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Abstract

In order to develop a framework in which to gain a more intuitive understanding of the objects with more than
three spacial dimensions, a ratio β was defined and computed for the three n-dimensional regular polytopes
as well as for various radially symmetric objects. A closed-form expression for β was found for all objects
that were studied. From this, it was found that the number of dimensions of a shape can be determined from
only this β and its the general geometry. Therefore, it was possible to redefine a dimension in terms of a
single quantity which depends only on two lengths. A possible relationship between β and the symmetries of
various families of shapes was suggested and explored but has not been proven.

I. Introduction

When we first learn mathematics as
children, we rely strongly on our in-
tuitions about the world to under-

stand and contextualize the formalism we are
taught. We think about subtraction as how
many apples we have left if we had 5 apples
and gave 3 to our friend. When we do this,
we can "see" the apples in our head. We are
given blocks to represent units, tens and hun-
dreds and we cut chocolate bars into thirds
to get a visual (and tasty) understanding of
fractions. As we continue in our mathematical
education(at least at first glance), the concepts
we are taught seem to become less and less
intuitive and further divorced from our basic
understanding of the world we live in.

One element of mathematics that often
causes people to seperate their understanding
of mathematics from their intuitions about the
world is the concept of "higher dimensions"
(more than three dimensions). The goal of this
project is to bridge the gap between abstract
mathematics and our intuitions about the phys-
ical world by studying objects with more than

three spacial dimensions.

Note to the reader: This paper is meant to be
accessible to those without much prior knowl-
edge of mathematics and assumes only a basic
knowledge of elementary geometry, a very ba-
sic familiarity with elementary calculus and
some familiarity with basic trigonometric func-
tions for all sections, except certain footnotes
and the appendices, which are aimed at the
more mathematically knowledgeable reader.
For those concepts which I do not fully explain
and are not central to the results presented
here, I have provided interesting and accessi-
ble references when possible.

II. Motivation

How do we define a dimension? Naively,
we might say a dimension is a direction one
can travel that is perpendicular (or orthogo-
nal) to all other directions in which one can
travel. This seems to match our day to day
understanding of the world. We can go in the
right/left direction, the front/back direction
and the up/down direction (although this last
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direction generally requirest he help of some
technological contraption). This makes three
directions, which agrees with our understand-
ing that we live in a world with three spacial
dimensions1.

This definition, however, does not seem to
help us intuitively understand what it means
for an object to have 4 dimensions, much less
10 or 20. I can’t point in a tenth direction any
more than I can point in a fourth direction. Ed-
win A. Abbott highlights this well in his 1884
essay Flatland [Abbott, 1884], in which he in-
troduces us to a square that lives in a 2D world
(Flatland). The square cannot conceive of a
third dimension; of what it means to go "up",
even though we know that up does indeed ex-
ist. Like the square, we cannot conceive of a
direction we cannot see, one that is not a part of
our world. Therefore, we are left with the fact
that either we cannot gain a profound under-
standing of these higher dimensional spaces
that are so often studied in mathematics and
physics or we must find another scheme by
which to comprehend these concepts.

Another seemingly natural way to under-
stand what a dimension is could be to consider
a dimension as a piece of information needed
to localize an event in the world. For example,
in our universe, which has three spacial dimen-
sions and one-time dimension, we need four
data points to localize an event: a longitude, a
latitude, an altitude and a time. While this is
seemingly just a consequence of the previously
discussed idea of directions, it also provides us
with a possible path to explore in search of a
better way to understand higher dimensional
objects and spaces. A set of coordinates in
space, like we just described, assumes the idea
of an origin. From this, the concept of vectors,
and therefore distances, arises. The work pre-
sented in this text is centred around the scaling
of distances in spaces with an increasing num-

1I will only consider spacial dimensions for the purpose
of this exercise. If you wish, you can imagine that the
objects I will be considering live in a space which also has
an extra temporal dimension, but that we are observing a
snapshot of them in time.

ber of dimensions.2 This came from the logical
progression of concepts above, but also from
the fact that the distance between points is a
somewhat fundamental and certainly simple
and intuitive quantity to study in a geometric
shape.

III. Methodology

Before starting our dive into the more quanti-
tative portion of the work, I’d like to discuss
some aspects of the methodology that was used
and give some justification for the steps that
were taken, starting with a short discussion of
where the idea for this method came from. In
physics, there is a famous series of experiments
which we call the Stern-Gerlach experiments.
The general idea is that we send particles into
a black box and can measure them after they
come out, which gives us information about
them. While we don’t necessarily know how
this box works, we know that it does indeed
work and makes no errors3.

While we will not dive into the very pro-
found but somewhat complex results and im-
plications of this particular set up, I think it
is important to understand its premise, both
for context and justify the thought experiment
I am proposing. There are a few important
takeaways that I would like to touch upon be-
fore we leave the Stern-Gerlach experiments
behind4. First, it is important to note that how
we get the particles and where they come from
or are prepared is irrelevant and doesn’t af-
fect the results or the information we can gain
from the exercise. Furthermore, the internal

2For simplicity, I have considered only objects embed-
ded in spaces with Euclidean metrics, or so-called "flat"
spaces. It would be an interesting, if more complex and
computationally involved, extension to the project to check
if this generalizes to other types of metrics and if, perhaps,
this could provide us with some more simple or elegant
intuition.

3Sometmimes, we imagine an "intelligent monkey"
which lives in the box and is the cause of the effect the box
has on the particles.

4The Stern-Gerlach experiments were performed in a
lab, but for the purposes of our understanding, this is not
important.
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mechanism of the black box need not be known
for the thought experiment version to give us
insight.

Now, let me propose a similar game to
play, the results of which I will be developing
throughout this paper. Imagine a similar set
up to the Stern-Gerlach experiments, but rather
than particles entering the black box, they are
shapes or abstract geometries. We don’t know
the number of dimensions of the shape but we
would like to find out. The goal of this project
is therefore to develop some idea of a quantity
that the black box could give to the user which
would give us the number of dimensions.

Those of you who remember some elemen-
tary geometry might suggest that volume
could be this quantity and you would be cor-
rect in claiming that volume could fill this role.
In up to three dimensions, this is fairly obvious.
A line that is doubled in length would double
in mass as well, if we assume constant mass
density, whereas a 2D tile would quadruple in
mass if its side length was doubled, since area
scales as x2. Similarly, a box would be eight
times as heavy if its side length was doubled
because 3-volume scales as x3. While I won’t
offer any proof of this, nor will I dwell on this
example because it will not be relevant to our
future discussion, I will ask the reader to ac-
cept that n-volume scales as xn, which means
that we could conceivably, use volume in our
thought experiment. However, volume in more
than three dimensions is not very intuitive, so
we will try to find a better quantity to examine.

IV. Regular Polytopes

i. Regular Polygons

Many of us were introduced to the concept of
regular polygons at some point during our first
or second journey into the wonderful world of
geometry. We define them as having sides of
equal length and equal interior angles. Because
of this regularity and predictable progression, I
began my exercise by considering these shapes.

A natural first question to ask, if we wish
to be able to generalize any relation found or
glean some understanding of higher dimen-
sions from it, is whether we can find a more
general or intrinsic way to define regular poly-
gons. For this, we will take a ratio of two
distances, in order to be able to make this mea-
sure independent of the length of the sides of
the shape.

A natural choice of two distances would
be the shortest straight line segment from
the center of the shape to one of its exterior
boundary (which turns out to be the segment
joining the center of the shape to the center of
a side) as well as the distance from the center
of the shape to a vertex, as shown in Figure
3 . These will turn out to be good choices of
distances, since they will be generalizable not
only to all regular polygons but also to all
regular shapes in an arbitrary N dimensions.

Notation: We will denote the shortest of
the two distances d and the larger of the two D.

Definition 1. We will call the ratio of interest β 5,
which we define as β := d

D .

Figure 1: Inscribed circle in an equilateral triangle.

An important fact to note is that these
distances d and D will correspond to the radii

5I have designated the ratio of interest as β in honour
of the BLUE Fellowship, during which this research was
completed (β being the Greek equivalent of B).
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of the inscribed and circumscribed circles
respectively.

Definition 2. The inscribed cricle is the circle
tangent to each side of the shape. See Figure 1.

Definition 3. The circumscribed cricle is the cir-
cle touching each vertex of the shape. See Figure
2.

Figure 2: Circumscribed circle around an equilateral tri-
angle.

First, let’s compute β for the equilateral tri-
angle. Given sides of length 2L, let’s first cal-
culate the length D. This is simply a question
of simple geometry and the Pythagorean theo-
rem. Since the goal here is not to provide a full
proof but rather to build intuition, I will not
provide a full proof but rather a short sketch
of the method to compute this distance.

In Figure 3, we take the shaded triangle,
which we know must be an isosceles triangle,
with interior angles π

6 and 2π
3 . From this, we

can create two right triangles Figure 4, of side
lengths d, D and L.

By definition, we know:

tan(θ) =
d
L

(1)

Using this and the Pythagorean Theorem,
we can solve for β.

β =
d
D

=
tan(θ)
sec(θ)

= sin(θ) (2)

Figure 3: An equilateral triangle with sides of length 2L
with D and d labelled. The center of the shape
is where the three red lines intersect.

Figure 4: A right triangle made of half the shaded area
in Figure 3.

We simplify this, knowing θ = π
6 to get that

for equilateral triangles:

β =
d
D

=
1
2

(3)

Now, let’s compute the ratio for a square of
side length 2L, shown in Figure 5.
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Figure 5: A square, showing D and d.

Again, the computation is quite simple and
we get:

β =
L√

L2 + L2
=

1√
2

(4)

Since we know that the angles of the right
triangle are both π

4 , we can see that this is
equivalent to the result found in Equation 2,
since sin

(
π
4
)
= 1√

2
.

While I won’t give a formal proof of this, it
is easy to convince yourself that the relation
found in Equation 2 applies to all regular poly-
gones. Since the interior angle of a regular
polygone with s sides is (s−2)π

s , we know that

θ = (s−2)π
2s . Since s > 3, we know that θ will

stay bounded and will never be smaller than
π
6 . The upper limit of θ is:

θmax = lim
s→∞

(ns− 2)π
2s

= lim
s→∞

π

2
(1− 2

s
)

=
π

2

(5)

As a sanity check, let’s consider what this
limit is. If a regular polygon has an infinite
number of sides, it can be considered a circle.
Since a circle is defined as a shape where all
points are equidistant from the center, β should
be 1. Indeed, we see that the ratio will be
sin
(

π
2
)
= 1, which should not be a surprising

result, but one we are glad to have obtained
nonetheless. It is also important to note that
since θ varies between π

6 and π
2 , sin(θ) will not

behave periodically and will take a different
value for all values of s. So, it will be different
for every regular polygon. This gives us a
semblance of uniqueness.

With this result in hand, we have shown
that the ratio of the radii of the inscribed and
circumscribed circles is a good identifier of a
shape. However, this number and the evolution
of this number is not particularly intuitive. In
order to transform this into what I believe to
be a slightly more intuitive form, we will look
at the s = 3 and s = 4 cases computed above6

and rewrite them as

β =
1

s−2
√

n
. (6)

where n is the number of dimensions (here,
2). We will show that this is true in the next
section. For s = 3, we get 1

1√2
= 1

2 . For the

s = 4 case, we get 1
2√2

= 1√
2
. Both of these are

as desired.

ii. Higher Dimensional Regular Poly-
topes

Polytopes are the higher dimensional
analogues of polygons [Adams, 2013]
[Mansiska, 2008]. For example, a cube is
simply a n = 3 polytope. Similarly, a regular
polytope is a polytope with identical bound-
aries and equal distance from the center of the
polytope to each vertex. We know that there
are 5 regular polytopes in three dimensions,
which we call the platonic solids. These were
first introduced and studied by Plato (which
you may have guessed by their name), but we
wouldn’t consider polytopes in more than 3D
until about 1850, through the work of Schläfli
[Souam, 2004].

6These are the only shapes that will generalize to an
arbitrary N dimensions, so they will be the only ones
considered.
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Before diving into our discussion of poly-
topes, we will take a moment to recall three of
the five platonic solids. These will be useful to
us in higher dimensions.

Definition 4. The cube has 6 faces, each of which
a square. It is the 3D extension of the square.

Figure 6: The cube.

Definition 5. The tetrahedron has 4 faces, each
of which is an equilateral triangle. It is the 3D
extension of the equilateral triangle.

Figure 7: The tetrahedron.

Definition 6. The octahedron has 8 faces, each of
which is an equilateral triangle. It can be useful to
imagine the shape as two pyramids with a square
base glued together at their bases. It is not an
obvious 3D extension of any regular polygon.

Figure 8: The octahedron.

We now know that there are a finite num-
ber of polytopes in every dimension higher
than 2 7. In fact, in dimensions higher than 4,
only three regular polytopes exist. These are
the higher dimensional extensions of the cube,
tetrahedron and octahedron.

In three dimensions, it is fairly straightfor-
ward to compute β for the cube. The distance
D is, in fact, simply the distance between the
origin and a point situated at (L, L, L), if the
cube has sides of length 2L. The distance d is
simply L like it was for the square. If you are
having trouble picturing this, you can convince
yourself by thinking of these distances in terms
of vectors in 3-space, and imagine the cube as
being centred at the origin. So, for the cube,
we get:

β =
L√

L2 + L2 + L2
=

1√
3

(7)

Given what we know about distances in eu-
clidean space8, we can generalize this fairly
easily. In fact, centering a the cube (of n dimen-
sions) at the origin, βwill be:

β =
L√
nL2

=
1√
n

(8)

7If you’d like to know more about why this is or what
they are, the Youtube channel Numberfile has a wonder-
ful and very accessible video on the topic called "Perfect
Shapes in Higher Dimensions".

8Euclidean space is simply flat space, or the space you
are probably used to dealing with. It is the x-y-z system
used in introductory geometry.
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This result will give us a lot of valuable in-
formation, but I will put off the discussion of
the implications of this statement as well as the
intuition we can hope to get from it until after
we have made the same computations for the
other regular polytopes. I will, however, pause
to note that this is consistent with the 2D case
from the last section, as expected.

The computations for the tetrahedron and
octahedron are significantly more involved,
mostly due to the nature of tilted triangles.
Therefore, I will use the results for the length
of the radii of the inscribed and circumscribed
n-spheres (the n-dimensional extension of the
sphere) stated in Radii of Regular Polytopes
[Brandenberg, 2003] and the fact that the cen-
ter of a regular tetrahedron is 1

3 of the way up
its axis of symmetry. It will also be useful to
know that this proportion scales as 1

n in higher
dimensions.

However, knowing this last fact we have al-
ready found β. If this is not immediately obvi-
ous to you in terms of radii of circumscribed
and inscribed spheres, you can convince your-
self by thinking of these distances as shortest
and longest distances from the center. There-
fore, we get that for an n-simplex of side length
2L:

β =
1
n

(9)

which is consistent with the 2D case, as de-
sired.

Finally, we will look at the octohedron. We
know, from [Wu & Zhang, 2010] that β is:

β =
1√
n

(10)

This is interesting since this is the same re-
lation as for the cube. There is a profound
reason for this 9, but I will not discuss this in
depth because it will shed little light on the
immediate question at hand.

9If you are familiar with the concept of a dual space,
you can check that this makes sense, knowing that the
octahedron is the dual of the cube.

Before making this computation for other
shapes, I will take a moment to discuss the im-
plications of the relations we have just found.

iii. Brief Discussion of the Results of
Section IV

The results obtained in this section have a pleas-
ing symmetry to them. In fact, all of the regular
polytopes follow a similar evolution, where β
evolves as "one over some power of the dimen-
sion". This may lead us to think that our β is,
in fact, a good quantity to think about. The
facts that we can find a closed form solution
for β in every dimension and that the evolution
of β as a function of dimension is so regular,
in addition to the aforementioned regularity of
the closed form solution between the shapes
all support our choice of quantity. With this in
hand, we can compute β for more shapes to see
if we can indeed build some type of intuition
for higher dimensions.

V. Radially Symmetric Objects

The most symmetric and simplest shape we
have is the sphere. However, β will always be
1, independent of dimension. For this reason,
the sphere is not particularly interesting for
our discussion so we will move on.

i. Tori

The torus is a commonly studied object. You
can picture the torus as being the surface of a
very smooth bagel, as seen in Figure 9.

7
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Figure 9: The Torus.

An interesting thing to stop and consider
about the torus is that while it is a 2D object
(it is, after all, a surface), it can only exist in
a space that has more than two dimensions.
One might be tempted to say that a torus
embedded (living) in two dimensions is simply
an oval inside another oval, but the two
lines won’t be connected which is why we
cannot consider this a torus in a plane10. This
difference, while fundamental, will not greatly
affect the nature of our discussion. However, it
will affect the notation, which we will need to
keep in mind.

Notation: An n-torus will refer to a torus
embedded in a space with n+1 dimen-
sions. Therefore, an n-torus is, in fact, an
n-dimensional object.

We define the the 2-torus as follows:

(
√

x2 + y2 − R)2 + z2 = r2 (11)

where R and r are as shown in Figure 10

10This is a very informal argument, but a formal argu-
ment could be made using the concept of simply connected
surfaces. Again, I won’t take the time to discuss this in
depth since the goal is simply to gain intuition.

Figure 10: R and r on the torus.

We will parametrize11 this torus in the usual
way as follows:

x = (R + r cos θ) cos ϕ

y = (R + r cos θ) sin ϕ

z = r sin θ

(12)

where θ and ϕ are as shown in Figures 11
and 12:

Figure 11: θ on the torus.

11If you are not familiar with the concept of parametriza-
tion, you can imagine it as a change of variables. In simple
terms, we want to write our coordinates x, y and z in terms
of other variables such that equation (11) is still true.

8
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Figure 12: ϕ on the torus.

We could parametrize the 2-torus differ-
ently, but this turns out to be a convenient
parametrization so we will keep it. If you
are not convinced that this is an appropriate
parametrization, it might be worthwhile to take
a moment to substitute x, y and z for the ex-
pressions in (12). With a little bit of trigonome-
try, you should easily be able to see that equa-
tion (11) holds.

The choice of D and d on the torus is not
quite as obvious as it was for the regular poly-
topes. What is the inscribed sphere? The cir-
cumscribed sphere? To avoid these somewhat
ill-defined questions, I considered D and d by
their initial definition which we used for 2D
for regular polygons. Therefore, I will con-
sider d to be the shortest distance from the
center to the boundary of the torus and D as
the longest such distance. Finding D and d in
the 2-torus requires more involved computa-
tions. For this, we will need to use a technique
commonly used in calculus, which is described
in Theorem 1.

Theorem 1. For any differentiable function f (x),
the minima and maxima of f (x) occur at x such
that f ′(x) = 0.

Note: The following paragraph is meant to
explain Theorem 1. If you are already familiar
with this concept, you can safely proceed to the
subsequent paragraph knowing that no new
information will be introduced here.

Theorem 1 tells us that for some function

f (x), we can find the points at which it attains
a maximum or a minimum by taking its deriva-
tive, setting it equal to zero and then solving
for x. Once this is done, we can compute the
value of f at these points and find its minima
and maxima. For example, if we take the func-
tion f (x) = x2, we can find its minimum (it has
no finite maximum so we will not get a maxi-
mum value) by taking its derivative f ′(x) = 2x
and solving 2x = 0. So, we know that we get
a minimum at x = 0, which shouldn’t be sur-
prising since we know that this parabola has
its minimum value at zero. This works in a
similar way for functions that have multiple
(local) maxima and minima. For example, the
function f (x) = sin(x) has minima at x such
that f ′(x) = cos(x) = 0. This means that it will
have a maximum at x = π

2 + 2πa and minima
at 3π

2 + 2πa, where a is an integer.

Theorem 1 can be extended to a function of
multiple variables, which we will need to use it
in this context. But what function do we want
to maximize and minimize? A first intuitive
guess might be to choose the equation in (11),
but this would not be a good choice because
what we want to extremize is the distance from
the origin. So, we will choose the distance
function:

f (x, y, z) :=
√

x2 + y2 + z2 (13)

We can rewrite this in a more useful way, in
terms of our parametrization:

f (θ) =
√

R2 + r2 + 2Rr cos θ (14)

This turns out to be a function of only one
variable, which will simplify the process of
finding the maxima and minima. Taking the
derivative of the function in (14), we get the
following to solve:

− 2Rr sin θ = 0 (15)

meaning that the maxima and minima will
be at θ = 0, π (since we know θ only goes from
0 to 2π). From this, we compute f (0) and f (π),

9
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to determine which is the maximum and which
is the minimum.

f (0) =
√

R2 + r2 + 2Rr

f (π) =
√

R2 + r2 − 2Rr
(16)

So, we get that d =
√

R2 + r2 − 2Rr and D =√
R2 + r2 + 2Rr, so β is:

β =

√
R2 + r2 − 2Rr√
R2 + r2 + 2Rr

=

√
(R− r)2√
(R + r)2

=
R− r
R + r

(17)

This result, at first glance, doesn’t seem very
informative, since we don’t have much infor-
mation about R and r. This leads us to a dis-
cussion that I have so far ignored: what is a
"regular" torus? In fact, there are infinitely
many different tori with a different ratio of
R
r . This shouldn’t matter in general, but for
the purposes of looking at the evolution of β
in terms of the dimension of the torus, it will
be useful to specify the relationship between
R and r. When I consider the evolution of β
in n-tori, I will assume that all the tori in the
progression have the same value of R

r , which
will be some constant that we will call α, so we
have R = αr. Let’s rewrite β with this notation
in hand:

β =
R− αR
R + αR

=
1− α

1 + α
(18)

Since α is simply a constant, β is itself a
constant.

Now that we have computed β for the 2-
torus, it is time to define higher dimensional
tori. In higher dimensions, the torus is defined
such that the sum of the square of each pair of
coordinates is equal to 1, which means that the
boundary is equidistant from the center at each
point. Therefore, β will, by definition, always
be 1, for the same reason as for the sphere.

This result, while it may seem trivial, will have
quite profound implications later on.

ii. Torus-Like Symmetric Objects

A slightly more complex result stems from
torus-like objects, which we will call pseudo-
tori. In higher dimensions, there are multiple
ways to construct pseudo-tori, but the 2D case
will remain the torus we studied in the last
section. For the purpose of this discussion, I
have considered only one of these definitions
completely which is discussed below. A
possible next step to the project would be to
show that this relation holds for all definitions
of these objects. 12 Appendix 1 contains a
more in-depth discussion about the different
ways we can construct pseudo-tori objects and
a short justification of the choice I made in
using the following equation to define them.

Notation: For an n-pseudo-torus, we require
n + 1 euclidean spacial coordinates. We will
call these xi, such that i runs from 1 to n+ 1. x1
and x2 correspond to x and y in our previous
notation.

Using the above notation, we will define an
n-pseudo-torus by the following equation:

(
√

x2
1 + x2

2 − R)2 +
n+1

∑
3

x2
i = r2 (19)

We will parametrize this in a clever way such
that the sum of the squares of all the variables
will always be R2 + r2 + 2Rr cos θ, where θ, R
and r are defined in the same way as before.
Obviously, we will need to introduce a new an-
gle for each new dimension that we introduce.
These angles will be measured from the axis
in the new "direction" in the same way as φ is
measured from the z-axis. Four examples of

12As a quick sanity check, β was computed for one other
definintions for only the 3D case. β was as expected. The
computation and result are not included since it was not
done formally.
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this parametrization as well as a short expla-
nation of how the parametrization scals with
dimension can be found in Appendix 2.

Using the same technique as we used for
the 2-pseudo-torus, we will be able to compute
β for the 3-pseudo-torus. In fact, given that
we have cleverly parametrized our tori so that
∑n+1

1 x2
i = R2 + r2 + 2Rr cos θ, we can easily

compute β for all n-pseudo-tori. We know that
the distance function, which we are trying to
extremize, is:

f (θ) =
√

R2 + r2 + 2Rr cos θ (20)

But, we already know the answer to this
problem from the 2D case. Since extremizing
means setting sin θ = 0, we know that xi = 0
for all i ≥ 3. Finally, we know that x1 and x2
are the same for any dimension. With all this
information, we can find that β is

β =
1− α

1 + α
(21)

for the n-pseudo-torus for all n 13, with α
defined as before. This is a very interesting
and somewhat surprising result. In fact, in all
the cases we have computed so far, β depends
on the dimension, except for that of the sphere.
This could lead us to think that there might
be some underlying link between these shapes
and we will discuss this is Section VI.

iii. Cones

Let’s start with the 2D cone (or 2-cone). Like
the n-torus, the n-cone is embedded in n+1
space.

13You can check this yourself, with only the calculus
used above and a large quantity of algebra. The exercise is
not difficult, but it is quite tedious.

Figure 13: The Cone.

Now, we need to parametrize our cone. We
define the cone as follows:

x2 + y2 − z2 = r2 (22)

and we can parametrize it:

x = u sin θ cos ϕ

y = u sin θ sin ϕ

z = u cos θ

(23)

where the angles ϕ and θ are shown below
and u is the radius of the cone at any given
angle.

Figure 14: ϕ and θ on the cone.

The center of a cone is not as obvious to find
as the center of the previous objects we have
studied. To do this, we will find the center of
mass, in the usual way. First, let us find the

11
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mass, assuming that r = h (we will use this
as a definition of a "regular cone" for simplic-
ity, although it shouldn’t matter) and constant
density with ρ = 1:

M = ρ
∫ 2π

0

∫ π
4

0

∫ h sec θ

0
u2du sin θdθdϕ

= 2π
∫ π

4

0

h3

sec3 θ
dθ

=
πh3

3

(24)

This is as expected since it is, in fact, the
volume of the cone. We know that the cone is
radially symmetric, so only the z coordinate
of the center of mass will be non-zero. Let’s
calculate it. We know that:

zcm =
1
M

∫ 2π

0

∫ π
4

0

∫ h sec θ

0
zu2du sin θdθdϕ

(25)

With this in hand, let’s compute the center
of mass coordinate:

zcm =
1
M

∫ 2π

0

∫ π
4

0

∫ h sec θ

0
u3du cos θ sin θdθdϕ

=
3h
4

(26)

Note: We center the tip of the cone at the ori-
gin and the cone goes up from there, seemingly
upside down from the image, which is why the
center of mass seems so high. However, the
images have been left in the opposite direction
for ease of visualization.

Now, we can find β:

β =
3h
4
h
4

=
1
3

(27)

since the smallest distance will go from the
center of mass to the base of the cone and the
longest distance will go from the center of mass
to the tip of the cone.

Now, we will look at the n-dimensional case.
We define the n-cone as follows:

n

∑
1

x2
i − xn+1 = r2 (28)

The volume will scale according to the fol-
lowing relation, which you can easily prove for
yourself using induction and the volume of the
n-sphere, which is defined as:

V =
π

n−1
2

n(Γ( (n+1)
2 + 1))

hn (29)

where Γ( (n+1)
2 + 1) is the half-intger gamma

function.

From this, we can easily show that the center
of mass will be at

xn+1 =
n

n + 1
hn+2 (30)

Now, we can get β for an n-cone:

β =
1

n + 1
(31)

iv. Brief Discussion of the Results
from Section V

The results in the previous two sections are
very interesting indeed. In fact, we have found
mostly results consistent with the "one over
some power of the dimension" evolution of β,
but we have also found our first exceptions
to this general rule: the sphere, the torus and
the pseudo-torus. Since we have found only
these exceptions and that these two exceptions
have the exact same behaviour, some red lights
should be going off in our minds. Could there
be some fundamental reason why this hap-
pens? We should expect this to be the case. We
will discuss some hypotheses related to this in
the following section.

12
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VI. Surfaces of Revolution

When examining the results that we have ob-
tained, one question immediately comes to
mind. All but three of the closed form val-
ues of β depend on the number of dimensions:
those of the sphere, the torus and the pseudo-
torus. For the sphere and torus, this result is to
be expected since they are defined such that β
will always be 1. However, in thinking about β
for the pseudo-torus, we can glean some inter-
esting insight about these seemingly multiple
different exceptions which all behave in the
same way. In the case of the 2D torus and
sphere, it is quite obvious that the torus is a
surface of revolution of the sphere 14. In higher
dimensions, this is not so obvious. However,
we can see that the symmetries are preserved
in the same way as in the 2D case. This is true
both for the torus and the pseudo-torus since
they are the same in 2D.

This realization may lead us to think that
there may be something deeper going on.
While I have no formal proof of this to offer, it
makes intuitive sense. In fact, it is quite clear
that rotation preserves distances. If you are not
yet convinced, it is interesting to consider the
examples of the tetrahedron and the cone. The
cone is the surface of revolution of the triangle,
a fact of which it should be quite easy to con-
vince yourself. This too is not quite as obvious
in higher dimensions, but it is a known fact
in geometry so we will take it at face value.
This in hand, we see that while not equal, the
expressions for β for these two shapes behave
in the same way, both roughly inversely pro-
portional to the number of dimensions.

VII. Results

We set out to find a better definition of the
concept of a dimension that might lead to a

14If you are not familiar with the concept of surfaces of
revolution, you can imagine spinning an object around its
central axis. In the case of mapping the sphere to the torus,
you can imagine putting it onto a stick and rotating it. The
surface cut out by the shape is its surface of revolution.

more intuitive understanding of objects with
more than three spacial dimensions and we
might want to ask if we have succeeded. We
have defined a quantity β and computed it
for multiple shapes for an arbitrary number of
dimensions N. The results of these are shown
in Table 1.

Table 1: Values of β for Various Shapes in N Dimensions

Shape 2D 3D 4D ND

Tetrahedron 1
2

1
3

1
4

1
N

Cube 1√
2

1√
3

1√
4

1√
N

Octahedron N/A 1√
3

1√
4

1√
N

Sphere 1 1 1 1

Torus R−r
R+r 1 1 1

Pseudo-Torus R−r
R+r

R−r
R+r

R−r
R+r

R−r
R+r

Cone 1
3

1
4

1
5

1
N+1

Table 2: β for Various Regular and Symmetric Shapes

This quantity β is so far unique, up to
mappings that preserve length (for regular
polytopes and the radially symmetric shapes
we have explored). Therefore, we can now say
that a dimension is a quantity that determines
the scaling of β in increasing dimensions for a
given shape.

VIII. Discussion

This quantity idea of a dimension scaling β is
not a sufficient nor a complete definition, but
it is a starting point and since we were looking
for intuition above full mathematical rigor, I
believe that this is sufficient to gain a certain
understanding of the problem. For this, it is

13
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enlightening to consider the following:

Imagine a situation in which we are given
the general shape of an object, say a cube, but
not its number of dimensions. Now, imagine
we are able to measure the distances d and D
of this cube 15. Having simply these pieces
of information in hand, we can determine the
number of dimensions of the cube.

Can this game be played in reverse? Could
we, from β and the number of dimensions,
determine the shape we are dealing with? The
answer is yes, but we can only identify a family
of shapes. Indeed, we have seen that β is not
unique, but rather it defines a series of shapes
that are related by some map that preserves
distances or symmetries.

It is now time to address some more formal
questions about these results. I have not pre-
sented any formal proofs in this paper and
have often relied on intuition and some gener-
alizations which some could call hasty. I have
also failed to provide any proofs of uniqueness,
which in the case of a quantity we would like
to use to qualify the evolution of a shape in
increasing dimensions, would be an important
piece of information to have. However, I would
make the argument that none of these things
are truly necessary for the current investiga-
tion. In fact, we have a formal proof of the
value of β for the cube and we only need one
example if we only wish to build some intu-
ition. The computation for other shapes can
help strengthen this intuition, but the core in-
formation we are given by β doesn’t require
it. Of course, a more formal approach could
uncover further information, but we will save
this for another day.

15This could be done in a number of ways. The most nat-
ural would be to take two particles sent from the center of
the cube to its face and corner. If these particles are going
at equal speeds, we can get d and D directly since they are
simply the travel time of the particles, which is a quantity
we have been historically good at measuring. Of course,
the logistics of this whole thought experiment are hypo-
thetical and optimistic at best, but they are nonetheless
interesting and useful to think about.

IX. Conclusion

By defining and computing β, we have indeed
succeeded at finding a new, and as has been ar-
gued more intuitive, definition of a dimension.
In fact, rather than relying on the orthogonal-
ity of directions, we need only consider the
scaling of the ratio of two lengths, something
which is done frequently in our day to day lives.
We also found this β for all regular polygons,
which while not directly useful is an interest-
ing artifact of the exploration that was done.
In effect, the results we have obtained is a type
of game, where we can find the geometry of
an object, its number of dimensions and its β
if we are given the other two quantities. Mov-
ing forward, a more in-depth exploration of
the hypothesis regarding the conservation of
β for shapes which share symmetries would
strengthen the results. In addition, a more for-
mal presentation of the results obtained would
add to their legitimacy, when regarded from a
purely mathematical perspective.

Appendix 1: Toratopic Notation

and Spheration

Toratopic notation is used as a short-hand to
encode the information about how toratopes
(torus-like objects) are constructed in higher
dimensions [Tororopic Notation]. It relies on
a series of vertical lines, some of which are
placed in parentheses, the sum of which repre-
sents the number of dimensions of the object.
The lines inside and outside the parentheses
represent two different parts of the construc-
tion of a toratope, which we define below.

Definition 7. The lines outside the parentheses rep-
resent digons, line segments. They are, naturally,
one-dimensional objects.

Definition 8. The lines inside the parentheses rep-
resent spherations. A spheration can be under-
stood as a way to lift digons from one to multiple
dimensions, by essentially tracing along the length
of the digon with the surface of an n-sphere.

14
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To better understand these definitions, let
us consider the 2D torus, which is represented
(II)I in toratopic notation. Recall the implicit
definition of the 2-torus:

(
√

x2 + y2 − R)2 + z2 = r2 (32)

where R and r are the large and small radii of
the torus respectively. From this definition, it is
immediately evident that we have the expres-
sion of a circle within it. This is the spheration
component (II). We can also see this since it con-
tains two of the variables. The z component
represents the digon. So, in terms of toratopic
notation, we are spherating the digon by trac-
ing the length of the z component (which will
form a loop) with a circle, formed by the x and
y components.

Let us continue with another example, which
is the form of the pseudo-torus which was con-
sidered in section V(ii). It is denoted (II)II and
its implicit definition is:

(
√

x2 + y2 − R2) + z2 + w2 = r2 (33)

with R and r defined as before. Here, we
have two dimensions of digons and two dimen-
sions of spheration, which manifests as one
two-dimensional spheration about two digons.
We can see this from the notation, as well as the
equation, where the x and y term is again the
spheration and the z and w components are the
two digons. We construct the 3-pseudo-torus
by running the spheration (which is a circle in
this case) along both the digons. Both digons
will again be loops. As may be expected, as
dimensions are added, we will add digons and
conserve the two dimensions of spheration.

Other ways to construct toratopes in higher
dimensions exist, and in fact the number grows
with each new dimension added proportion-
ally to the number of possible permutations of
the number of digons and spherations required.
The 3-pseudo-torus can be constructed in four
ways: (II)II, (III)I, (II)(II) and ((II)I)I. It was men-
tioned that one other case was investigated for

the 3D case. For this, the (III)I construction was
used. We define this as:

(
√

x2 + y2 + z2 − R)2 + w2 = r2 (34)

again, with R and r as before.

We should now discuss why the (II)II con-
struction was used. First, it is important to
note that only the (II)II and (III)I constructions
retain the general R and r we have been us-
ing, which limited our initial decision to one of
these. The choice between these two was made
in order to simplify the computations as well
as retain the symmetries of the 2-torus. It is
also the most natural choice for its evolution in
higher dimensions. By choosing this construc-
tion, we can always choose the construction
with only two dimensions of spheration and
ensure that the evolution in higher dimensions
is smoothe.

Appendix 2: Parametrization of the

n-Psuedo-Torus

In order to get a useful parametrization of
the pseudo-torus we will begin with the 2-
pseudo-torus and multiply the first 2 variables
by the sine of some angle. The 3rd variable
will be r times the cosine of the angle. Then
we can apply this logic recursively for higher
dimensional pseudo-tori. Four examples
are provided to illustrate this evolution of
parametrization.

The 3-pseudo-torus is parametrized as fol-
lows, with the angle ζ measured from the x4
axis:

x1 = (R + r cos θ) cos ϕ

x2 = (R + r cos θ) sin ϕ

x3 = r sin θ sin ζ

x4 = r sin θ cos ζ

(35)

The 4-pseudo-torus is parametrized as fol-
lows, with the angle η measured from the x5

15
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axis:

x1 = (R + r cos θ) cos ϕ

x2 = (R + r cos θ) sin ϕ

x3 = r sin θ sin ζ sin η

x4 = r sin θ cos ζ sin η

x5 = r sin θ cos η

(36)

The 5-pseudo-torus is parametrized as fol-
lows, with the angle ω measured from the x6
axis:

x1 = (R + r cos θ) cos ϕ

x2 = (R + r cos θ) sin ϕ

x3 = r sin θ sin ζ sin η

x4 = r sin θ cos ζ sin η

x5 = r sin θ cos η sin ω

x6 = r sin θ cos η cos ω

(37)

The 6-pseudo-torus is parametrized as fol-
lows, with the angle ψ measured from the x7
axis:

x1 = (R + r cos θ) cos ϕ

x2 = (R + r cos θ) sin ϕ

x3 = r sin θ sin ζ sin η sin ψ

x4 = r sin θ cos ζ sin η sin ψ

x5 = r sin θ cos η sin ω sin ψ

x6 = r sin θ cos η cos ω sin ψ

x7 = r sin θ cos η cos ψ

(38)

References

[Wu & Zhang, 2010] arXiv:1007.1602
[math.MG] "On the circumradius
of a special class of n-simplices", Yudong
Wu, Zhihua Zhang, 2010

[Brandenberg, 2003] arXiv:math/0308121
"Radii of Regular Polytopes", RenÃl’
Brandenberg, 2003

[Pressley, 2010] Springer, Springer Undergrad-
uate Mathematics Series "Elementary Dif-
ferential Geometry" Second Edition, An-
drew Pressley, 2010

[Boya & Rivera, 2013] Elsevier 2013, Volume
71, Issue 2, April 2013 "Radii of Regular
Polytopes", Luis J. Boya, Cristian Rivera,
2013

[Souam, 2004] Elsevier 2013, Volume 71, Issue
2, April 2013 "The SchlÃd’fli formula for
polyhedra and piecewise smooth hyper-
surfaces", Rabah Souam, 2004

[Abbott, 1884] Seeley & Co., 1884 "Flatland: A
Romance of Many Dimensions", Edwin
Abbott Abbott, 1884

[Adams, 2013] LieGroups.org. Ac-
cessed September 2 2018. http:
//www.liegroups.org/talks/sum.pdf
"Regular Polytopes in n Dimensions",
Jeffrey Adams, Brown University, 2013.

[Mansiska, 2008] Home.Lu.Lv. Accessed
September 2 2018. http://home.lu.
lv/~sd20008/papers/essays/Regular%
20Polytope%20[presentation].pdf
"Regular Polytopes", Laura Mansiska,
University of Waterloo, 2008.

[Tororopic Notation] Hi.Gher.Space. Ac-
cessed September 2 2018. http://hi.
gher.space/wiki/Toratopic_notation
"Toratopic Notation - Hi.Gher. Space".
2018.

[The Equilateral Triangle] reenshop.Com. Ac-
cessed June 7 2018. www.treenshop.

16

http://www.liegroups.org/talks/sum.pdf
http://www.liegroups.org/talks/sum.pdf
http://home.lu.lv/~sd20008/papers/essays/Regular%20Polytope%20[presentation].pdf
http://home.lu.lv/~sd20008/papers/essays/Regular%20Polytope%20[presentation].pdf
http://home.lu.lv/~sd20008/papers/essays/Regular%20Polytope%20[presentation].pdf
http://hi.gher.space/wiki/Toratopic_notation
http://hi.gher.space/wiki/Toratopic_notation
www.treenshop.com/Treenshop/ArticlesPages/FiguresOfInterest_Article/The%20Equilateral%20Triangle.htm
www.treenshop.com/Treenshop/ArticlesPages/FiguresOfInterest_Article/The%20Equilateral%20Triangle.htm
www.treenshop.com/Treenshop/ArticlesPages/FiguresOfInterest_Article/The%20Equilateral%20Triangle.htm


BLUE Fellowship 2018 • An Exploration of Higher Dimensional Objects • Eloise Chakour

com/Treenshop/ArticlesPages/
FiguresOfInterest_Article/The%
20Equilateral%20Triangle.htm "The
Equilateral Triangle". 2018.

[Fxsolver] Fxsolver. Accessed June 7 2018.
https://www.fxsolver.com/solve/ "Fx-
solver". 2018.

[Introducing the Klein Bottle]
Plus.Maths.Org. Accessed May 14 2018.
https://plus.maths.org/content/
introducing-klein-bottle "Introduc-
ing The Klein Bottle". 2015.

[Klein Bottle - MathCurve] Mathcurve.Com.
Accessed May 14 2018. https:
//www.mathcurve.com/surfaces.gb/
klein/klein.shtml "Klein Bottle". 2018.

[Imaging Maths - Inside The Klein Bottle]
Plus.Maths.Org. Accessed May 14 2018.
https://plus.maths.org/content/
imaging-maths-inside-klein-bottle
"Imaging Maths - Inside The Klein Bottle".
2003.

[Centers of a Simplex] Geometrictools.Com.
Accessed September 2 2018.
https://www.geometrictools.com/
Documentation/CentersOfSimplex.pdf
"Centers of a Simplex", David Eberly, 2008

[La Bouteille De Klein] Melusine.Eu.Org.
Accessed June 4 2018. https:
//melusine.eu.org/syracuse/
metapost/vrac/klein01/ "La Bouteille
De Klein". 2018.

Note to the reader: the sources below
were used only for preliminary research.
I include them because they are useful as
introductory references for anyone who
is curious about the topic, however any
information taked from these sources was
verified throuh one or more of the sources
above.

[Klein Bottle - Wikipaedia] En.Wikipedia.Org.
Accessed May 14 2018. https://en.
wikipedia.org/wiki/Klein_bottle
"Klein Bottle". 2018.
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