, Variance: 210.3812")

plot.ts(stock_train.log, main = "LOG, Variance: 0.04309588")

var(stock_train[,2])# higest variance
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var(stock_train.bc)

var(stock_train.log) # lowest variance

par(mfrow=c(2,2))

hist(stock_train.log, col="light blue", xlab="", main="In(U_t)") # Has the lowest variance
hist(stock_train.bc, col="light blue", xlab="", main="bc(U_t)") #looks the most symmetric and normally distri
hist(stock_train[,2], col = "light blue", xlab ="", main = "No Transformation")

## Decomposition of LOG transformed training set:

y <- ts(as.ts(stock_train.log), frequency = 12)

decomposition <- decompose(y)

plot(decomposition)

## Differencing:

par(mfrow=c(2,2))

plot.ts(stock_train.log, main = "NO difference;Variance: 0.04309588") #0.04309588
fitl <- Im(stock_train.log ~ as.numeric(1:ength(stock_train.log)));abline(fit1, col=3)
abline(h=mean(stock_train.log), col=4)

stock_train.log.12 <- diff(stock_train.log, lag =12)

plot.ts(stock_train.log.12, main-= "Differenced at 12")

fit2 <- Im(stock_train.log.12 ~ as.numeric(1:length(stock_train.log.12)));abline(fit1, col=3)
abline(h=mean(stock_train.log.12), col=4)

stock_train.log.12.1 <- diff(stock_train.log.12, lag =1)

plot.ts(stock_train.log.12.1, main = "Differenced at 12, then 1")

fit3 <- Im(stock_train.log.12.1 ~ as.numeric(1:length(stock_train.log.12.1)));abline(fit1, col=3)
abline(h=mean(stock_train.log.12.1), col=4)

var(stock_train.log)

mean(stock_train.log)

var(stock_train.log.12)

mean(stock_train.log.12) #-0.003156617

var(stock_train.log.12.1) #variance went higher, 0.04487819 went higher
mean(stock_train.log.12.1) #0.008926943 went lower

H#ACF differencing plots

par(mfrow=c(2,2))

acf(stock_train.log, lag.max = 60, main = "ACF of LOG")

acf(stock_train.log.12, lag.max = 60, main = "ACF of LOG difference at 12")
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acf(stock_train.log.12.1, lag.max = 60, main = "ACF of LOG difference at 12 then 1") #ACF decays corresponding
## Comparing the histograms at different differences:

par(mfrow=c(2,2))

hist(stock_train.log, col="light blue", xlab="", main="In(U_t)")
hist(stock_train.log.12, col="light blue", xlab="", main="In(U_t), differenced at 12")
hist(stock_train.log.12.1, col="light blue", xlab="", main="In(U_t), differenced at 12 then 1")
## ACF and PACF of log then differenced at 12 then 1:

par(mfrow=c(1,2))

acf(stock_train.log.12.1, lag.max = 60, main = "ACF of LOG difference at 12 then 1")
H#ACF outside confidence intervals: 1,12

pacf(stock_train.log.12.1, lag.max = 60, main = "PACF of LOG difference at 12 then 1")
#PACF outside the confidence intervals: 1,127

#List of candidate models to try:

#SARIMA for log: s=12, D=1, d=1, Q=0"0r-1, q=0, P=0 or 1, p=0.

## Trying models now:

df <- expand.grid(p=0:1, g=0:7, P=0:1, Q=0:1)

df <- cbind(df, AlICc=NA)

# Compute AlCc:

library(MASS)

library(MuMin)

for (i in 1:nrow(df)) {

sarima.obj <- NULL

try(arima.obj <- arima(stock_train.log, order=c(dfSpl[i], 1, dfSq[i]),
seasonal=list(order=c(dfSP[i], 1, dfSQ][i]), period=12),

method="ML"))

if (lis.null(arima.obj)) { dfSAICc[i] <- AlCc(arima.obj) }

# print(dffi, ])

}

#df{which.min(dfSAICc), ]

df[(dfSAICc),] # second lowest AIC -45.75403 when p=1, g=1, P=0, Q=1

# when p=0, g=1, P=0, Q=1 we get the lowest AIC -47.91584

final <- which.min(dfSAICc)

fit4.1 <- arima(stock_train.log, order=c(0, 1, 0),
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seasonal=list(order=c(0, 1, 1), period=12),

method="ML")

fit4.1

fit4 <- arima(stock_train.log, order=c(0,1,0),
seasonal=list(order=c(1,1,1), period=12),

method="ML")

fit4

## Diagnostic Checking 1st model:

res <- residuals(fit4.1)

shapiro.test(res)

# p-value is less than 0.05 so it does not pass the shapiro.test
Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 3)
Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf’=3)
Box.test(res”2, lag = 9, type = c("Ljung-Box"), fitdf = 0)

#passes the Box_Pierce and Ljung<Box tests, since p-values are larger than 0.05
par(mfrow=c(2,2))

hist(res,density=20,breaks=20, col="blue", xlab="", prob=TRUE)
# Approximately normal and almost symmetric.

m <- mean(res)

std <- sqrt(var(res))

curve( dnorm(x,m,std), add=TRUE )

plot.ts(res,main = "Time-Series Plot")

fitt <- Im(res ~ as.numeric(1:length(res))); abline(fitt, col="red")
abline(h=mean(res), col="blue")

ggnorm(res,main="Normal Q-Q Plot for Model")
qqline(res,col="blue")

# Looks approximately normal

par(mfrow=c(1,2))

acf(res, lag.max=60, main = "ACF of Residuals")

pacf(res, lag.max=60, main = "PACF of Residuals")

# All ACF and PACF are within confidence intervals and can be counted as zero.
#acf(res"2, lag.max=60, main = "ACF of Residuals"2")

ar(res, aic = TRUE, order.max = NULL, method = ¢("yule-walker"))
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#2 diagnostic checking

res <- residuals(fit4)

shapiro.test(res)

# p-value is less than 0.05 so it does not pass the Shapiro test
Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 2)
Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf = 2)
Box.test(res”2, lag = 9, type = c("Ljung-Box"), fitdf = 0)

#passes the first and second Box test i.e Box-Pierce and Ljung-Box test because the p-values for these test are
larger than 0.05.

par(mfrow=c(2,2))

hist(res,density=20,breaks=20, col="blue", xlab="", prob=TRUE)
# Approximately normal and almost symmetric.

m <- mean(res)

std <- sqrt(var(res))

curve( dnorm(x,m,std), add=TRUE )

plot.ts(res,main = "Time-SeriesPlot")

fitt <- Im(res ~ as.numeric(1:length(res))); abline(fitt, col="red")
abline(h=mean(res), col="blue")

ggnorm(res,main="Normal Q-Q Plot for Model")
qqgline(res,col="blue")

# Looks approximately normal

par(mfrow=c(1,2))

acf(res, lag.max=60, main = "ACF of Residuals")

pacf(res, lag.max=60, main = "PACF of Residuals")

# All ACF and PACF are within confidence intervals and can be counted as zero.
#acf(res"2, lag.max=60, main = "ACF of Residuals"2")

ar(res, aic = TRUE, order.max = NULL, method = ¢("yule-walker"))
##Forecast

library(forecast)

library(dplyr)

library(ggplot2)

fit4.1

forecast(fit4.1)
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#par(mfrow=c(1,2))

pred.tr <- predict(fit4.1, n.ahead = 8)

U.tr = pred.trSpred + 2*pred.trSse #upper bound
L.tr = pred.trSpred - 2*pred.trSse #lower bound

ts.plot(stock_train.log, xlim=c(1,length(stock_train.log)+8), ylim = c(min(stock_train.log),max(U.tr)), main = "Log
Differenced training set")

lines(U.tr, col="blue", Ity="dashed")

lines(L.tr, col="blue", lty="dashed")
points((length(stock_train.log)+1):(length(stock_train.log)+8), pred.trSpred, col="red")
pred.orig <- exp(pred.trSpred)

U = exp(U.tr)

L = exp(L.tr)

ts.plot(stock_train[,2], xlim=c(1, length(stock_train[;2])+8),-ylim = c(min(stock_train{,2]), max(U)), main =
"Original Training")

lines(U, col="blue", lty="dashed")

lines(L, col="blue", lty="dashed")

points((length(stock_train[,2])+1):(length(stock_train[,2])+8), pred.orig;'col="red")
forecast.plot<-forecast(fit4.1) %>% autoplot(main="Foreeasted daily JPM stock close price trend")

forecast.plot
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