
T
HE OBJECT MANAGEMENT GROUP’S
CORBAservices (COS) EventService
(ES) specification is written to please
everybody—and nobody. The specification

presents various modes for connection and event
transmission and, as a result, allows a plethora of
supplier-consumer models. Oddly, it simultaneously
fails to develop any specification for a true
publish/subscribe system. A publish/subscribe
concept shouldn’t incorporate the dissimilar
notions of ‘push’ and ‘pull’; there should only be
one mode of event transmission. This article
describes the publish/subscribe concept and
proposes the PAndSService with interfaces and
specifications.

In search of true publish and
subscribe models
The fundamental premise behind classical client
server systems is clearly visible in the ES specification
and is encompassed by its pull-related syntax. It
was with the advent of RDBMS that client server
became a popular and well-understood paradigm
that played a part in triggering the popularity of
distributed computing. Essentially, intercomponent
messages are always strongly directed from the client
to the server.

As client server evolved, the callback concept was
introduced in which the client calls the server and
passes a reference of itself under certain cases. Later,
the server may turn around and call the client that
had passed the server its reference. Callbacks
were a transitory step towards the later peer-to-
peer paradigm. The messages are requests for
some data that may or may not be available at that
time, and so this type of message became known
as ‘request’. If the client did not get the data, it
would keep making repeated requests; this is
known as ‘polling’. Client server architectures
predate event-based architectures in which an
event happens to an object and may cause a
state-change and an associated output.

Client server models do not lend themselves well
to an event-based system. There is no way for an
interested party to know when an event occurred
and, therefore, when to pull it. A third-party
could find out if the specific event occurred upon
some object by polling it as in a client server

system, but this introduces two design problems.
First, the third party will not learn of the event when
it happened, but only when it makes a request, thus
allowing the event to age. The age of the event when
it is finally recognised could almost match the time
interval between successive requests. The second
problem is that the affected object must somehow
retain the event until all interested third parties
have recognised the event. It also introduces the
practical drawback of redundant messages and,
therefore, wasteful network traffic. Regardless of
how the ES specification is implemented, if the
pull syntax is in the mix then at least one of the
above disadvantages is incurred.

It’s worth pointing out that only events are
relevant to this article because events are the
only messages used in the publish/subscribe

● The Object Management Group’s
EventService and NotificationService
specifications are inadequate as
blueprints from which to produce a
product of any reasonable use.

● These specifications are deficient in
their Interface Definition Language
operations partially because they
neither provide nor build upon a
meaningful model of any sort.

● A true event-based publish and
subscribe model is presented, and the
interrelationships and functions of its
various components—among them
publishers, subscribers and two kinds
of event hubs—are described.

● Based upon the preceding model, we
derive a new IDL-based service that is
comprised of two structures and 14
operations within four compact
interfaces. Slightly different flavours
of an operation can be selected
depending on need.

● We propose the IDL and description of
this service, the PAndSService, as an
addition to the CORBAServices.

FACTS AT A GLANCE

LETTERS FROM THE FRONT

Publish and subscribe services are useful for updating multiple client nodes
with information from different sources. Kersasp D. Shekhdar proposes a new
interface for publish and subscribe services in Corba

Subscribing to a P&S model

40 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.co.uk

42 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.co.uk

LETTERS FROM THE FRONT

model. The other popular message types, notification and
request, cannot be components of an event-based publish/subscribe
service.

COS-ES examined
The opening presentation of the OMG documentation illustrates
the CosEventComm module and event-based semantics with a
tightly-coupled design, but this has nothing to do with an
event-based publish/subscribe model. It is no more than a
representation of two software processes in which one is directly
messaging the other. Now consider the decoupled model that
includes the event channel. The pull model is simply a semantic
layer over the classical client server module.

Now consider COS-ES-defined suppliers and consumers
decoupled by an event channel and communicating through the
push variants declared in the CosEventComm module. One of the
main problems is that the operation’s parameters have no
discriminator to identify which event occurred. Indeed, there is
no way for a consumer to subscribe to one or more particular
types of events. The consumer will receive all events without
discrimination from whichever event channels it has attached to.
Though the ES certainly does not dictate an implementation design,
considering our various implementation design alternatives,
we still run into trouble. These are the alternatives:

1. Inherit from the specified interfaces and refine the
push and pull variants by overriding, therefore
discriminating between events.
This approach alters the COS-ES design at its most basic levels,
which is an implicit acceptance that a severe enough problem
exists to prevent its usage. Instead, one might as well model
and design a better alternative from scratch.

2. Allow different kinds of events to be posted to one event
channel and different kinds of events will therefore be
sent to the consumer. The consumer takes the
responsibility to inspect the ‘any’ data component of
the event to determine the kind of event received and
discard those that are of no interest.
This impedes performance and efficiency because unnecessary
messages are sent from the event channel to the subscribers
and the subscriber has to inspect even the unwanted ones. The
second objection is that it doesn’t make sense to send events
to subscribers even if they have no interest in them.

3. Implement a design in which an event channel instance
is dedicated to one type of event.
This is also inefficient. If there are n types of events, it
would dictate n event-channels; moreover, it also imposes undue
costs in terms of the instantiation and existence of objects.
Consider: if there are o publishers and p subscribers, it would
dictate instantiation of n*o + n*p admin objects and the
creation and maintenance of the same number of proxy
objects. And it is quite possible that traffic for some events
may be so low (e.g. about five per day) that some channels
would be drastically underused.

4. Use the DynAny type as the data type that is used to send
the event data and have the event channel filter the
subsequent forwarding to consumers based upon the
specific DynAny.
Here, the event channel has to inspect the undefined DynAny
of every incoming event instead of merely a single discrete

property. Furthermore, the overkill of introducing a new data
type to solve a COS design problem only alleviates the
symptoms.

Combining these four options to arrive at an implementation
design does not eliminate any of the disadvantages, but they could
be minimised, given a specific usage by an exact setup of event
suppliers and event consumers. So the ES specification adds new
semantics, defines a decoupling and, of course, allows interface
declaration via the Interface Definition Language (IDL). But it
does not address the publish/subscribe problem and nor does it
address event-based communication because the interfaces are
not derived from any underlying model. The specification does
not carry any significant value and is therefore deficient. Finally,
the NotificationService is also a disappointment, because not
only are many of the same problems present, but a few of them
are magnified. New concerns have also been introduced.

Implementation vs design
Given the drawbacks and failures of COS-ES, we present a
publish/subscribe model, build a set of IDL operations on it and
provide a specification.

Components:
1. Event hub
2. Event publisher(s) (hereafter ‘publisher’)
3. Event subscriber(s) (hereafter ‘subscriber’)

Components for implementation are nearly always constructed
one-to-one from the design. This practice often limits an
implementation, because the implementation must only follow
from the design—it does not have to be the concrete representation
of the design.

Consequently, we shouldn’t assume that the event hub implies
a single object or process, as this could leave us with an inferior
implementation that could suffer from performance problems.
The design specifies the presence and responsibilities of
something, but the creation, maintenance and arrangement of
that thing are implementation design decisions. The IDLs
below do not contradict the preceding statement, nor do they
detract from the goal. But as far as the publishers and subscribers
know, only the event hub exists.

How publish and subscribe works
In the publish/subscribe system, both publishers and subscribers
first obtain a reference to the event hub. The precise way in which
this is done may vary by implementation. A single implementation
may provide a choice of methods for doing so. Publishers then
post events to the event hub, regardless of whether or not there
are any subscribers. Such information is superfluous to the
publisher. An event hub may mandate that publishers must first
register with it and subsequently make themselves known upon
each posting using an agreed identification. Subscribers subscribe
to the event hub for one or more events. When the subscribed-
to event occurs, the event hub messages the subscriber with the
properties of that event (see Event.idl). Any client of the event
hub may be a publisher as well as a subscriber.

When a publisher posts an event, its attributes consist of the
event name, its generator’s name and its data. The event hub may
make internal use of the generator name, say for logging and statistics

OCTOBER 2002 43

LETTERS FROM THE FRONT

purposes. When the event hub forwards an event to subscribers,
the event’s attributes are a unique ID in the form of an
alphanumeric sequence, and then the event name and event data.
These are commonly considered to be the three components of
an event. Hence, the structure types Event_In_t and Event_Out_t,
which respectively define events generated by publishers and the
counterpart events forwarded to subscribers.

Events are transitory and are to be despatched instantaneously
by the event hub. By definition, events are not persistent.
They are a point-in-time occurrence, and so this specification
does not provide for event persistence. Even persistence,
however, is a matter of pragmatics. It may not be possible for
some subscriber to always be up, yet they may require receipt
of all events. Hence, event persistence may be included as a value-
added feature by an implementer to his PAndSService product
in any way seen fit. Doing so would not impact the interfaces
or their specifications.

The remainder of this article addresses the PAndSService
interface. Similar to event persistence, ancillary properties such
as event lifetimes and levels of service are neither mandated nor
discussed, although the interfaces account for them. The reason
is that these too are implementation design or value-added
features, and so their definition is not relevant to this discussion.
From an object orientation standpoint, it would be sensible to
have integral and reusable IDLs for these properties so that the
same interface to control them could be available in a variety of
services.

Describing the PAndSService interfaces
There shall be two types of event hub within the PAndSService:
one that implements the EventHub interface and another that
implements the RegistrarEventHub interface. The latter requires
event publishers to successfully register before posting events.
Through registration, it imposes a form of validity checking on
publishers. A PAndSService implementation shall include both
because the type of event hub that would be used in a specific
publish/subscribe setting depends on the end user’s needs. This
choice would be made by the systems designer and both
interfaces support the essential publish/subscribe paradigm.

Listed below are the behaviours of the operations (with
specifications and requirements), along with rationales, where
necessary or helpful.

The EventHub interface:
This interface is implemented by the event hub and its operations
are invoked by publishers and subscribers.

attempt_post() is a one-way invocation that shall not block
the caller and the event hub wouldn’t return any status of event
delivery. The return value in post() blocks the invoker and allows
the event hub to return a value to indicate correctness of
parameters and successful receipt. It may raise a SystemException.
Other than that, it shall not raise any exceptions to any event
publisher. All event publications must be accepted.

A subscriber may request that events of particular type(s) be
despatched to it by invoking either subscribe_to() or
subscribe_to_events(). In the first operation, it subscribes to one
type of event. Using the second, it can subscribe to multiple event
types in one shot. Additionally, the subscriber informs the
event hub how it wants to receive events. If the boolean
oneway_attempt is true, the Subscriber::attempt_send() operation

shall be invoked for quick and dirty despatch. If it is false,
Subscriber::send() shall be invoked in which exceptions can
be raised and a boolean status can be returned for guaranteed delivery.

At request for subscription, the event hub does not check for
validity of the event name because it cannot know if and when
some publisher at some future point might start publishing the
subscribed-to event. However, in the case of subscribe_to(), it
shall indicate to the subscriber whether or not the event is
currently_publishing. An implementer of this service should decide
and document how fresh an event must be for currently_publishing
to evaluate to true. Compare the same syntax in the
RegistrarEventHub interface, where it has a well-defined and more
sophisticated semantic.

The RegistrarEventHub Interface:
All publishers using this interface must register with a unique
publisherId and with their intent to publish specific events before
the event hub will accept any event postings. The event hub also
maintains a list of all registered publishers and the events they
can post. The subscription operations are inherited directly, although
one is implemented differently.

Publishers may invoke either variation of register(). These
are to register a new publisher along with the event names it will
publish, as well as to register new event names for a previously
registered publisher. The publisher passes in a publisherId
string, which is the unique tag by which it identifies itself and
which it shall include in all subsequent calls. The first time a publisher
registers, it shall pass true in newPublisher. If a pre-existing publisher
is registering new event names, it shall pass false. If the event
hub receives a registration by a new publisher, the return value
shall be true if registration was successful, false otherwise. A false
value may indicate that the requested publisherId string is
already in use, in which case the event hub shall substitute
another tag in the same parameter as a suggestion. The publisher
can try to register again using the suggested tag or with something
else of its own choosing. If the event hub receives a registration
from a pre-existing publisher (newPublisher = false) and that
publisher is indeed registered, it shall add the passed event
names to any that the publisher had previously registered and
return true. If a registration is received from a publisher that claims
to be pre-existing but is found not to be so, the event hub shall
take no action and shall return false. In the singular operation,

Schematic of communication between the posting-centre, event-
publisher and event-subscriber

44 APPLICATION DEVELOPMENT ADVISOR ● www.appdevadvisor.co.uk

LETTERS FROM THE FRONT

one event name is supplied. In the plural, multiple event names
may be registered in one shot. If a publisher registers the same
event name again after having successfully registered it, nothing
shall be done; the subsequent request is simply ignored.

The inherited post() operations are overridden. They include
the added parameter publisherId. If the tag is unknown or is not
registered for theEvent.name, the appropriate exception shall be
raised. Its purpose is not so much for strict authorisation,
because it can be subverted by a publisher who wants to do so.
Rather, it is meant to safeguard against errors and track publisher
activity. Furthermore, monitoring and statistics may be desirable
within a publish/subscribe system.

A de_register() operation shall be invoked by a publisher when
it will no longer be publishing one or more events. In the
singular variant, the publisher identifies itself in publisherId, along
with the event it is deregistering. If a publisher object is de-allocating,
the publisher process is terminating, or it has finished publishing
events for any reason, it may invoke de_register_events().
Upon receiving this invocation, the event hub shall deregister
that publisher for all the events it had registered for. If a
deregister notification is received with an unknown publisherId
string, the UnknownClient exception is raised.

If a known publisher attempts to deregister for an event that
it is not currently registered for, an exception shall be raised. Indeed,
if it so happens that a publisher deregisters a second time for an
event, it may seem that it isn’t necessary to raise an exception because
the event hub could simply ignore the redundant notification.
However, the event hub is not required to maintain the states
of publishers. Therefore, the event hub cannot know if the
publisher had never registered in the first place for the event it
is asking to be deregistered for. Such a scenario would imply
erroneous programming within the publisher, and so
NotRegisteredForEvent is raised upon the described condition.

Unlike register_publisher() operarations, subscribe_to()
operations do not accept or return a subscriber ID. This is
because, in the case of publishers, some artefact is needed for
identification purposes only and a tag serves the purpose. But
in the case of subscribers, a reference to the actual object is necessary
for invocations. The object itself may as well serve the purpose
of a tag also, considering the reference will not be passed
redundantly or in frequent messages.

An extra operation, registered_Events(), is made possible in
this interface because publishers register their intent to publish
events a priori. This function shall return a set of all event

names currently registered. The same event name registered by
n publishers shall cause n occurrences of that event name in the
returned list. If no events are currently registered, an empty list
shall be returned. This operation may be used by a subscriber (actual
or potential) or a statistical process to check currently publishing
events at any time.

The remaining specifications for the subscribe and unsubscribe
operations are analogous to those for the deregister operations.
If a subscriber subscribes to the same event it already subscribed
to, nothing is done; if an unsubscribe invocation contains an
unknown Subscriber object, a UnknownClient exception is
raised. If a known subscriber attempts to unsubscribe to (an)
event(s) it is not currently subscribed to, a NotRegisteredForEvent
exception is raised (the rationale is the same as that given
above for a publisher deregistering an event it is not registered
for). Finally, in the case of subscribe_to(), the
currently_publishing ‘out’ parameter has a different semantic
than the same syntactic element in the superclass interface
because of certainty in this interface. The event hub shall
return true if at least one publisher presently connected has
registered the event the subscriber has requested subscription
to, and false otherwise.

The subscriber interface
The subscriber interface must be implemented by the subscribers
within the application system and its operations shall be invoked
by the event hub. The two variations of send() are analogous to
the post() operations—one blocks and has a return value,
while the other does not block and has no return value. They each
have their advantages and disadvantages. Considering the
realities of a subscriber failing to handle an event for any
internal reason related to programming or context, the subscriber
may raise a Failed exception. The event hub shall catch this
exception and later resend the event once more to that subscriber.
The elapsed time is dependent on preset configurations. Besides
this, exception Disconnected may also be raised. Upon catching
this exception, the event hub shall automatically unsubscribe the
subscriber for all events. It is a subscriber’s responsibility to subscribe
to events each time it connects.

In conclusion, we submit that these few interfaces with a handful
of operations allow an orderly but flexible way of implementing
a true publish/subscribe system by providing a feature-complete
interface set and specification, while leaving out extraneous
superfluities. ■ Acknowledgements: Michael Gentry

Listing 1: PAndSService IDL interfaces
/* Begin Event.idl */

interface Event {

struct Event_In_t {

string name;

string generator;

any data;

};

struct Event_Out_t {

string id;

string name;

any data;

};

OCTOBER 2002 45

LETTERS FROM THE FRONT

};

/* End Event.idl */

———

/* Begin Subscriber.idl */

#include Event.idl

exception Failed {};

interface Subscriber {

oneway void attempt_send(in Event_Out_t anEvent);

boolean send(in Event_Out_t anEvent) raises (Disconnected, Failed);

};

/* End Subscriber.idl */

———

/* Begin PAndS.idl */

#include Event.idl

#include Subscriber.idl

module PAndS {

typedef sequence <string> strings;

exception UnknownClient {};

exception NotRegisteredForEvent {};

interface EventHub {

oneway void attempt_post(in Event_In_t theEvent);

boolean post(in Event_In_t theEvent) raises (SystemException);

boolean subscribe_to(in Subscriber recipient, in string anEventName, in boolean oneway_attempt, out boolean

currently_publishing);

boolean subscribe_to_events(in Subscriber recipient, in strings eventNames, in boolean oneway_attempt);

boolean unsubscribe_for(in Subscriber recipient, in string anEventName) raises (UnknownClient,

NotRegisteredForEvent);

boolean unsubscribe_for_events(in Subscriber recipient, in strings eventNames) raises (UnknownClient,

NotRegisteredForEvent);

};

interface RegistrarEventHub : EventHub {

boolean register(inout string publisherId, in boolean newPublisher, in string anEventName);

boolean register_events(inout string publisherId, in boolean newPublisher, in strings eventNames);

boolean de_register(in string publisherId, in string anEventName) raises (UnknownClient,

NotRegisteredForEvent);

boolean de_register_events(in string publisherId) raises (UnknownClient);

oneway void attempt_post(in string publisherId; in Event_In_t theEvent) raises (UnknownClient,

NotRegisteredForEvent);

boolean post(in string publisherId; in Event_In_t theEvent) raises (UnknownClient, NotRegisteredForEvent);

strings registered_Events();

};

};

/* End PAndS.idl */

