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1 Abstract 
The data set I plan to use for my project displays date, open, high, low, close, volume, and 

name of JPM stock throughout 5 years. The main objective of my project is to perform time 

series forecasting of JPM stock data by using the last 5 years of stock data to make informed 

estimates that will provide predictive direction of the future stock trends for JPM stock. This 

is important because it would allow consumers and the company to understand the future of 

their stock price which is relevant to a multitude of financial decisions that will be made. 

For analysis and forecast, the data has been divided into two sections; namely ‘training data’ 

and ‘test data’. This helps the model to make accurate predictions. After the analysis, the 

creation of the time series plot shows an obvious trend in which there is a seasonal 

component and the variance varied. In the next step, the model has been made approximately 

normal. The Arima model has been selected as the best model for forecast of future closing 

stock trends.  

2 Introduction 
Stock price, opening and closing rates fluctuates throughout the year. Buyers and sellers of 

financial assets such as bonds, currencies, and equities trade in the stock market. Shares are 

one of the most popular assets. They are units of ownership in a company that investors 

purchase in order to receive dividends or profit from future price increases. Companies can 

also raise capital by selling their shares.  

A company cannot trade on the stock exchange unless it has a certain amount of capital, 

shareholders, and other requirements. Brokers are essential players in the stock market. They 

are qualified professionals who connect buyers and sellers and execute trades for a 

commission. Companies and individuals interested in investing in the stock market should 

use a broker. The price of shares changes based on supply and demand and in that aspect it’s 

similar to any other product. In addition, there are several other factors such as information, 

the economy, a company’s financial health and some external events such as the impression 

about the company’s performance etc. So, my analysis is basically based on showing the 

futuristic trends of the stock closing price so that buyers and sellers can look at those trends 

and decide whether to sell or keep the shares. After running the time series analysis, the 

model with the lowest AIC has been selection and the predictive analysis has been run. The 

forecasted points that lie within the 95% confidence interval have been carefully examined. 

The results depict that the model is accurate enough to predict future stock closing price 

values.   
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3 Time series analysis: 
Time series is a series of data points in which each data point is associated with a timestamp. 

The analysis has been carried out in the following sections.  

3.1 Original dataset plots 
I started by plotting a time series plot with the original data. However, I have modeled the 

data by only having closing prices and also by excluding the dates. The reason of cutting off 

those dates is to plot the daily JPM closing stock price with ease and smoothness. Including 

the dates would skew the results, and would cause inconsistency with the rest of the data. 

First of all, the data has been imported into R studio and the table below shows the overview 

of the imported dataset. The dataset has 1259 observations and 7 columns.  

 

The null values have been removed by using na.omit function in the pre-processing step and 

the dataset has been divided into training data and test data. The training dataset has 1247 

observations while the test dataset has 12 observations.  

The time series has been plotted with a frequency of 251 to generate 1261 observations.  

The original dataset and the time series plots are shown below: 
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I started by plotting a time series plot with the original data. However, I have modeled the 

data by only having stock closing price and also by excluding the dates between the years 

2013 and 2018. Instead of these years, the time series has been created of 1261 observations.  

rest of the data. 

3.2 Plotting the training dataset 
In order to make sure our model was relatively accurate; the data has been sectioned into 

training dataset and test dataset. I removed the last 12 observations, in order to compare the 

forecasted values with the original data values later in the analysis. 
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After observing the time series plot, it can be said that the trend is generally increasing and 

decreasing but the overall trend is increasing especially at the end of the interval, the value of 

closing stock price reaches the highest value. There is also a seasonal component. The 

histogram is right skewed and the variance is non-constant. Based on these observations, I 

would say it would be best to perform a Box-Cox transformation.  
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In the next step, the variance of the original stock_train dataset, the boxcox stock_train 

dataset and the log transformed stock_train dataset has been compared after the 

transformation process.  

 

 > var(stock_train[,2]) has the higest variance 

[1] Variance= 229.5218 

> var(stock_train.bc)  

[2] Variance= 210.3812 

> var(stock_train.log) has the lowest variance. So, we will choose the logarithmically 

transformed dataset for further analysis.  

[3] Variance= 0.04309588 

Looking at the 95% confidence interval for the true lambda and by looking at all the plots, we 

could see that either no transformation or logarithmic transformation is suggested. Looking at 

the plots we could see that the LOG plot actually didn’t have as sharp dips and tips. This was 

most prominent around time 200, 400 and 600. Also, when looking at the variances, we could 

see the Box-Cox transformation slightly decreases the variance whereas the log transform 

drastically decreases the variance.  

The histograms showing the trends of the various transformations are shown below: 

The histogram that least resembles the normal distribution is that of the logarithmic 

transformation. Hence, based on the variances, histograms and the plots, the logarithmic 

transformation has been selected for further analysis. 
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3.3 Decomposition of log transformed training dataset 

 

In the aforementioned graph, there is clear trend and a jumbled up seasonal component. To 

correct this, differencing has been performed which will be explained in the following steps.  
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3.4 Differencing 
 

The differencing has been done two times. The plot of no difference and differenced at 12 

and at 12, then 1 are shown below: 

The green line is the fitted line whereas the blue line shows the mean value. By looking at the 

three plots mentioned above, it can be clearly seen that the plot ‘Differenced at lag 12, then 1’ 

had the least common or apparent trend and the least apparent seasonality. The variance of 

the plot differenced at 12, then 1 is lower (approx. 0.0003) than the variance of the plot 

differenced at 12 (0.00177) but the visual depiction of the data is clearer for the plot 

differenced at 12. The mean of the plot ‘Differenced at 12, then 1’ is closest to 0 which is 

0.00003495. 

3.5 Plots of ACF differences 
The ACF plots of no difference, differenced at 12 and differenced at 12, then 1 are shown 

below:  
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Comparing the ACF’s of the three graphs, the non-differenced and differenced at 12 still 

contains some seasonality, and the ACF has decayed slowly which indicated non-stationarity. 

The ACF of the log plot differenced at 12, then 1 had no apparent seasonality and the decay 

corresponded to a stationary process. The histograms of the three processes are as follows: 
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After analyzing the histograms, it is clear that the histogram of log differenced at 12, then 1 

has the most normal like distribution so it has been chosen for further analysis.  

3.6 ACF and PACF of log differenced at 12, then 1 
 

 

Looking at the ACF and PACF plots, I have made the following deductions: 

ACF outside confidence intervals: 1 and 12 

PACF chosen outside confidence intervals: 2 and 12 

SARIMA for log: s=12, D=1, d=1, Q=0 or 1, q=0, P=0 or 1, p=0. 
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3.7 Trying models: 

 

 

The best model with the lowest AICc is when p=0, q=0, P=0 and Q=1. The AICc in this case 

is -7200.961 and the second lowest is -7199.601 when p=0, q=0, P=1 and Q=1.The second 

one will be taken as an alternative model. 

3.8 Models 
The first model is: 

fit4.1 

##  
## Call: 
## arima(x = stock_train.log, order = c(0, 1, 0), seasonal = list(order = 
c(0,  
##     1, 1), period = 12), method = "ML") 
##  
## Coefficients: 
##          sma1 
##       -1.0000 
## s.e.   0.0161 
##  
## sigma^2 estimated as 0.000163:  log likelihood = 3602.49,  aic = -7200.
97 

The second model is: 

fit4 
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##  
## Call: 
## arima(x = stock_train.log, order = c(0, 1, 0), seasonal = list(order = 
c(1,  
##     1, 1), period = 12), method = "ML") 
##  
## Coefficients: 
##          sar1     sma1 
##       -0.0232  -1.0000 
## s.e.   0.0287   0.0182 
##  
## sigma^2 estimated as 0.0001628:  log likelihood = 3602.81,  aic = -7199
.62 

 

3.9 Diagnostic checking 1st model: 
## Shapiro-Wilk normality test 
##  
## data:  res 
## W = 0.96574, p-value < 2.2e-16 

# p-value is less than 0.05 so it does not pass the shapiro.test 
Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 3) 

##  
##  Box-Pierce test 
##  
## data:  res 
## X-squared = 10.845, df = 6, p-value = 0.0933 

Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf = 3) 

##  
##  Box-Ljung test 
##  
## data:  res 
## X-squared = 10.916, df = 6, p-value = 0.091 

Box.test(res^2, lag = 9, type = c("Ljung-Box"), fitdf = 0) 

##  
##  Box-Ljung test 
##  
## data:  res^2 
## X-squared = 98.369, df = 9, p-value < 2.2e-16 
 

Passes the Box_Pierce and Ljung-Box tests, since p-values of these two are larger than 

0.05. 

The histogram of residual, time series plot and normal Q-Q plot for model 1 has been plotted 

below: 
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The new ACF and PACF are: 
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Call: 

## ar(x = res, aic = TRUE, order.max = NULL, method = c("yule-

walker")) 

##  

##  

## Order selected 0  sigma^2 estimated as  0.0001616 

3.10 Diagnostic checking of Model 2: 
 

 

## Shapiro-Wilk normality test 
##  
## data:  res 
## W = 0.96591, p-value < 2.2e-16 

# p-value is less than 0.05 so it does not pass the Shapiro test 
Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 2) 

##  
##  Box-Pierce test 
##  
## data:  res 
## X-squared = 10.538, df = 7, p-value = 0.1601 

Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf = 2) 

##  
##  Box-Ljung test 
##  
## data:  res 
## X-squared = 10.608, df = 7, p-value = 0.1567 

Box.test(res^2, lag = 9, type = c("Ljung-Box"), fitdf = 0) 

##  
##  Box-Ljung test 
##  
## data:  res^2 
## X-squared = 98.234, df = 9, p-value < 2.2e-16 

It passes the first and second Box test i.e., Box-Pierce and Ljung-

Box test because the p-values for these tests are larger than 0.05. 

The histogram of residual, time series plot and normal Q-Q plot for model 1 has been plotted 

below: 
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The ACF and PACF plots are: 

 

## Call: 

## ar(x = res, aic = TRUE, order.max = NULL, method = c("yule-

walker")) 
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##  

## Order selected 0  sigma^2 estimated as  0.0001614 

When performing the different types of tests on the two models, we saw that the models 

passed two of the Box Cox tests because it’s p-values were greater than the significance level 

of 0.05. Moreover, both the models failed the Shapiro test and residual squared Ljung-Box 

test. Looking at the time series plot, we saw that there were no trends, no change in variances 

nor seasonal components. After carefully analyzing the Q-Q plots and histograms, we could 

see that they were approximately normally distributed. In the final ACF and PACF there were 

minor lags outside the confidence intervals. Based on all the evidence, I have decided to go 

with the model with the least AICc which is the first model, although the second model could 

have also been chosen since both the models almost resemble the normal distribution. 

Another benefit of the first model is that it had one less coefficient as shown in the analysis of 

the first model. Hence the first model is best for forecast.  

3.11 Forecast 
According to the forecast function, the forecasted dataset is as follows:  
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The 12 points have been forecasted for the daily closing price of stocks. The plots of the tlog 

differenced and original training datasets are as follows: 

 

 

The plot of original data points along with the forecasted data is as follows: 
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4 Conclusion 
To conclude, the forecasted daily closing stock price has been evaluated. The goal has been 

achieved by using the first model instead of the second one. In the evaluation process, firstly, 

the dataset was divided into two parts; training data and test data. Then it was log 

transformed and then differenced at 12 and differenced at 12, then 1. After that, diagnostic 

checking has been done and after confirmation, the model has been used to predict the future 

closing price values which are close to the original data. With this analysis the customers can 

make informed decisions about the stocks they are interested in.  

5 References 
Data source: Kaggle.com 
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Appendix: 
#reading the data 

library(tidyverse) 

library(dplyr) 

stock.csv <- read.csv(file = "JPM_data.csv")  

#Time series 

stock=ts(stock.csv,c(2013,1),c(2018,1),252) 

ts.plot(stock.csv$close,main = "Original data", ylab ="Closing price") 

plot.ts(stock) 

nt=length(stock) 

abline(h = mean(stock), col="4") 

legend("bottomright", legend = c("Fitted Line", "Mean"), pch = rep(15, 4), col = 3:4) 

#Training and test dataset 

stock_train <- stock[c(1:1247),c(1,5)] 

stock_train.csv<-stock[c(1:1247)] 

stock_test <- stock[c(1247:1261),c(1,5)] 

#Plotting the training dataset 

par(mfrow=c(1,2)) 

ts.plot(stock_train[,2], main = "Training Set", ylab = "Closing stock price")  

#fit <- lm(stock_train ~ as.numeric(1:length(stock_train[,2])));abline(fit, col="3")  

#legend("bottomright", legend = c("Fitted Line"),pch , col = 3) 

hist(stock_train, col = "light blue", xlab = "", main = "Histogram of training set") 

## Transformations: 

library(MASS) 

bcTransform <- boxcox(stock_train~ as.numeric(1:length(stock_train.csv))) 

lambda=bcTransform$x[which(bcTransform$y == max(bcTransform$y))] 

stock_train.bc = (1/lambda)*(stock_train[,2]^lambda-1) 

stock_train.log <- log(stock_train[,2]) 

par(mfrow=c(2,2)) 

plot.ts(stock_train[,2],ylab="Original closing price", main = "Original, Variance: 229.5218") 

plot.ts(stock_train.bc, main = "Box-Cox, Variance: 210.3812") 

plot.ts(stock_train.log, main = "LOG, Variance: 0.04309588")  

var(stock_train[,2])# higest variance 
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var(stock_train.bc)  

var(stock_train.log) # lowest variance 

par(mfrow=c(2,2)) 

hist(stock_train.log, col="light blue", xlab="", main="ln(U_t)") # Has the lowest variance 

hist(stock_train.bc, col="light blue", xlab="", main="bc(U_t)") #looks the most symmetric and normally distri 

hist(stock_train[,2], col = "light blue", xlab = "", main = "No Transformation") 

## Decomposition of LOG transformed training set: 

y <- ts(as.ts(stock_train.log), frequency = 12) 

decomposition <- decompose(y) 

plot(decomposition) 

## Differencing: 

par(mfrow=c(2,2)) 

plot.ts(stock_train.log, main = "NO difference, Variance: 0.04309588") #0.04309588 

fit1 <- lm(stock_train.log ~ as.numeric(1:length(stock_train.log)));abline(fit1, col=3) 

abline(h=mean(stock_train.log), col=4) 

stock_train.log.12 <- diff(stock_train.log, lag =12) 

plot.ts(stock_train.log.12, main = "Differenced at 12") 

fit2 <- lm(stock_train.log.12 ~ as.numeric(1:length(stock_train.log.12)));abline(fit1, col=3) 

abline(h=mean(stock_train.log.12), col=4) 

stock_train.log.12.1 <- diff(stock_train.log.12, lag =1) 

plot.ts(stock_train.log.12.1, main = "Differenced at 12, then 1")  

fit3 <- lm(stock_train.log.12.1 ~ as.numeric(1:length(stock_train.log.12.1)));abline(fit1, col=3) 

abline(h=mean(stock_train.log.12.1), col=4) 

var(stock_train.log)  

mean(stock_train.log)  

var(stock_train.log.12)  

mean(stock_train.log.12) #-0.003156617 

var(stock_train.log.12.1) #variance went higher, 0.04487819 went higher 

mean(stock_train.log.12.1) #0.008926943 went lower 

#ACF differencing plots 

par(mfrow=c(2,2)) 

acf(stock_train.log, lag.max = 60, main = "ACF of LOG") 

acf(stock_train.log.12, lag.max = 60, main = "ACF of LOG difference at 12") 
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acf(stock_train.log.12.1, lag.max = 60, main = "ACF of LOG difference at 12 then 1") #ACF decays corresponding 

## Comparing the histograms at different differences: 

par(mfrow=c(2,2)) 

hist(stock_train.log, col="light blue", xlab="", main="ln(U_t)") 

hist(stock_train.log.12, col="light blue", xlab="", main="ln(U_t), differenced at 12") 

hist(stock_train.log.12.1, col="light blue", xlab="", main="ln(U_t), differenced at 12 then 1")  

## ACF and PACF of log then differenced at 12 then 1: 

par(mfrow=c(1,2)) 

acf(stock_train.log.12.1, lag.max = 60, main = "ACF of LOG difference at 12 then 1") 

#ACF outside confidence intervals: 1,12 

pacf(stock_train.log.12.1, lag.max = 60, main = "PACF of LOG difference at 12 then 1") 

#PACF outside the confidence intervals: 1,12? 

#List of candidate models to try: 

#SARIMA for log: s=12, D=1, d=1, Q=0 or 1, q=0, P=0 or 1, p=0. 

## Trying models now: 

df <- expand.grid(p=0:1, q=0:1, P=0:1, Q=0:1) 

df <- cbind(df, AICc=NA) 

# Compute AICc: 

library(MASS) 

library(MuMIn) 

for (i in 1:nrow(df)) { 

sarima.obj <- NULL 

try(arima.obj <- arima(stock_train.log, order=c(df$p[i], 1, df$q[i]), 

seasonal=list(order=c(df$P[i], 1, df$Q[i]), period=12), 

method="ML")) 

if (!is.null(arima.obj)) { df$AICc[i] <- AICc(arima.obj) } 

# print(df[i, ]) 

} 

#df[which.min(df$AICc), ] 

df[(df$AICc),] # second lowest AIC -45.75403 when p=1, q=1, P=0, Q=1 

# when p=0, q=1, P=0, Q=1 we get the lowest AIC -47.91584 

final <- which.min(df$AICc) 

fit4.1 <- arima(stock_train.log, order=c(0, 1, 0), 
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seasonal=list(order=c(0, 1, 1), period=12), 

method="ML") 

fit4.1 

fit4 <- arima(stock_train.log, order=c(0,1,0), 

seasonal=list(order=c(1,1,1), period=12), 

method="ML") 

fit4 

## Diagnostic Checking 1st model: 

res <- residuals(fit4.1) 

shapiro.test(res) 

# p-value is less than 0.05 so it does not pass the shapiro.test 

Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 3) 

Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf = 3) 

Box.test(res^2, lag = 9, type = c("Ljung-Box"), fitdf = 0) 

#passes the Box_Pierce and Ljung-Box tests, since p-values are larger than 0.05 

par(mfrow=c(2,2)) 

hist(res,density=20,breaks=20, col="blue", xlab="", prob=TRUE) 

# Approximately normal and almost symmetric. 

m <- mean(res) 

std <- sqrt(var(res)) 

curve( dnorm(x,m,std), add=TRUE ) 

plot.ts(res,main = "Time-Series Plot") 

fitt <- lm(res ~ as.numeric(1:length(res))); abline(fitt, col="red") 

abline(h=mean(res), col="blue") 

qqnorm(res,main= "Normal Q-Q Plot for Model") 

qqline(res,col="blue") 

# Looks approximately normal 

par(mfrow=c(1,2)) 

acf(res, lag.max=60, main = "ACF of Residuals") 

pacf(res, lag.max=60, main = "PACF of Residuals") 

# All ACF and PACF are within confidence intervals and can be counted as zero. 

#acf(resˆ2, lag.max=60, main = "ACF of Residualsˆ2") 

ar(res, aic = TRUE, order.max = NULL, method = c("yule-walker")) 
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#2 diagnostic checking 

res <- residuals(fit4) 

shapiro.test(res) 

# p-value is less than 0.05 so it does not pass the Shapiro test 

Box.test(res, lag = 9, type = c("Box-Pierce"), fitdf = 2) 

Box.test(res, lag = 9, type = c("Ljung-Box"), fitdf = 2) 

Box.test(res^2, lag = 9, type = c("Ljung-Box"), fitdf = 0) 

#passes the first and second Box test i.e Box-Pierce and Ljung-Box test because the p-values for these test are 

larger than 0.05. 

par(mfrow=c(2,2)) 

hist(res,density=20,breaks=20, col="blue", xlab="", prob=TRUE) 

# Approximately normal and almost symmetric. 

m <- mean(res) 

std <- sqrt(var(res)) 

curve( dnorm(x,m,std), add=TRUE ) 

plot.ts(res,main = "Time-Series Plot") 

fitt <- lm(res ~ as.numeric(1:length(res))); abline(fitt, col="red") 

abline(h=mean(res), col="blue") 

qqnorm(res,main= "Normal Q-Q Plot for Model") 

qqline(res,col="blue") 

# Looks approximately normal 

par(mfrow=c(1,2)) 

acf(res, lag.max=60, main = "ACF of Residuals") 

pacf(res, lag.max=60, main = "PACF of Residuals") 

# All ACF and PACF are within confidence intervals and can be counted as zero. 

#acf(resˆ2, lag.max=60, main = "ACF of Residualsˆ2") 

ar(res, aic = TRUE, order.max = NULL, method = c("yule-walker")) 

##Forecast 

library(forecast) 

library(dplyr) 

library(ggplot2) 

fit4.1 

forecast(fit4.1) 
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#par(mfrow=c(1,2)) 

pred.tr <- predict(fit4.1, n.ahead = 8) 

U.tr = pred.tr$pred + 2*pred.tr$se #upper bound 

L.tr = pred.tr$pred - 2*pred.tr$se #lower bound 

ts.plot(stock_train.log, xlim=c(1,length(stock_train.log)+8), ylim = c(min(stock_train.log),max(U.tr)), main = "Log 

Differenced training set") 

lines(U.tr, col="blue", lty="dashed") 

lines(L.tr, col="blue", lty="dashed") 

points((length(stock_train.log)+1):(length(stock_train.log)+8), pred.tr$pred, col="red") 

pred.orig <- exp(pred.tr$pred) 

U = exp(U.tr) 

L = exp(L.tr) 

ts.plot(stock_train[,2], xlim=c(1, length(stock_train[,2])+8), ylim = c(min(stock_train[,2]), max(U)), main = 

"Original Training") 

lines(U, col="blue", lty="dashed") 

lines(L, col="blue", lty="dashed") 

points((length(stock_train[,2])+1):(length(stock_train[,2])+8), pred.orig, col="red") 

forecast.plot<-forecast(fit4.1) %>% autoplot(main="Forecasted daily JPM stock close price trend") 

forecast.plot 
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