
Experiment #6
Nucleophilic Substitution of Alkyl Halides

Hannah Axtell Teaching Assistant--John Bottomy Date Performed--October 26, 2020 Date Due--October 27, 2020

Experimental Objective

To understand and predict the products of a substitution reaction and the SN^1 and SN^2 reaction mechanisms under various conditions.

Reagents Used

Figure 1. Example of $AgNO_3$ / EtOH SN^1 Mechanism (generation of a 3° carbocation)

$$R-CI + NaI \xrightarrow{acetone} \left[\begin{array}{c} \delta^{-} & \delta^{-} \\ I - \cdot R - \cdot X \end{array} \right]^{\ddagger} \longrightarrow I-R + NaCI_{\downarrow}$$

Figure 2. Example of Nal / acetone SN^2 Mechanism (strong Nucleophile, polar aprotic solvent)

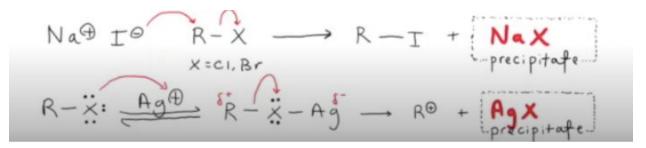
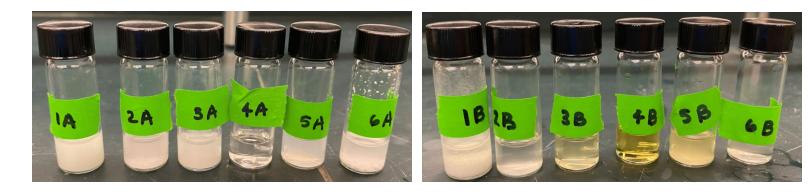


Figure 3. Mechanisms of this Nucleophilic Substitution lab

Procedure

Silver nitrate in EtOH (1%)


Six 0.3mL vials are obtained and with a syringe and a sharp needle ~0.1mL each of the six respective alkyl halides is added to the vial, sealing and labeling the cap after each addition. Next, a graduated pipette and pipette pump is used to add ~1.0mL of the silver nitrate in EtOH (1%) to each of the six vials, again sealing the lids after the addition to prevent air and solvent exposure. The observation of a precipitate is demonstrative of the reaction occurring; however, because the six alkyl halides may not react immediately, some may require aggravation or heating in order to react. In the case of heating, a 50mL beaker is filled halfway with water and the unreacted vials are heated to 50°C (conservative temperature due to the implicit danger in heating a closed system) or Level 1 until a precipitate forms or 5 minutes passes. The physical product description and reaction-time observations are noted. Once your vials are capped, do not open them again. Dispose of the whole vial in the proper waste container.

Sodium iodide in acetone (18%)

Six 0.3mL vials are obtained and with a syringe and a sharp needle ~0.1mL each of the six respective alkyl halides is added to the vial, sealing and labeling the cap after each addition. Next, a graduated pipette and pipette pump is used to add ~1.0mL of the sodium iodide in acetone (18%) to each of the six vials, again sealing the lids after the addition to prevent air and solvent exposure. The observation of a precipitate is

demonstrative of the reaction occurring; however, because the six alkyl halides may not react immediately, some may require aggravation or heating in order to react. In the case of heating, a 50mL beaker is filled halfway with water and the unreacted vials are heated to 50°C (conservative temperature due to the implicit danger in heating a closed system) or Level 1 until a precipitate forms or 5 minutes passes. The physical product description and reaction-time observations are noted. Once your vials are capped, do not open them again. Dispose of the whole vial in the proper waste container.

<u>Results</u>

Silver nitrate in EtOH (1%)

Sodium iodide in acetone (18%)

Solvent System	SN1 or SN2? Explain, taking into account the nucleophile type and solvent type.						
Silver nitrate in EtOH (1%)	SN^1 Mechanism (generation of a 3° carbocation). Ethanol is a polar protic solvent, and a poor nucleophile. The silver ion coordinates with the halide ion in the alkyl halide and enhances carbocation formation.						
Sodium iodide in acetone (18%)	lodide ion is a strong nucleophile, and SN^2 reactions are favored in polar aprotic solvents such as acetone.						
Silver nitrate in EtOH (1%)	Compound ID	Predicted Reaction Outcome	Justification for Predicted Reaction Outcome	Observed Reaction Speed	Physical Description of Product	Expected?	
#1	1-bromobutane	Yes	1°	Immediate	Cloudy liquid,	Yes	

					some crystal-like features	
#2	1-chlorobutane	Yes	1°	Yes	Cloudy	Yes
#3	2-chlorobutane	No	2°	After heating	Cloudy	No
#4	bromobenzene	No	structure of the ring (does not allow for formation of a carbocation)	No	Clear liquid	Yes
#5	1-chloro 2-methylpropane	No	1°	Agitated	Cloudy	No
#6	2-chloro 2-methylpropane	Yes	3°	Immediate	Cloudy	Yes
Sodium iodide in acetone (18%)	Compound ID	Predicted Reaction Outcome	Justification for Predicted Reaction Outcome	Observed Reaction	Physical Description of Product	Expected?
iodide in	Compound ID 1-bromobutane	Reaction	for Predicted Reaction		Description of	Expected? Yes
iodide in acetone (18%)		Reaction Outcome	for Predicted Reaction Outcome	Reaction	Description of Product Cloudy, dense/thick	
iodide in acetone (18%) #1	1-bromobutane	Reaction Outcome Yes	for Predicted Reaction Outcome 1°	Reaction	Description of Product Cloudy, dense/thick -looking Clear/cloudy/	Yes

			attack)			
#5	1-chloro 2-methylpropane	No	1° (hindered)	After heating	Color change, yellow and murky	Yes
#6	2-chloro 2-methylpropane	No	3°	No	Clear liquid	Yes

<u>Conclusion</u>

Overall the purpose of this experiment is to demonstrate nucleophilic substitution reactions, SN^1 (AgNO₃ in ethanol) and SN^2 (Nal in acetone) with the addition of a solvent to mixtures of alkyl halides in a hands-on, laboratory setting. In order to ensure the effectiveness and precision of the single trial, observations were noted while each reaction occurred. That being said, the two nucleophilic substitution mechanisms differ as the SN^2 reaction involves a one step concerted displacement of the leaving group by a nucleophile with inversion of configuration (weak bases are more stable, and therefore make for better leaving groups); however, the SN^1 reaction is a 2-step reaction involving loss of the leaving group to form a carbocation intermediate, followed by attack by a weak nucleophile with loss of stereochemistry (SN^2 reaction is suppressed because of the absence of a good nucleophile). That is to say, four aspects determine whether a SN^1 or SN^2 path will be taken: structure of the electrophile, nucleophile strength, leaving group ability, and solvent type. A tertiary electrophile and a protic solvent favor SN^1 (3°> $2^{\circ} > 1^{\circ} > CH_{3} > vinyl)$, while a primary electrophile, a strong nucleophile favor, and an aprotic solvent SN^2 (3°< 2°<1°< CH_3). For the SN^2 , an aprotic solvent was used (Nal in acetone), in that no hydrogen ion could be donated. For SN^1 reactions, a polar protic solvent is best for the reaction to occur, or, a solvent in which a hydrogen ion can be readily donated (as seen in ethanolic silver nitrate). Heat must be added to break the hydrogen bonds, and then the hydrogen on the ethanol can be donated, making the solvent protic again, so then the SN^1 reaction can occur for 2-chlorobutane. Consequently, it can be concluded that as with any reaction, heat helped the reaction proceed because it increased kinetic energy, or helped the molecules experience more collisions.