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Abstract
Astrocytes are crucial for the maintenance of brain homeostasis by actively participating in the metabolism of glucose, 
which is the main energy substrate for the central nervous system (CNS), in addition to other supportive functions. More 
specifically, astrocytes support neurons through the metabolic coupling of synaptic activity and glucose utilization. As such, 
diabetes mellitus (DM) and consequent glucose metabolism disorders induce astrocyte damage, affecting CNS functionality. 
Glioprotective molecules can promote protection by improving glial functions and avoiding toxicity in different pathological 
conditions, including DM. Therefore, this review discusses specific pathomechanisms associated with DM/glucose metabo-
lism disorder–induced gliotoxicity, namely astrocyte metabolism, redox homeostasis/mitochondrial activity, inflammation, 
and glial signaling pathways. Studies investigating natural products as potential glioprotective strategies against these delete-
rious effects of DM/glucose metabolism disorders are also reviewed herein. These products include carotenoids, catechins, 
isoflavones, lipoic acid, polysaccharides, resveratrol, and sulforaphane.
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Introduction

Astrocytes are essential cells for central nervous system 
(CNS) homeostasis, presenting a refined cytoarchitecture 
that results in close contacts with synapses, blood vessels, 
and other glial cells (Allen and Eroglu 2017). Indeed, astro-
cytes actively participate in the regulation of neurotransmit-
ter systems, energy metabolism, antioxidant defenses, and 
inflammatory responses (Bolaños 2016; Sofroniew 2020). 

Thus, astrocytes are associated with both physiological and 
pathological conditions of the CNS.

Diabetes mellitus (DM) is a metabolic disorder charac-
terized by hyperglycemia resulting from a failure in glucose 
transport and utilization in the tissues. In type 1 DM, hyper-
glycemia is caused by autoimmune destruction of the pan-
creatic β cells, leading to insulin insufficiency. Type 2 DM is 
associated with peripheral insulin resistance, which is even-
tually accompanied by insulin deficiency (Van Harten et al. 
2006; Jing et al. 2013; Semwal et al. 2021). DM impacts 
not only the peripheral of the body, but also the CNS (Van 
Harten et al. 2006). Several neuroendocrine and metabolic 
factors regulate the actions of insulin and glucose in the 
CNS (Jing et al. 2013), which can result in neurotoxicity 
with significant impact on astrocytes (Nardin et al. 2016; 
Zanotto et al. 2019). Glucose is the main energy substrate of 
the CNS, and astrocytes support neurons through metabolic 
coupling of synaptic activity with glucose utilization (neu-
rometabolic coupling) (Bélanger et al. 2011). In this regard, 
numerous recent publications have shown that DM induces 
astrocyte damage, which plays a key role in the pathophysi-
ology of neurodegenerative disorders (González-Reyes et al. 
2016; Acosta et al. 2017).
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Changes in astrocyte functions are closely related to glio-
toxicity, a condition that involves cellular, molecular, and 
neurochemical alterations in glial cells and can affect neu-
rons and/or other glial cells. Accordingly, DM can induce 
gliotoxicity (Fig. 1). On the other hand, glioprotection refers 
to the glial cell–mediated protection of neuronal cells and/or 
other glial cells, particularly after CNS injury and damage 
(Quincozes-Santos et al. 2014). Glioprotective molecules, 
therefore, can promote protection by improving glial func-
tions and avoiding toxicity. Our research group has shown 
that resveratrol, lipoic acid, and sulforaphane mediate glio-
protection in several experimental models of gliotoxicity 
(Bellaver et al. 2016; Bobermin et al. 2013, 2018, 2019, 
2020; Quincozes-Santos et al. 2013a, b; Santos et al. 2015); 
moreover, some natural products may also serve as poten-
tial therapeutic strategies to ameliorate the consequences of 
DM in the CNS. Thus, the main objective of this review is 
to discuss natural products that may represent glioprotec-
tive strategies against DM-induced gliotoxicity. The main 
topics of this review are (I) astrocytes; (II) astrocytes and 
glucose metabolism disorders; (III) associations between 
glucose metabolism, redox homeostasis, and mitochondrial 
dysfunction, with a focus on astrocytes; (IV) astrocytes, 

glucose metabolism disorders, and inflammation; (V) glu-
cose metabolism disorders and trophic support; (VI) glu-
cose metabolism disorders and glial signaling pathways; and 
(VII) natural products as potential glioprotective molecules.

Astrocytes

Astrocytes, the major class of glial cells, can serve as 
“bridges for passing information” between blood vessels 
and neurons, as well as between central and peripheral sys-
tems, coordinating metabolic substrates, hormonal signaling, 
and oxygen delivery according to the demands of specific 
brain regions (Bélanger et al. 2011; García-Cáceres et al. 
2019). Indeed, the CNS has a high energy demand, and 
glucose is the obligatory metabolic substrate for the adult 
brain (Bélanger et al. 2011). Therefore, astrocytes are criti-
cal cells for the supply of glucose requirements, since tight 
regulatory mechanisms exist between astrocytes and neurons 
(astrocyte-neuron coupling) to maintain neuronal activity.

Although neurons consume more energy, the astrocytes 
are the major cells responsible for glucose uptake into the 
brain, and thereby the transfer of metabolic substrates to neu-
rons (Nehlig and Coles 2007). The transport of glucose into 
cells occurs through specific carriers — glucose transport-
ers (GLUTs) (Koepsell and Vallon 2020). Astrocytes express 
the glucose transporter 1 (GLUT1) isoform, which is also 
expressed in the endothelial and choroid plexus cells that 
form the BBB. Since astrocytes can cover more than 90% of 
non-fenestrated capillary vessels, they have a key role in the 
entry and distribution of glucose in the brain. In addition, 
these cells can participate in the regulation of blood glucose 
levels and glucose tolerance (García-Cáceres et al. 2019). 
After the transport of glucose into cells, it is phosphorylated 
in a rate-limiting step catalyzed by hexokinase. In astrocytes, 
glucose-6-phosphate can be used for glycogen synthesis, in 
the pentose phosphate and in hexosamine pathways, and to 
generate energy through glycolysis (Gonçalves et al. 2019). 
The activity and regulation of glycolytic enzymes in astro-
cytes suggest that they present a high glycolytic activity 
(Bolaños et al. 2010). On the other hand, although astrocytes 
are able to fully metabolize glucose through oxidative metab-
olism, an amount of pyruvate generated from glycolysis is 
converted to lactate, which is released by monocarboxylate 
transporters and can be used as an energy source by other 
cells, including neurons (Bélanger et al. 2011).

The metabolic activity of astrocytes may be repro-
grammed in response to redox and inflammatory challenges 
(Robb et al. 2020), and changes in glucose levels induce 
redox and inflammatory responses (Quincozes-Santos 
et al. 2017), demonstrating that astrocytes display intrin-
sic regulatory functions. Moreover, astrocytes form/reform 
and maintain the BBB, which may restrict or allow the 
entry of metabolites and inflammatory and trophic factor 

Fig. 1   Neurochemical changes induced by glucose metabolism disor-
ders in astrocytes. DM can affect glycolytic activity, glucose metabo-
lism, mitochondrial function, ROS production, glutamate metabo-
lism, and inflammatory response, and several signaling pathways can 
be affected in astrocytes. These harmful effects that are associated 
with glucose metabolism disorders can induce gliotoxicity, affecting 
the morphofunctional properties of astrocytes. The cell in the center 
of the figure represents a reactive astrocyte. AMPK AMP-activated 
protein kinase, Nrf2 nuclear factor erythroid-derived 2-like 2, NFκB 
nuclear factor kappa B, SIRT1  sirtuin 1



Neurotoxicity Research	

1 3

mediators into the CNS. Astrocytes also synthesize and 
release a wide range of trophic factors, including brain-
derived neurotrophic factor (BDNF), glial cell line–derived 
neurotrophic factor (GDNF), S100B, vascular endothelial 
growth factor (VEGF), insulin-like growth factor 1 (IGF1), 
and transforming growth factor-β (TGF-β), among others, 
which support neuronal survival, function, and plasticity 
(Matias et al. 2019). These trophic factors can also target 
glial and endothelial cells, regulating differentiation, activa-
tion, metabolism, angiogenesis, and BBB integrity (Farina 
et al. 2007). Accordingly, the pathophysiological roles of 
astrocytes have become a primary focus of investigations 
regarding numerous diseases and have emerged as a target 
for preventive/therapeutic strategies for these diseases.

Astrocytes and Glucose Metabolism Disorders

Glucose metabolism disorders induce a number of astrocytic 
responses, including increased BBB permeability, inflam-
matory response, redox imbalance, and up- or downregula-
tion of several signaling pathways that significantly impact 
brain homeostasis (Ying et al. 2015; Quincozes-Santos et al. 
2017). In vivo and in vitro experimental models, as well 
as positron emission tomography (PET) and magnetic reso-
nance imaging (MRI) from patients with DM, have shown 
a decreased metabolic rate of glucose consumption (Van 
Harten et al. 2006), in response to hyperglycemia. Addi-
tionally, significant alterations in classical astrocytic mark-
ers have been reported following hyperglycemia, including 
increased glial fibrillary acidic protein (GFAP) and gluta-
mate transporter activity and decreased S100B release and 
glutamine synthetase (GS) activity (Nardin et al. 2007; 
Quincozes-Santos et al. 2017; Richa et al. 2017). Patients 
with long-term hyperglycemia present brain complications, 
including an increased risk of brain atrophy and white mat-
ter lesions (Van Harten et al. 2006), leading to functional 
and behavioral consequences, such as cognitive dysfunction, 
dementia, and movement disorders (Van Harten et al. 2006; 
Richa et al. 2017). Therefore, DM or high glucose levels 
induce brain damage that may result in cognitive dysfunction 
and cerebrovascular diseases.

With regard to the entry of glucose into the CNS, while 
in vivo evidence has suggested that DM is associated with 
an increased permeability of the BBB in rats (Zanotto 
et al. 2017), other studies have observed downregulation or 
absence of alterations in glucose uptake (Gjedde and Crone 
1981; Nardin et al. 2016). Similarly, variable expressions 
of GLUT1 (downregulation or upregulation) depend on the 
model (Pardridge et al. 1990; Nardin et al. 2016). In addi-
tion, the metabolism of glycogen is also affected in DM; 
several studies in rodents and humans have reported lower 
quantities of brain glycogen, predominantly in astrocytes 
(Sickmann et al. 2010; Öz et al. 2012). Moreover, insulin 

can increase glucose uptake and S100B release and has 
other metabolic effects in astrocytes (Wartchow et al. 2016; 
García-Cáceres et al. 2016); therefore, deficiency/changes 
in insulin production or signaling underlying DM can 
impact astrocyte metabolism. Importantly, inadequate man-
agement of insulin therapy or diet can induce episodes of 
hypoglycemia, with serious detrimental effects on astroglial 
metabolism (Quincozes-Santos et al. 2013a, b). It has also 
been shown that fluctuations in glucose concentration (e.g., 
hyperglycemic spikes and hypoglycemic troughs) can be 
worse than constant hyperglycemia for astroglial and CNS 
metabolism, contributing to DM complications (Quincozes-
Santos et al. 2017).

Besides glucose metabolism, astrocytes also actively par-
ticipate in other important metabolic cooperations between 
astrocytes and neurons, such as glutamate-glutamine cycle 
and glutathione (GSH) synthesis (Bélanger et al. 2011). Glu-
tamate uptake decrease was observed in the hippocampus 
of rats submitted to an in vivo experimental model of DM, 
without affecting the protein levels of glutamate transport-
ers (Nardin et al. 2016; Zanotto et al. 2017). In contrast, 
in vitro studies reported an increased glutamate uptake in 
astroglial cells exposed to high glucose (Tramontina et al. 
2012; Quincozes-Santos et al. 2017). Moreover, different 
studies have shown up- or downregulation of the expression 
and activity of the astrocytic enzyme GS, depending on the 
brain region and DM experimental model (Son et al. 2015; 
Zheng et al. 2016). GS activity was decreased in astroglial 
cells exposed to a high-glucose medium (Tramontina et al. 
2012; Quincozes-Santos et al. 2017), whereas primary astro-
cytes presented an increase in GS activity (Son et al. 2015).

Another important fate of glutamate in astrocyte metabo-
lism is the synthesis of GSH, an essential molecule for cel-
lular antioxidant defense and the detoxification process that 
confers neuroprotection (Dringen et al. 2015). Decreased 
GSH levels are a remarkable feature associated with DM and 
hyperglycemia, both in the brain of DM-induced animals 
(Gurel-Gokmen et al. 2018) and in astroglial cells exposed to 
a high-glucose medium (Tramontina et al. 2012; Quincozes-
Santos et al. 2017). Overall, DM seems to impair important 
metabolic parameters in astrocytes, representing a mecha-
nism that may underlie DM-induced brain dysfunction.

Correlation Between Glucose Metabolism, Redox 
Homeostasis, and Mitochondrial Dysfunction: Focus 
on Astrocytes

Oxidative stress induction in astrocytes has been shown to 
play a significant role in the pathophysiology of DM. Hyper-
glycemia-induced reactive oxygen species (ROS) generation 
occurs via different mechanisms that include glucose autoxi-
dation, increased metabolic flux of the polyol (sorbitol) path-
way, production of advanced glycation end products (AGEs), 
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and mitochondrial dysfunction, potentially leading to astro-
gliosis, neuronal damage, and BBB dysfunction (Giacco and 
Brownlee 2010; Liyanagamage and Martinus 2020). Moreo-
ver, AGEs are responsible for glycation reactions with lipids, 
nucleic acids, and proteins, which affect cell metabolism and 
can induce further disruption in redox homeostasis (Srikanth 
et al. 2013; Allaman et al. 2015; Maessen et al. 2015).

Increases in polyol pathway flux, caused by hyperglyce-
mia-induced ROS, may deplete NADPH levels due to the 
NADPH-dependent conversion of glucose to sorbitol by 
aldose reductase. Since NADPH is a cofactor of glutathione 
reductase, which recycles oxidized glutathione (GSSG) to 
GSH, decreased NADPH causes alterations in cellular antiox-
idant systems. Another phenomenon related to disturbances 
in the polyol pathway, and subsequent oxidative stress, is the 
increased production of NADH by sorbitol dehydrogenase 
that stimulates ROS generation via NADH oxidases (Giacco 
and Brownlee 2010; Apostolova et al. 2020).

In addition, AGEs are formed by the non-enzymatic reac-
tion of glucose with proteins and are found at high levels in 
the tissues and plasma of patients with DM. Besides incur-
ring protein dysfunction, AGEs may also bind to their recep-
tor (receptor for advanced glycation end products, RAGE), 
activating the pleiotropic transcription factor, nuclear factor 
kappa B (NFκB). Thereafter, this factor promotes the pro-
duction of cytokines and ROS that may trigger neuroinflam-
mation (Paul et al. 2020), indicating that oxidative stress is 
strongly connected with the inflammatory response, both of 
which are associated with the pathogenesis of DM.

Hyperglycemia also induces mitochondrial dysfunction with 
intracellular and extracellular production of ROS. High levels of 
glucose induce the elevation of the reducing equivalents, NADH 
and FADH2, and a consequent increase in electron transfer 
through the mitochondrial respiratory chain. The voltage gra-
dient across the mitochondrial inner membrane then increases, 
reaching a critical threshold limit that damages the respiratory 
chain and causes the incomplete reduction of O2 and conse-
quent production of superoxide (Giacco and Brownlee 2010). 
In addition, fluctuations in glucose levels induce a decrease in 
mitochondrial membrane potential and an increase in cellular 
superoxide levels, ROS production, and nitrite levels (Quincozes-
Santos et al. 2017). Moreover, this hyperglycemia-induced redox 
imbalance may also be associated with genotoxicity in astroglial 
cells (Quincozes-Santos et al. 2017).

DM affects a plethora of signaling pathways, and these 
have a significant impact on redox homeostasis and mito-
chondrial dysfunction, consequently participating in DM-
induced brain damage. In addition, epigenetic adjustments 
are engaged with these signaling pathways and can also 
cause oxidative stress/brain damage. The phenomenon, 
described as metabolic memory, is related to the deleteri-
ous effects of hyperglycemia on tissues, even when there is 
strict glycemic control. Thus, regulatory pathways involving 

microRNAs, histone modifications, DNA methylation, and 
the sirtuin-histone functions can act as epigenetic modifiers 
and modulators to induce redox homeostasis impairment (Li 
et al. 2017; Shafabakhsh et al. 2019).

Astrocytes, Glucose Metabolism Disorders, 
and Inflammation

Neuroinflammation is an important feature of DM and is 
thought to play critical roles in its complications in the CNS, 
such as neuropathic pain (Rosenberger et al. 2020), cognitive 
decline (Chen et al. 2017), retinopathy (Rübsam et al. 2018), 
and the development of neuropsychiatric disorders (Zhou 
et al. 2017). Moreover, neuroinflammation has emerged as 
a possible link between DM and Alzheimer’s disease (De 
Felice and Ferreira 2014). Several studies have demon-
strated that DM animal models are associated with elevated 
brain levels of pro-inflammatory cytokines and chemokines 
(Oliveira et al. 2016; Kiguchi et al. 2017). Moreover, DM 
upregulates cyclooxygenase 2 (COX-2) and complement 
component 3 (C3), promotes NFκB activation (Oliveira et al. 
2016), and modifies immune cell populations in the brain 
(Wanrooy et al. 2018). However, it is difficult to pinpoint 
the cellular origin of pro-inflammatory mediators within the 
brain, since both microglia and astrocytes can participate in 
inflammatory responses, and many studies have shown that 
DM induces GFAP expression, a hallmark of astrogliosis 
(Kiguchi et al. 2017), suggesting a role of astrocytes in DM-
associated neuroinflammation.

In astrocytes, in particular, high glucose also induces 
inflammatory responses, by upregulating and/or increas-
ing the release of TNF-α, IL-1β, IL-4, IL-6, VEGF, and 
complement C3 (Quincozes-Santos et al. 2017; Wang et al. 
2012; Zhao et al. 2018), and decreasing anti-inflammatory 
cytokine IL-10 (Quincozes-Santos et al. 2017). Of note, it 
is also well established that AGEs can trigger inflammatory 
responses, due to their interaction with RAGE (Chu et al. 
2016). Moreover, there is a connection between immune 
and metabolic functions that has been called “immunome-
tabolism,” in which inflammatory stimuli are able to posi-
tively modulate glucose uptake and associated metabolic 
pathways, including those in astrocytes (Robb et al. 2020). 
Metabolic changes, in turn, support the energy expenditure 
for immune responses. Importantly, NFκB signaling is at the 
center of the DM/hyperglycemia-induced neuroinflamma-
tion (Quincozes-Santos et al. 2017; Wang et al. 2012), links 
inflammation and oxidative stress (Aguilera et al. 2018), and 
mediates immunometabolic changes (Robb et al. 2020). This 
tissue will be further discussed in this review.

Experimental studies focusing on obesity and aging have 
shown that the hypothalamus undergoes a pro-inflammatory 
activation, which also involves astrocytes (Santos et al. 2018; 
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Tang et al. 2015). Hypothalamic inflammation has been rec-
ognized as a key component of metabolic syndrome disor-
ders, and it is able to cause systemic glucose intolerance 
and peripheral insulin resistance (Tang et al. 2015) with a 
notable role for NFκB signaling. Therefore, it is conceivable 
that, in addition to being affected by DM and hyperglycemia, 
astrocytes (particularly hypothalamic astrocytes) may also be 
involved in the pathogenesis of type 2 DM.

Glucose Metabolism Disorders and Trophic Support

The production and release of trophic factors is another 
important function performed by astrocytes. Reductions in 
brain BDNF levels have been observed in animal models of 
type 1 and 2 DM and associated with synapse and cognitive 
dysfunctions (Rozanska et al. 2020). Interestingly, BDNF 
may influence diabetes pathogenesis beyond the CNS, 
since low plasma levels of BDNF have been correlated 
with impaired glucose metabolism and insulin resistance 
(Rozanska et al. 2020). Of note, the brain is considered the 
primary source of BDNF in the peripheral circulation, and 
the cerebral output of BDNF can be inhibited by hypergly-
cemia (Krabbe et al. 2007).

Reductions of IGF1 and NGF in the brain have also been 
observed in animal models of DM (Hamed 2017; Vines 
et al. 2019). In addition, lower serum S100B concentrations 
are reported in type 2 diabetic subjects (Hovsepyan et al. 
2004), while the release of S100B by astrocytes is decreased 
by high glucose levels (Nardin et al. 2007). Excess TGF-β, 
however, has been associated with hyperglycemia and glu-
cose metabolism, since it can induce hypothalamic stress 
and, consequently, inflammation, glucose intolerance, and 
insulin resistance (Yan et al. 2014). In contrast, GDNF 
ameliorates cell apoptosis in the hippocampus of rats with 
streptozotocin-induced diabetic encephalopathy (Cui et al. 
2016). In this regard, impairment in trophic factor support 
can affect neuronal activity and survival, contributing to 
DM-related complications in the CNS. Thus, raising trophic 
factor levels from endogenous sources, which include astro-
cytes, may be a promising protective strategy.

Glucose Metabolism Disorders and Glial Signaling 
Pathways

DM and high glucose exposure have been shown to modulate 
several signaling pathways in astrocytes. Insulin and IGF1 can 
affect astrocyte metabolism via their receptors (insulin receptor 
and IGF1R), which trigger phosphatidylinositol 3-kinase (PI3K) 
signaling pathway (Kleinridders et al. 2014; Hong et al. 2017). 
It is important to note that the impairment in insulin and IGF1 
signaling has been associated with cognitive deficits and may 
represent a link between DM and Alzheimer’s disease (Talbot 
et al. 2012; Bassil et al. 2014). In brains of DM and Alzheimer’s 

disease patients, downregulation of the  PI3K/Akt signaling path-
way could increase the activity of glycogen synthase kinase-3β 
(GSK-3β), leading to Tau protein phosphorylation (Xu et al. 
2018). Moreover, disturbances in PI3K/Akt/GSK-3β have been 
associated with neuroinflammation, oxidative stress, and altera-
tions in neurotransmitter systems (Datusalia and Sharma 2014). 
Mechanistic/mammalian target of rapamycin (mTOR) is a mem-
ber of the PI3K-related kinases that, along with AMP-activated 
protein kinase (AMPK), acts as a metabolic sensor and plays a 
key role in energy homeostasis (Hardie et al. 2012; Saxton and 
Sabatini 2017). Physiologically, mTOR can positively regulate 
insulin signaling, but it has been reported that an overactivation 
of mTOR in type 2 DM, probably due to the excess of nutrients, 
exacerbates insulin resistance (Guillén and Benito 2018), rep-
resenting another important link between DM and dementia. In 
addition, mTOR can regulate neuroinflammation in glial cells 
(Dasuri et al. 2016).

With regard to AMPK, this kinase supports the glyco-
lytic nature of astrocytes, since it phosphorylates and acti-
vates the enzymes phosphofructokinase 1 (PFK-1) and 
6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 
(PFKFB-3) (Bolaños 2016). Therefore, hyperglycemia can 
activate AMPK, impacting astrocyte energy metabolism (Li 
et al. 2018). NAD-dependent deacetylase sirtuin 1 (SIRT1) 
is a well-characterized cellular energy sensor in peripheral 
tissues. It has recently been reported that SIRT1 signaling in 
astrocytes could contribute to metabolic regulation in mice 
(Choi et al. 2019). In DM models, a decreased expression of 
SIRT1 was observed (Kitada et al. 2019), while SIRT1 can 
prevent inflammation and DNA damage, which are closely 
related to DM. However, the activation of SIRT1 is able to 
exert neuroprotective effects, being associated with mecha-
nisms of protective compounds, such as resveratrol. There-
fore, it can act as a protective pathway in neurodegeneration 
and Alzheimer’s disease (Chandrasekaran et al. 2019).

Several interconnected signaling pathways in astrocytes are 
also involved in the neuroinflammation and oxidative stress 
observed in DM; these include the mitogen-activated protein 
kinase (MAPK) pathways p38 and c-Jun-N-terminal kinase 
(JNK), further supporting evidence of a role of hyperglyce-
mia in astrocytic redox/inflammatory processes (Chistyakov 
et al. 2019). Different studies have shown that high glucose 
increases astroglial levels and/or activation of p38 MAPK, 
extracellular signal-regulated kinase 1/2 (ERK1/2), and JNK 
(Quincozes-Santos et al. 2017; Bahniwal et al. 2017). NFκB 
is an important downstream factor of MAPKs and acts as 
a powerful regulator of both oxidative stress and inflamma-
tion, since it controls the gene expression of pro-inflammatory 
cytokines and other mediators (Singh and Singh 2020). In this 
context, abnormal MAPKs/NFκB signaling has been impli-
cated in the mechanisms underlying diabetic neuropathy and 
several neurodegenerative diseases (Dewanjee et al. 2018).
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In this regard, nuclear factor erythroid-derived 2-like 2 
(Nrf2) transcription factor is able to counteract NFκB acti-
vation (Aguilera et al. 2018) and regulate the expression of 
metabolic, antioxidant, and detoxifying genes, including glu-
cose-6-phosphate dehydrogenase, γ-glutamyl cysteine ligase 
(GCL), GSH synthase, and system xc (Escartin et al. 2011). 
In addition, Nrf2 induces the expression of heme oxygenase 
1 (HO-1), an enzyme that confers cellular resistance against 
stressful conditions, such as oxidative stress and inflamma-
tion (Wakabayashi et al. 2010). Accordingly, in vitro stud-
ies have reported that hyperglycemia increased Nrf2 nuclear 
translocation in astrocytes, as well as HO-1 expression, prob-
ably as a compensatory mechanism to cope with the acute 
oxidative stress (Lind et al. 2013). In contrast, deficiencies 
in Nrf2 and HO-1 signaling have been reported in the brains 
of animals subjected to DM (Moreira et al. 2007; Sajja et al. 
2017). Importantly, activation of Nrf2/HO-1 signaling has 
been suggested to be a potential mechanism of the neuropro-
tection that is mediated by natural products in DM (Pu et al. 
2018; Wang et al. 2020). Therefore, as astrocytes have been 
suggested to be the predominant cell in which activation of 
Nrf2 occurs in the brain, they may represent interesting tar-
gets for protective strategies in DM (Liddell 2017).

Natural Products as Potential Glioprotective 
Molecules

Natural compounds, derived from plants, animals, fungi, and 
microorganisms, are crucial for the development of new drugs 
and medicinal supplements. These compounds can be used 
naturally, in nutraceutical foods, or included in the form of 
extracts or molecules isolated during the formulation of poten-
tial drugs and can have a direct action on, or interact with, spe-
cific receptors. In addition, natural products have been widely 
used in in vitro and in vivo experimental pre-clinical studies. 
As such, several pharmaceutical products that are currently 
available are structural derivatives of natural compounds 
found in medicinal plants that have been traditionally used 
for the treatment of various diseases. For example, metformin, 
one of the major antihyperglycemic compounds, was devel-
oped using the Galega officinalis plant (Ota and Ulrih 2017).

Moreover, the majority of studies investigating com-
pounds associated with the prevention or treatment of DM 
have focused on the investigation of metabolic control or 
complications related to this disease (Infante-Garcia and 
Garcia-Alloza 2019; Semwal et al. 2021). As the complica-
tions generated by hyperglycemia are well established, the 
search for treatments has focused on specific targets, such as 
redox homeostasis, inflammatory response/neuroinflamma-
tion, neurodegeneration, and cognition, aiming to evaluate 
one or more factors that may interfere in the major pathways 
associated with these processes (Patil et al. 2020). Since 
some natural products may serve as potential therapeutic 

strategies for the consequences of DM in the CNS, we will 
summarize, hence on, specific natural compounds that can 
protect against neuropathologies associated with diabetic 
conditions and that may therefore represent potential glio-
protective molecules. Table 1 displays the main references 
for the natural compounds reviewed here.

Carotenoids

Carotenoids are terpenoids that are produced by many spe-
cies of bacteria, fungi, and plants (Keshavarzi et al. 2019). 
The antioxidant properties of these compounds are well 
known, but they are also able to prevent and/or ameliorate 
DM and its complications. It has been shown that dietary 
carotenoids and its plasma concentrations may be inversely 
associated with fasting plasma glucose concentrations, 
insulin resistance, and HbA1c levels (Roohbakhsh et al. 
2017). Astaxanthin and fucoxanthin, carotenoids found in 
marine algae, have antidiabetic/antihyperglycemic effects 
that may be related to the induction of PPARγ and GLUT4 
expressions (Nishikawa et al. 2012). Moreover, astaxanthin 
decreased glucose tolerance, enhanced serum insulin levels, 
and attenuated blood glucose levels in db/db mice by pro-
tecting pancreatic β cells (Uchiyama et al. 2002).

With regard to the actions of carotenoids in the CNS, 
astaxanthin exerts positive effects by preventing cognitive 
and memory impairment, as well as by attenuating increased 
GSK-3β activity, TNF-α level oxidative stress, and factors 
related to the insulin substrate-1 (IRS-1) pathway, and neu-
ronal insulin resistance in the hippocampus of Wistar rats 
(Rahman et al. 2019). Fucoxanthin reportedly elicits effects 
on the modulation of the AMPK/NFκB signaling path-
ways and inhibits the overexpression of pro-inflammatory 
cytokines in the hippocampus, frontal cortex, and hypothala-
mus of mice subjected to behavioral changes induced by 
an inflammatory lipopolysaccharide stimulus (Jiang et al. 
2019). Lycopene, a carotenoid primarily found in tomatoes 
and other red fruits, attenuates diabetes-associated cognitive 
decline in rats (Kuhad et al. 2008) and displays neuroprotec-
tive activities against inflammation and oxidative damage, in 
addition to promoting the secretion of trophic factors, such 
as NGF and BDNF, from neural stem cells (Huang et al. 
2018). These findings imply the importance of investigat-
ing similar effects and signaling pathways involved in the 
hyperglycemic processes in astrocytes.

Catechins

Catechins are the major bioactive polyphenols found in 
purified green tea extract. These compounds present neu-
roprotective effects that are mediated by their antioxidant 
and anti-inflammatory properties (Scapagnini et al. 2011). 
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Epigallocatechin-3-gallate (EGCG) is the most abundant cat-
echin in green tea extract and reportedly affects insulin sensi-
tivity mechanisms by modulating Nrf2 transcriptional activity 
(Potenza et al. 2007; Scapagnini et al. 2011) and Akt activa-
tion (Ettcheto et al. 2020), resulting in the reduction of insulin 
resistance and improvements in cognitive disorders, respec-
tively. In addition, extracts of polyphenols, containing catechin 
and epicatechin, were found to attenuate nitric oxide synthase 
activation in astroglial cells subjected to oxygen–glucose dep-
rivation and ischemic injury in vitro (Panickar et al. 2009). 

Epicatechin gallate (ECG) also improves glutamate uptake and 
S100B secretion in astroglial cells (Abib et al. 2008), poten-
tially exerting a glioprotective role.

Isoflavones

Isoflavones are a subclass of flavonoids present in high con-
centrations in leguminous plants, such as soybeans. Gen-
istein, followed by daidzein, glycitein, and aglycone, is the 
major bioactive form of this subclass (Ganai et al. 2015), 

Table 1   Biological effects of natural compounds on DM/glucose metabolism disorders

DM diabetes mellitus, AMPK AMP-activated protein kinase, SIRT1 sirtuin 1 , Nrf2 nuclear factor erythroid-derived 2-like 2, HO-1 heme oxyge-
nase- 1

Natural compound Biological effect Reference

Carotenoids Antidiabetic and antihyperglycemic effects; enhancement of serum insulin levels Nishikawa et al. (2012)
Uchiyama et al. (2002)

Amelioration of hippocampal insulin resistance in Wistar rats and prevention of cognitive 
and memory impairments

Kuhad et al. (2008)
Rahman et al. (2019)

Protective activities against brain inflammation and oxidative damage; promotion of 
trophic factor release

Huang et al. (2018)

Catechins Effects on insulin sensitivity mechanisms Potenza et al. (2007)
Improvement of cognitive disorders Ettcheto et al. (2020)

Galega officinalis Antihyperglycemic compound Ota and Ulrih (2017)
Isoflavones Antidiabetic and hypolipidemic effects Mezei et al. (2003)

Action on β-cell proliferation/glucose-stimulated insulin secretion Gilbert and Liu (2013)
Positive effects on glycemia in women with DM Braxas et al. (2019)

Lipoic acid Antioxidant activity and modulator of several signaling pathways Lee et al. (2009)
Yaworsky et al. (2000)

Modulation of brain energy metabolism and insulin-related signaling Jiang et al. (2013)
Attenuation of glial reactivity against DM-induced brain damage Baydas et al. (2004)

Rodriguez-Perdigon et al. (2016)
Oligosaccharides Action on neural regulation, insulin sensitivity, and glucose metabolism Chan et al. (2016)

Zhu et al. (2019)
Polysaccharides Antihyperglycemic activity through inhibitory effects on α-amylase and α-glucosidase Xu et al. (2019)

Hypoglycemic potential Xue et al. (2018)
Drop in plasma glucose; increase in the levels of antioxidant enzymes Kou et al. (2019)

Resveratrol Control of inflammation and maintenance of redox homeostasis of cells Tian et al. (2016)
Wang et al. (2020)

Improvement of homeostatic glucose balance in the body, mainly through the regulation 
of AMPK and SIRT1

Ding et al. (2020)
Vlavcheski et al. (2020)

Improvement of insulin sensitivity and glucose homeostasis Knight et al. (2011)
Attenuation of astrocytic activation in the hippocampus of diabetic rats Jing et al. (2013)
Effects on cognitive decline and neurodegeneration Ma et al. (2020)

Zeng et al. (2016)
Prevention of neuronal apoptosis and memory impairment in diabetic rats Wang et al. (2016)

Tang et al. (2020)
Protective effects on DM-related cognitive decline Pu et al. (2018)
Induction of Nrf2/HO-1 pathway in cells exposed to high glucose Zhao et al. (2019)

Sulforaphane Prevention of neuronal apoptosis and memory impairment in diabetic rats Wang et al. (2016)
Tang et al. (2020)

Protective effects on DM-related cognitive decline Pu et al. (2018)
Induction of Nrf2/HO-1 pathway in cells exposed to high glucose Zhao et al. (2019)
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and several studies have demonstrated the beneficial effects 
of isoflavones, and/or their derivative compounds, against 
obesity, DM, and cardiovascular and neurodegenerative dis-
eases. Genistein supplementation presented positive effects 
on glycemia, serum lipid profile, and antioxidant status in 
postmenopausal women with DM (Braxas et al. 2019) and 
on antioxidant defenses in knockout mice for low-density 
lipoprotein (LDL) receptors (Wang et al. 2008).

The beneficial effects of isoflavones are partially associ-
ated with their antioxidant and anti-inflammatory activities, 
as well as with estrogenic and hypocholesterolemic func-
tions (Park et al. 2016). Notably, isoflavones act through 
estrogen receptors (ERs), due to their structural similarity 
to the estradiol hormone, and are considered to be phytoes-
trogens (Kuiper et al. 1998).

Isoflavones and genistein are able to control oxidative/
nitrosative stress and inflammatory responses in numer-
ous experimental models through signaling pathways, 
such as NFκB, PI3K/Akt (Qian et al. 2012), and peroxi-
some proliferator-activated receptors, PPARs (Mezei et al. 
2003). They are also recognized as having antidiabetic 
properties, since they act directly on β-cell proliferation/
glucose-stimulated insulin secretion and enzymes related 
to glucose metabolism (Gilbert and Liu 2013). Genistein 
can also relieve diabetic peripheral painful neuropathy and 
restore nerve NGF content (Valsecchi et al. 2011). Thus, 
these compounds may hold potential as glioprotective mol-
ecules, since they modulate specific activities associated 
with dysfunctions induced by DM in the CNS.

Lipoic Acid

Lipoic acid (LA) is a natural compound that can be endog-
enously synthesized in small amounts in the mitochondria. 
This compound is essential for the function of different oxi-
dative metabolism enzymes and modulates the redox and 
energy status of cells. LA contains two thiol sulfur groups 
that act as antioxidants, particularly in GSH metabolism, and 
also as metal chelators, thereby modulating several signaling 
pathways (Lee et al. 2009; Gomes and Negrato 2014).

A number of studies have reported on the potential thera-
peutic actions of LA in chronic diseases, such as DM and its 
complications, hypertension, Alzheimer’s disease, and cog-
nitive dysfunction (Gomes and Negrato 2014). LA is able to 
restore glucose uptake impairment, mitochondrial dysfunc-
tion, and synaptic plasticity in the aging brain, through the 
modulation of insulin signaling (Jiang et al. 2013). In addition, 
LA can boost neurotrophic support in diabetic rats (Garrett 
et al. 1997). The protective effects of LA are related to NFκB 
inhibition, AMPK activation, and attenuation of inflammatory 
response and oxidative stress in peripheral and brain tissue 
(Ramamurthy and Ronnett 2012). With regard to glial cells, 
LA modulates glial parameters, such as glutamate uptake, GS 

activity, S100B secretion, GSH content, and inflammatory 
response, therefore attenuating glial reactivity (Bobermin 
et al. 2013; Kleinkauf-Rocha et al. 2013; Santos et al. 2015).

Polysaccharides

Mushrooms are rich in polysaccharides, especially β- and 
α-glucans, substances with antidiabetic properties (Dubey 
et al. 2019). Ethanolic extracts of the mushroom Lactar-
ius deliciosus showed inhibitory effects on α-amylase and 
α-glucosidase (Xu et al. 2019), while polysaccharides iso-
lated from Inonotus obliquus were demonstrated to strongly 
increase glucose consumption in insulin-resistant cells (Xue 
et al. 2018), demonstrating potential hypoglycemic activ-
ity in in vitro studies. Moreover, the polysaccharides of the 
mushroom Grifola frondosa also presented antidiabetic 
effects by decreasing glucose levels and increasing enzy-
matic antioxidant defenses (Kou et al. 2019).

Small molecules, such as functional oligosaccharides, 
have also been used as antidiabetic agents, as they present the 
ability to regulate insulin tolerance and glucose metabolism, 
by improving pancreas function, α-glucosidase inhibition, 
anti-inflammatory effects, and the regulation of gut micro-
biota (Chan et al. 2016; Zhu et al. 2019). Although studies 
about the possible effects of polysaccharides in the brain are 
lacking, these compounds can act as neuroprotective mol-
ecules, avoiding the deleterious effects of glucose in the CNS.

Resveratrol

Resveratrol is a natural polyphenol of the stilbene family that 
is synthesized by a variety of plants, such as grapes, pea-
nut, and berries (Baur and Sinclair 2006). As a well-known 
phenolic and antioxidant compound, resveratrol prevents 
oxidative damage in various pathological situations, con-
trolling inflammation and maintaining redox homeostasis of 
the cells, including astrocytes, where it is able to reduce glial 
activation, oxidative/nitrosative stress, and the inflammatory 
response (Bellaver et al. 2016; Bobermin et al. 2018, 2019; 
Quincozes-Santos et al. 2013a, b; Wang et al. 2020). Moreo-
ver, resveratrol is able to increase the release of trophic fac-
tors, particularly BDNF and GDNF, by astrocytes under an 
inflammatory stimulus (Bobermin et al. 2019).

Studies in diabetic animal models have demonstrated that 
resveratrol ameliorates the overall scenario of the disease via 
several mechanisms, such as improvement in sensitivity to 
insulin, a reduction in oxidative stress, an anti-inflammatory 
activity, and regulation of metabolic enzymes (Tian et al. 
2016; Ota and Ulrih 2017). The glucose balance may be 
improved by resveratrol, modulating insulin secretion pat-
terns, and maintaining metabolic processes, mainly through 
the regulation of AMPK, GLUT4 transporter levels, and 
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SIRT1 (Ding et al. 2020; Vlavcheski et al. 2020). Interest-
ingly, the activation of SIRT1 by resveratrol in the hypothal-
amus improves insulin sensitivity and glucose homeostasis 
(Knight et al. 2011).

The effects of resveratrol on cognitive decline and neuro-
degeneration have been widely described (Jing et al. 2013; 
Ma et al. 2020). With particular regard to astrocytes, res-
veratrol was able to attenuate astrocytic activation in the 
hippocampus of diabetic rats (Jing et al. 2013) and improve 
brain levels of GSH (Ma et al. 2020) and also prevented 
retinal dysfunction by regulating specialized glial functions, 
such as the glutamate-glutamine cycle (Zeng et al. 2016). 
Considering these observations, resveratrol may hold poten-
tial for the prevention of diabetic encephalopathy, acting as a 
glioprotective molecule. It is important to note that resvera-
trol is able to modulate the Nrf2/HO-1 pathways, protecting 
glial cells against glucose-induced cytotoxicity.

Sulforaphane

Sulforaphane is a natural isothiocyanate found in crucifer-
ous vegetables (e.g., broccoli, cauliflower, and cabbage) that 
has demonstrated a therapeutic potential due to its antioxi-
dant and anti-inflammatory activities (Huang et al. 2019). 
Since sulforaphane is able to cross the BBB, it can protect 

neural cells in different experimental models of brain inju-
ries, including DM. It has been shown that sulforaphane pre-
vented neuronal apoptosis and memory impairment in dia-
betic rats, by regulating neurotrophic factors, Akt/GSK-3β 
pathway, and endoplasmic reticulum stress (Tang et al. 2020; 
Wang et al. 2016). Moreover, the protective effects of sul-
foraphane on DM-related cognitive decline are associated 
with its ability to improve Nrf2 signaling, increasing the 
expression of HO-1 in the brain (Pu et al. 2018). With regard 
to the neural cell types targeted by sulforaphane, its Nrf2/
HO-1 pathway–inducing effects were observed in neuronal 
cells exposed to high glucose (Zhao et al. 2019) and in astro-
glial cells (Bobermin et al. 2020). In addition, sulforaphane 
modulates a wide range of astroglial functions, including 
glutamate uptake, GS activity, GSH metabolism, the release 
of GDNF, and the inflammatory response (Bobermin et al. 
2020); these glioprotective mechanisms presumably medi-
ate the beneficial effects of sulforaphane in a diabetic brain.

Concluding Remarks

DM is strongly correlated with brain disorders, which 
are mainly associated with obesity and aging. Moreover, 
DM affects astrocyte functions, particularly their glucose 
metabolism, in turn impairing CNS homeostasis. Therefore, 

Fig. 2   Schematic illustration of the potential glioprotective effects 
of natural compounds. DM induces peripheral and central nerv-
ous system dysfunctions. Carotenoids, catechins, isoflavones, lipoic 
acid, polysaccharides, resveratrol, and sulforaphane can act as glio-
protective molecules by attenuating and/or avoiding gliotoxicity. 
Glioprotective molecules can promote glioprotection in DM by the 

modulation of glycolytic activity, glucose metabolism, mitochon-
drial function, ROS production, glutamate metabolism, inflammatory 
responses, and several signaling pathways in astrocytes. The cell on 
the left represents a reactive (dysfunctional) astrocyte, while the cell 
on the right represents a ramified (functional) astrocyte. Colored cir-
cles represent the glioprotective molecules
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astrocytes are a relevant target for preventive/therapeutic 
strategies for DM-induced gliotoxicity. Data from our group 
and others have highlighted natural compounds as gliopro-
tective molecules that are able to improve specific astrocyte 
activities and thereby may prevent the brain damage that 
occurs in DM. Figure 2 depicts how natural compounds 
can act on astrocytes to promote glioprotection. The major 
mechanisms by which natural compounds exert glioprotec-
tion involve signaling pathways such as the AMPK, HO-1, 
Nrf2, NFκB, PI3K, and SIRT1 pathways. Accordingly, 
nutraceuticals such as catechins, lipoic acid, resveratrol, 
and sulforaphane have received substantial interest due to 
their potential nutritional and therapeutic effects on these 
pathways, including in DM. Since there is a lack of stud-
ies on human astrocytes and DM, the majority of studies 
cited herein were performed in animal models. In summary, 
the present review sheds light on the homeostatic ability of 
astrocytes, reinforcing natural products as potential gliopro-
tective strategies against diabetes-induced gliotoxicity.
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