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Abstract

The aim of this Measurement lab report is to measure lengths and masses using basic equipment 
such as rulers, micrometers, and scales. The data obtained will be analyzed and plotted to extract 
the final results, which is the density of the material the cylinders are made of (brass) and a 
calculated average density value of 11.81 ± 137.84 . The report also covers the concept of 𝑔

𝑐𝑚3

measurement error, and the rules for calculating uncertainties. Additionally, this experiment 
includes a second investigation where the number of background radioactive counts per minute 
will be measured using a geiger counter for a final calculated average background rate of 18.32 
counts/60s per our 60 experimental trials. The report emphasizes on the importance of collecting 
multiple data points and taking averages to improve the accuracy of the measurement.



Introduction

In this first part of the investigation, the density of a metal is determined by measuring the mass and 
volume of four brass cylinders. The precision of the measurements is limited by the equipment used and 
the care taken in obtaining the data. Measurement error is also taken into account, as it is an inherent part 
of any measurement. There are three main types of errors in scientific measurements: instrumental errors, 
systematic errors, and random errors. Instrumental errors are caused by the limitations or defects of the 
measuring instruments or equipment (calibration errors or wear and tear on equipment). Systematic errors 
are caused by a consistent bias or systematic deviation in the measurement process (incorrect 
measurement techniques or observer bias). Random errors are caused by unpredictable and uncontrollable 
variations in the measurement process (environmental conditions, measurement noise, or human error). 

Density (ρ) is a measure of the mass per unit volume of a substance and is commonly measured in 

units of grams per cubic centimeter ( ). In this experiment, a digital scale is used to measure each 𝑔

𝑐𝑚2

mass and a 100 mL graduated cylinder filled with ~ 50 mL of water is used to calculate each volume of 
the four cylinders. Once you have the mass and volume measurements, you can divide the mass by the 

volume to find the density of the substance (density (ρ)  = ). 𝑚𝑎𝑠𝑠 (𝑚)
𝑣𝑜𝑙𝑢𝑚𝑒 (𝑉)

The experiment also seeks to uncover the calculation of uncertainties and the propagation of errors in 
derived quantities. The second part of the investigation in the measurement experiment involves 
measuring the number of background radioactive counts present in the lab per minute with a geiger 
counter.

Background radiation is the level of ionizing radiation present in the environment from natural 
sources such as cosmic rays, radioactive elements in the soil, and radon gas. The count rate is a measure 
of the number of ionizing particles or photons detected per unit time, typically measured in counts per 
second (cps), or in the case of this experiment, counts per minute (cpm). To measure background radiation 
count rate, a detector such as a Geiger-Mueller (GMC-320) counter is placed in the location of interest, 
our 311 Churchill lab room, and the device is calibrated and started in its recording of 60 trials of cpm 
data for our experimental analysis.

The goal of this second part of the investigation is to quantify the uncertainties associated with 
random errors and calculate uncertainties in the average values using calculations of standard deviation 
and standard error of the mean (SEM). Standard deviation is a measure of the spread of a set of data. It 
quantifies the amount of variation or dispersion of a set of data values. The standard deviation is 
calculated by taking the square root of the variance, which is the average of the squared differences of the 
data points from the mean by using the equation below:

 = 𝜽 = δ𝑛
𝑅𝑀𝑆
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SEM is a measure of the variability of the mean of a set of sample data. It gives an idea of the 
precision with which the mean of the sample estimates the true mean of the population. It is calculated as 
the standard deviation of the sample divided by the square root of the sample size. The SEM is often used 



to construct a confidence interval around the sample mean, which can be used to estimate the range of 
values that the true population mean is likely to fall within which was calculated with the equation below:

 = δ(𝑎𝑣𝑒𝑟𝑎𝑔𝑒)𝑛 𝜽
𝑁

Investigation 1

The first part of this investigation required the utilization of four brass cylinders of differing sizes and 
lengths, a standard ruler to measure the length and diameter of the cylinders, a digital scale to measure 
their masses, and a 100 mL graduated cylinder to calculate the volumes of the four cylinders. 

In the first step of investigation 1, my lab partner and I used the digital scale to determine the masses 
(m)  of each cylinder and their respective errors (Table 1.1). The scale’s error was given on the physical 
scale as 0.10 g. This value was used to complete the error of each of their masses in the table below. In the 
next step, we used the standard ruler to measure the lengths (L) and diameters (D) of the four cylinders 
and recorded them in the table (Table 1.1). And in order to calculate the error of these two properties, we 
were instructed to find the smallest value on the ruler (0.10 cm) and divide it by 2 (  to 0.1

2 =  0. 05 𝑐𝑚)

find an error of 0.05 cm. These two measured values were then used to compute the volumes (V) using 

equation V = and the densities (ρ) using equation ρ =  of the four cylinders and their 𝜋𝐷2𝐿
4

𝑚
𝑉

corresponding relative errors to be reported in the table found below: 

Table 1.1 Measurements and Calculations for Investigation 1. 

Cylinder #1 #2 #3 #4

m (g) 3.70 6.10 14.00 21.70

δm (g) 0.10 0.10 0.10 0.10

δ𝑚
𝑚 2.70 1.60 0.71 0.46

L (cm) 4.40 3.10 3.90 6.40

δL (cm) 0.05 0.05 0.05 0.05

δ𝐿
𝐿 1.10 1.60 1.28 0.78

D (cm) 0.30 0.45 0.65 0.60

δD (cm) 0.05 0.05 0.05 0.05

δ𝐷
𝐷 16.67 11.11 7.69 8.33



V ( )𝑐𝑚3
0.31 0.49 1.29 1.81

δV ( )𝑐𝑚3
10.34 10.92 19.91 30.33

δ𝑉
𝑉 33.36 22.28 15.43 16.76

ρ( )𝑔

𝑐𝑚3 11.94 12.45 10.85 11.99

δρ( )𝑔

𝑐𝑚3 398.26 277.46 167.46 200.92

δρ
ρ 33.35 22.29 15.43 16.76

Next, my partner and I propagated the error of the volume calculations from the previous step by 
inputting each of the respective volume, density, and length into the following equation found in 
Appendix A [3]:

δ𝑉
𝑉 =  (2 δ𝐷

𝐷 )
2

+ ( δ𝐿
𝐿 )

2

In order to verify this calculation of the error, the 100 mL graduated cylinder was used as an 
additional method of determining one of the brass cylinder's volumes. My partner and I used our cylinder 
#4 for this piece of the experiment and filled the graduated cylinder with ~ 50.0 mL of water. After 
dropping our cylinder #4 in the ~ 50.0 mL of water, we observed the height level of the water rise to ~ 
57.5 mL and determined the value of the fourth brass cylinder to be ~ 7.5 mL in this instance. It is 
important to note that the error of this measurement was given on our graduated cylinder with a value of 1 

mL. For the purpose of this experiment, mL and  will be used interchangeably and the volume of 𝑐𝑚3

cylinder 4 can be recorded as 7.5 , which in comparison with our previously calculated volume of 1.81 𝑐𝑚3

, it can be assumed that this significant difference in calculation can be attributed to random error in 𝑐𝑚3

my partner and my volume calculations or observation of the graduated cylinder measurements and better 
attention to detail should be paid in these instances in future experiments. The water immersion method is 
the more precise method due to the value of error being a less significant factor in the measurement 
(1.00 < 30.33).

Next, we used formula ρ =  to calculate the densities of the four cylinders, recorded these values in 𝑚
𝑉

Table 1.1, and propagated the errors of these calculations using formula:

 = δρ
ρ ( δ𝑚

𝑚 )
2

+ ( δ𝑉
𝑉 )

2

    
      The four cylinders are all comprised of brass, and therefore, should all have the same density of          



~ 8.470  [1]. This is not the density result my partner and I experimentally calculated and this fact can 𝑔

𝑐𝑚3

be attributed, again, to the random error in our measurements. However, we were able to determine the 
average density of our four cylinder ρ values using the equation:

Average ρ = 
ρ

1
+ ρ

2
+ ρ

3
 + ρ

4

4

After the average ρ was determined, 11.81  , the error of this value was propagated using the 𝑔

𝑐𝑚3

formula:

 = δρ
(δρ

1
)2+ (δρ

2
)2+ (δρ

3
 )2+ (δρ

4
)2

4

for a value of 137.84 .𝑔

𝑐𝑚3

Fig. 1.2: Plot of mass vs. volume for the four brass cylinders in Investigation 1 and including the 
calculated line of best fit and error bars as given by Microsoft Excel.

Figure 1.2 illustrates the strong positive correlation between cylinder mass and volume in 

investigation 1. And because slope is calculated by and ρ = , the slope of the above graph is ∆𝑦
∆𝑥

𝑚
𝑉

representative of the density of the four brass cylinders. However, using the IPL straight line fit calculator 
[4], we computed the trendline y = (11.23 ± 185.56) x + (0.34 ± 131.20), and because the slope of the 
trendline is equal to the average density of the four cylinders in this instance, the density = (11.23 ± 



185.56). And in comparison to our previously calculated density value of 11.81 ± 137.84  , it is 𝑔

𝑐𝑚3

assumed that the average density determination via the provided formula and not the line of best fit is a 
more precise method of measurement considering the smaller margin of error (137.84 < 185.56).

Investigation 2

In the second part of this investigation into experimental measurement and error, my lab partner and I 
utilized the Geiger-Mueller (GMC-320) counter and GQ GMCounter PRO software to record 60 trials of 
background radiation count rate in cpm every 60s found below (Table 1.2). We then calculated the 
average count value of the 60 trials by adding up each of the 60 values and dividing them by the total 

number of trials, 60 (Av. = ) for a result of ~ 18.32. 
𝑥

1
+ 𝑥

2
+ 𝑥

3
+... + 𝑥

60

60

Table 1.2 Measurements of counts per 60s for Investigation 2.

Original Data Sorted Data (Ascending Count Value 
Order)

Trial Count/60s Trial Count/60s

1 14 38 10

2 15 59 10

3 19 8 12

4 25 46 13

5 15 52 13

6 18 56 13

7 22 1 14

8 12 23 14

9 17 32 14

10 16 49 14

11 19 2 15

12 17 5 15

13 22 53 15

14 22 10 16



15 19 25 16

16 27 28 16

17 21 37 16

18 19 42 16

19 18 47 16

20 19 9 17

21 17 12 17

22 20 21 17

23 14 27 17

24 23 39 17

25 16 40 17

26 22 41 17

27 17 44 17

28 16 51 17

29 25 6 18

30 22 19 18

31 22 33 18

32 14 54 18

33 18 57 18

34 19 3 19

35 25 11 19

36 20 15 19

37 16 18 19

38 10 20 19

39 17 34 19

40 17 45 19

41 17 22 20



42 16 36 20

43 20 43 20

44 17 17 21

45 19 7 22

46 13 13 22

47 16 14 22

48 24 26 22

49 14 30 22

50 22 31 22

51 17 50 22

52 13 24 23

53 15 55 23

54 18 60 23

55 23 48 24

56 13 4 25

57 18 29 25

58 25 35 25

59 10 58 25

60 23 16 27



Fig 1.3: A histogram Full Width at Half Maximum (FWHM) displaying our data regarding the number of 
background cpm over an hour separated into 10 equal bars as given by Microsoft Excel. 

We sorted the original count/60s data values into an ascending order from least to greatest in order to 
organize our geiger results into a histogram and calculated our bin size of 1.7 seconds given the advised 
division from the lab manual [3] of the data into 10 bars and using the equation:

bin size =  (𝑚𝑎𝑥−𝑚𝑖𝑛)
# 𝑜𝑓 𝑏𝑎𝑟𝑠

We use the creation of our histogram to calculate the uncertainty (δn) of 7.23 counts using the formula 
below: 

δn = 𝑊
2 2 𝑙𝑛 2

≈ 𝑊
2.3548

We then compared our results with our lab partner neighbors and agreed that our histogram accurately 
depicts the data in our table; however, the shape of it is odd and unusual. We confirmed that we accurately 
inputted the 60 data measurements collected from the Geiger-Mueller (GMC-320) counter and GQ 
GMCounter PRO software, but it is , and potentially due to random error, the histogram generated 10 
equally distributed bars to represent the 6 groupings of count data. Nonetheless, our neighboring group 
agreed with my lab partner and I in our process of calculating the uncertainty (δn) and got the same value 
of 7.23 counts.

Next, we calculated the standard deviation root-mean-square deviation ( ), another way to δ𝑛
𝑅𝑀𝑆

measure the spread of the data, was calculated to be 3.8729 counts by using the following equation:



 = 𝜽 = δ𝑛
𝑅𝑀𝑆
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Thus, the  spread determined is larger than the FWHM determined. And the SEM was then δ𝑛
𝑅𝑀𝑆

calculated to be 0.4995 with the equation below:

 = δ(𝑎𝑣𝑒𝑟𝑎𝑔𝑒)𝑛 𝜽
𝑁

Conclusion

This measurement experiment involved the execution of two investigations, both of which provide a 
recipe for determining how errors in measurement propagate to determine resulting errors in derived 
quantities. The purpose of investigation 1 of this experiment is to measure lengths and masses using basic 
equipment, and use the data obtained to analyze, graph, and determine the density of the cylinders’ 
material.The experiment also focuses on understanding the concept of measurement error and uncertainty. 
Four brass cylinders mass and length were measured and used to later calculate their volume and density, 
all with the error of measurement at the forefront of the analysis.

One method of density determination, using the IPL straight line fit calculator [4] where average 
density was represented by the slope of the graphed line (Figure 1.2), resulted in a value of 11.23 ± 

185.56 . However, the previously concluded more precise method of calculating average density 𝑔

𝑐𝑚3

output lead to a value of 11.81 ± 137.84  , which due to the random error in my partner and my 𝑔

𝑐𝑚3

measurements and calculations, is ~ 3.34  off of the known density of brass ( ).𝑔

𝑐𝑚3 8. 47 𝑔

𝑐𝑚3

 The report emphasizes the importance of repeating measurements and taking averages to improve the 
accuracy of the data obtained. However, derived quantities, such as the volume of the cylinder, had errors 
that were propagated from the measurements of diameter and length. Various equations were given (i.e 

the volume error propagation formula: ) and utilized to account for this δ𝑉
𝑉 =  (2 δ𝐷

𝐷 )
2

+ ( δ𝐿
𝐿 )

2

propagation in order to maximize the precision of our experiment trials and all values were recorded in 
Table 1.1; however, the accuracy of our information could have been improved upon by executing 
multiple trials of our measurements for average values that would minimize the random error in our 
original trial effort.

Whereas, in investigation 2 of this measurement experiment, the number of background radioactive 
counts present in the lab per minute will be measured using a Geiger-Mueller (GMC-320) counter and 
GQ GMCounter PRO software. The counter and software were set up and administered on the desktop 
computers provided in our lab room and an hour of cpm data was collected (Table 1.2). Through this 
process of data collection, it's important to note that the detector was calibrated before use and 
measurements were collected over a period of an hour, long enough to account for variations in the count 
rate. 



The data collected was recorded carefully, but the most important step was the data analysis, where 
calculations were made to extract the final results. The cpm data was organized in ascending order and 
organized into a histogram (Figure 1.3) to better visualize our collected results. In our trials, it became 
clear to us that the most common type of errors we encountered were random errors, which were 
quantified using the standard deviation root mean and the standard error in the mean value of the data. 
Meaning a lower standard deviation is optimal and correlates with minimal numerical outliers and a more 
normalized spread of the data. Our calculated value of standard deviation root-mean-square deviation, 
3.87 counts, and SEM, 0.50, demonstrate how our data is varied approximately 4 number values away 
from the average count/60s value collected.

The goal of this experiment was to quantify the uncertainties associated with these errors, and provide 
an opportunity to practice calculating uncertainties when random errors are present. But it could be 
argued that in both investigations, the precision of measurements was limited by the equipment used and 
the care taken in obtaining the data, and all measurements had an inherent uncertainty of measurement 
error. Overall, investigation 1 and 2 of this measurement experiment could benefit from increasing the 
amount of trials to diversify and expand upon the sample size and inhibit the executionary error.

Questions

1. If you had forgotten to zero-out (tare) the scale before weighing the cylinders in 
Investigation 1, how would it have affected your data? What type of error would this have 
introduced into your calculations?

If the scale had not been tared before measuring the cylinders in Investigation 1, it would have 
affected the data by introducing systematic error into the measurements of mass. This type of 
error would have resulted in all of the measured masses being off by the same amount, which 
would have affected the calculated density and introduced uncertainty into the results. This error 
would have been caused by the scale not being properly calibrated and would have been a 
consistent bias, affecting the accuracy of the measurement.

2. A cylinder of the same material as the one you used in your experiment has a mass of 250 g 
and a diameter of 10 cm. What is its length?

m = 250 g, d = 2r = 10 cm, therefore, r = 5 cm, ρ = 8.470 𝑔

𝑐𝑚3

V = ,  m = (ρ)(V)𝜋( 𝐷
2 )

2
𝐿

250 g = (8.470 ) (𝜋 (𝑔

𝑐𝑚3
10𝑐𝑚

2 )
2
𝐿)

L =  = 1.18 cm250 𝑔

(8.470 𝑔

𝑐𝑚3 )π(25 𝑐𝑚)2

3. A sphere of the same material as the one you used in your experiment has a radius r = 10 

cm. What is its mass? (Hint: = 𝜋 ) 𝑉
𝑠𝑝ℎ𝑒𝑟𝑒 

4
3 𝑟3



V = 𝜋  = 4,188.79 ; m = (8.470  )(4,188.79 ) = 35,289.4 g = 35.29 kg4
3 (10𝑐𝑚)3 𝑐𝑚3 𝑔

𝑐𝑚3 𝑐𝑚3

4. Suppose you receive a traffic ticket for speeding and want to contest it in court. Come up 
with two arguments, one using systematic error and the other using random error, that you 
could use to challenge the speed given by either your speedometer or the radar gun.

In terms of systematic error, it could be argued that the speedometer in your car was calibrated 
incorrectly, leading to a consistently higher reading than your actual speed. This is an example of 
a systematic error, as it would affect all measurements taken with the speedometer in the same 
way. In terms of random error, it could be argued that the radar gun used by the officer was not 
properly maintained, leading to inaccurate readings. This is an example of random error, as it 
would affect measurements taken with the radar gun in a random and unpredictable way.

5. If the data from two Geiger counters are combined, how will the standard deviation of the 
new data set compare to that of each of the individual Geiger counters?

If the data from two Geiger counters are combined, the standard deviation of the new data set will 
likely be smaller than that of each of the individual Geiger counters. The standard deviation of the 
combined data set can be calculated and then used to calculate the standard error in the mean 
value. This is because taking the average of multiple measurements reduces the overall 
measurement error by decreasing the random scattering of the individual measurements and 
decreases the overall spread of the data, resulting in a smaller standard deviation. However, it is 
important to note that this would depend on the specific measurements and data collected. It is an 
experimental best practice to calculate the uncertainties associated with the measurements and the 
derived quantities to determine the magnitude of the errors.

Honors Question

3. In honors question 2, how many additional measurements will you need to take to decrease 
the error in the mean by half? Given = 20 trials.

Error =  1
𝑁

Error = ,   =  =  = , N = 801
20

(𝐸𝑟𝑟𝑜𝑟)2 ( 1
20

)
2 1

(20)(4)
1
𝑁

There would need to be an additional 80 measurements to decrease the error in the mean by 
half.
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