I - Price Change Runbook

Price Change Runbook

What it does, in one sentence

This runbook describes how the Subscriptions team makes price changes, handles legacy pricing, and cancels
subscriptions across first-party and third-party services.

Overview

First-Party Product Pricing
The following schema manages our first-party product pricing and is stored in the - DB within the . RDS:

Product

PK | ID

FK

CountryPriceRegion = ProductRegionPrice
PK | ID - PriceRegion PK |ID
FK PK | ID FK, U1
U1 pO———— —————04 FK, U1
U1 U1

A PriceRegion represents a list of country codes that behave similarly together and share a currency code, such as
"United States of America" or "Eurozone."

In the CountryPriceRegion table, each country code is mapped to a PriceRegion. Whichever row has the highest
version with an effective date in the past is used. If no country code entry exists on the CountryPriceRegion table,
we use a fallback country code of ZZ . The PriceRegion contains the currency code for all prices mapped to that
region.

For a given Product and PriceRegion, the price amount is determined by the ProductRegionPrice table. The row
with the highest version with an effective date in the past is used. If no entry exists, then no price is currently set for
that product and region.

Price Change Runbook - 1

I - Price Change Runbook

Third-Party Product Pricing

Third-party product pricing is handled in each respective administration tool.
For price change information on each third-party product go to:

« iTunes - App Store Connect: Manage pricing for auto-renewable subscriptions
« Google Play - Changing subscription prices
« Roku - Change pricing for in-channel subscriptions

Taxes

+ Users who have their prices changed must pay appropriate taxes on the SKU they are subscribed to.
« Taxmay either be inclusive or exclusive to the base SKU cost.
« Typically, the Payments team handles any tax rate changes.

« Taxes are handled by each payment processor. When an invoice is created, it passes a

tax included flagto SPP to denote whether or not the invoice price includes tax.

For more information on how | ll] handles taxes, go to Subscriptions and Payments Taxes.

Procedures

This section describes price change scripts to be run by the subscriptions team. For an example of cross-team price
change procedures, go to Price Decreases Phase 1 Playbook - |l

The following set of scripts update existing first-party subscription product prices. The scripts will:

« Generate the input file that contains the existing information about the product prices for the. tenant user
ID you want.
« Update the select. tenant with the changes you want to make to the subscription prices

After you have generated the information to update subscription prices, DevOps will assist with running the scripts,
and any output files must be sent to the subscriptions team.

At this time, all changes are manually completed using scripts run in the deployed environment, such
as prod.

Scheduling a Price Change for New Subscriptions

The following procedure describes how to change prices for new users.

Scheduling a Price Change

1. Create a.csv file with the new prices. It must contain the following columns in this exact order:

country code
old currency code

Procedures - 2

_ - Price Change Runbook

new currency code
premium 1 month amount
premium 3 month amount
premium 1 year amount
1 month amount

1 year amount

1 month amount
effective date

2. Within the app root of the subscription-processor repository, run the following:

I - sion mustbe an integer.
Recommended: The date when the price change requirements were received (in case it changes before
launch).

3. Make sure there are no errors.

4. Using the output file, create a Flyway file in db_.

Version it accordingly (update the minor version, not the major version, for seed updates).
5. Test locally before deploying to -

Verifying the Price Change

« This convenience script verifies the prices returned by the API.

« This script can be run both before and after applying the price change to see the price difference.

« Using the same input file as when you're scheduling new prices, run the following in the app root of the
subscription-processor repository:

g0 run
api h
tenan
input

You can change api-host toany of the deployed environments' URLs.

-

Procedures - 3

Service Monetization - Price Change Runbook

Updating Legacy Prices

This procedure describes how we change prices for existing subscribers. These users keep their legacy prices for a
certain period before we raise their subscription price to the new baseline rate.

« All current prices are considered legacy prices by default. This is because the system uses the price stored in
the Subscription and SubscriptionProduct rows (currency code + amount).
« There is currently no automated way for the system to update the prices for users on legacy pricing.
« To update prices for existing subscribers, the corresponding SubscriptionProduct rows need to be

updated with the database script described below.

Updating Prices for Existing Users
1. Inthe M db, run the followini script to generate the input file.

The expected format is one legacy user ID (numerical) per line.

SELECT s.account +id from c-.subscr'iption as s
LEFT JOIN c-.subscript'ion product as sp on s.id sp.subscription -id

WHERE s.is active 1
AND s.country code in ('2 LETTER COUNTRY CODE', ...)

AND sp.product 1id <> 1337; not employee sku

2. Run the following in the deployed environment:

This script can run several concurrent processes with different input files.
3. Upload the output file to the associated DevOps Jira ticket for auditing.
For an example ticket, go to [BllRun Script for Phase 2 Price Changes.

Canceling Subscriptions

This procedure describes how to cancel subscriptions for users who either opted out or didn't opt in before a given
date.

Considerations

The Marketing team must provide a .csv file containing information for users who opted in to the price change. It
must contain the following columns in this exact order:

Procedures - 4

Service Monetization - Price Change Runbook

account 1id

country

price change active products
tier

next renewal date

external -id

email

price increase renewal date

Canceling Subscriptions

1. Generate the list of subscribers located in opt-in and opt-out countries using the following queries:

You'll need to edit the following queries based on the countries and user cohorts affected by the price
change.

Opt-out Fan and Mega Fan (Monthly, Quarterly)

SELECT account id, country code, sku, T.name as tier, next renewal date
FROM M subs.subscription product SP
LEFT JOIN M subs.subscription S
ON SP.subscription id = S.1id
LEFT JOIN [l subs.product P
ON SP.product id = P.1id
LEFT JOIN HM subs.tier T
ON P.tier id = T.1id

WHERE country code IN N

AND 1is active =1

AND P.sku IN [
I nonth')

AND product 1id != 1337;

Opt-in Fan and MegaFan (Monthly, Quarterly, Yearly Renewal between
10.31-11.30)

SELECT account id, country code, sku, T.name as tier, next renewal date
FROM cr subs.subscription product SP
LEFT JOIN [l subs.subscription S
ON SP.subscription 1id = S.id
LEFT JOIN M subs.product P
ON SP.product 1id = P.1id
LEFT JOIN Jll subs.tier T
ON P.tier id = T.4id
WHERE country code IN _
AND 1is active =1
AND P.sku IN (' premium.1l month', ;‘prem'ium.B month',

'. _1 month') OR (P.sku IN premium.1l year',

Procedures - 5

Service Monetization - Price Change Runbook

! —1 year') AND next renewal date BETWEEN '2022-10-31
14:00:00' AND '2022-11-30 23:59:59'))
AND product 1id != 1337;

2. Cross reference each of the queries above with the following query, ensuring that the respective country
codes match:

SELECT account id, country code, sku, T.name as tier, next renewal date
FROM .subscription S

LEFT JOIN .future subscription changes FSC
ON S.id FSC.subscription 1id
LEFT JOIN .product P
ON FSC.future product 1id P.id
LEFT JOIN tier T
ON P.tier id T.id

WHERE country code IN [N

AND 1is active 1

AND next renewal date < '2022 11 30'

AND FSC.future product id IN (4, 5, 6, 10, 2000)
AND FSC.subscription 1id is not null

AND FSC.status 0

3. Usingthe .csv file you generated, and the .csv file provided by Marketing, run the following script within the
app root of the subscription-processor repository:

go run bin/price change 1input.go

marketing export input csv placeholder marketing export.csv
sent input csv placeholder | file.csv

price output csv price change output.csv

4. Split the output file into multiple files with the following script. Make sure the header row is not changed or
deleted, as the cancellation script relies on it to function.

If you're running this on Mac OSX, use gsplit instead of split .Youmayhavetocall: brew

install coreutils

export +inputPrefix 'price change output' parts 16 && split verbose d n 1/$

{parts}
additional suffix .csv
filter '(["SFILE" ! "${inputPrefix}.00.csv" &% head 1 "$

{inputPrefix}.csv" ; cat) > "SFILE"' "${inputPrefix}.csv" "${inputPrefix}."

5. Coordinate with DevOps to run the following files on the -ro ration machineinthe prod
environment:

_. proration/maintenance

Procedures - 6

Service Monetization - Price Change Runbook

config file /er/- proration/parameters.yml

command [opt in cancel
subs base url http:/_.com
list given filepath {filename}

For an example DevOps ticket, go to OPS-19091: Run Script for Phase 2 Price Changes.

Updating the tax_included flag

Thelistof tax +included country codes are maintained in the payments api.go file of the subscription-

processor repository.
Add to or remove from the list as necessary. This requires a deployment.

More Information

Subscriptions and Payments Subscription Tiers

Price Changes - Record of Progress

More Information - 7

