
PASTA Worksheet Portfolio

Stages Sneaker company

I. Define business

and security

objectives

● Seamless Connection: The app's main goal is to

seamlessly connect sellers and shoppers. This implies

that the user interface should be user-friendly, allowing

easy navigation and interaction between buyers and

sellers.

● Data Privacy: Data privacy is a significant concern for

the company. This means that the app should prioritize

robust security measures to protect user data, including

authentication and encryption, and comply with relevant

data privacy regulations.

● Payment Handling: Proper payment handling is crucial to

avoid legal issues. This indicates that the app needs to

have secure payment processing mechanisms in place,

possibly using well-established and trusted payment

gateways.

II. Define the

technical scope

List of technologies used by the application:

● API

● PKI

● AES

● SHA-256

● SQL



In Stage II of the PASTA framework, one of the technologies

that I would prioritize for evaluation is the Structured Query

Language (SQL). The reason for this priority is that SQL is

extensively used for interacting with and managing the

database, which is a core component of the application. SQL

injection is a prevalent attack vector, and given the sensitive

nature of the data the app handles (e.g., user information,

payment details), any vulnerabilities in SQL queries or database

interactions could lead to data breaches, unauthorized access,

or data manipulation. Thus, a thorough assessment of SQL-

related security measures, including input validation and query

parameterization, is essential to ensure the security of user

data and the overall application.

III. Decompose

application

Sample data flow diagram

In this data flow diagram, we have a simplified representation

of a single process within the application: the Product Search

Process. Let's analyze how the technologies evaluated in Stage

II relate to protecting user data in this process:

Structured Query Language (SQL): SQL plays a central role in

this process, as it's used to interact with the database

(represented as element C). When a user (element A) searches

for sneakers for sale, their query is processed by the Product

Search Process (element B), which likely involves SQL queries

to retrieve relevant data from the database. Ensuring secure

coding practices, input validation, and proper use of SQL

queries are essential to prevent SQL injection attacks, which

could compromise the confidentiality and integrity of user data.

Application Programming Interface (API): Although not explicitly

https://docs.google.com/presentation/d/1ol7y79popTFfNHM-90ES-H-i1Lpd0YNvPShxBlXozjg/template/preview?resourcekey=0-DZAkf7Vzh2PXsP-j3oXV-g


represented in this simplified diagram, APIs could be used in

the background to facilitate communication between different

components of the application. For instance, an API might be

responsible for fetching data from the database or providing

search results to the user. Securing API endpoints is crucial to

prevent unauthorized access and data leakage.

Public Key Infrastructure (PKI): PKI, specifically the use of

encryption algorithms like RSA, is vital for securing data in

transit. When users search for sneakers, the data transmitted

between their devices and the application's servers should be

encrypted using strong encryption methods. This helps protect

user queries and search results from eavesdropping and

interception.

SHA-256: While SHA-256 is not directly involved in this user

query process, it's likely used to secure sensitive user data

stored in the database. For instance, user passwords and other

critical information should be hashed using SHA-256 before

storage to enhance data security.

IV. Threat analysis Here are two types of threats that are risks to the information

being handled by the app:

● SQL Injection Attacks: Threat actors may attempt SQL

injection attacks on the app's database, exploiting

vulnerabilities in the SQL queries used for various

processes. If successful, these attacks could lead to

unauthorized access to, modification, or theft of

sensitive user data, such as personal information and

transaction records.



● Phishing and Social Engineering: Users and employees

of the company could be targeted with phishing emails

or other social engineering tactics. If an attacker

successfully tricks an employee into revealing their

credentials or gains unauthorized access to a user's

account through deceptive means, it could result in data

breaches, fraudulent transactions, and compromised

user accounts.

V. Vulnerability

analysis

Here are two types of vulnerabilities that could be exploited:

● Inadequate Data Encryption: If the app fails to

implement strong encryption mechanisms, particularly

for sensitive data such as credit card information during

payment transactions, it could be vulnerable to data

interception and theft. Attackers could exploit this

vulnerability to eavesdrop on user data and compromise

their financial information.

● Insufficient Input Validation: Inadequate input validation

on user inputs, especially in forms and search queries,

can expose the application to various attacks, including

SQL injection and cross-site scripting (XSS). Attackers

might input malicious code or payloads that the app fails

to properly sanitize, leading to potential code execution

or data manipulation.

VI. Attack modeling Sample attack tree diagram

Below is an example of an attack tree for the sneaker

company's app, focusing on potential threats related to user

https://docs.google.com/presentation/d/1FmWLyHgmq9XQoVuMxOym2PHO8IuedCkan4moYnI-EJ0/template/preview?usp=sharing&resourcekey=0-zYPY7AhPJdcClXamlAfOag


data:

Attack Tree: User Data Compromise

User Data

This is the primary target for attackers, as it contains valuable

information like user profiles, payment details, and personal

data.

Exploitation Vectors

a. SQL Injection (2a)

Attackers might attempt SQL injection attacks to manipulate

the database and retrieve user data.

Subcategories:

Lack of Prepared Statements (3a): If the app doesn't use

prepared statements in SQL queries, it's vulnerable to SQL

injection.

Weak Login Credentials (3b): If users have weak passwords,

attackers could easily gain access to their accounts and steal

data.

b. Session Hijacking (2b)

Attackers may attempt to hijack user sessions to gain

unauthorized access to their accounts.

Subcategories:

Insecure Session Management: If the app doesn't properly



manage user sessions, it could be vulnerable to session

hijacking attacks.

This simplified attack tree outlines two main attack vectors,

SQL injection and session hijacking, that could lead to the

compromise of user data

VII. Risk analysis and

impact

Here are four security controls that can help mitigate threats:

Access Control: Implement strong access controls to ensure

that only authorized users can access sensitive data and

system functions. This includes user authentication, role-based

access control (RBAC), and proper permission settings.

Encryption: Use encryption mechanisms to protect data at rest

and in transit. Employ techniques like Transport Layer Security

(TLS) for secure communication and encryption algorithms

(e.g., AES) to safeguard sensitive data stored in databases.

Input Validation: Implement thorough input validation and output

encoding to prevent common vulnerabilities like SQL injection,

cross-site scripting (XSS), and command injection. Validating

and sanitizing user inputs helps filter out malicious input.

Logging and Monitoring: Set up comprehensive logging and

monitoring solutions to detect and respond to security incidents

in real-time. Monitor system logs, network traffic, and user

activities for signs of suspicious behavior or unauthorized

access.


	PASTA Worksheet Portfolio
	Stages
	Sneaker company


