

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS

October 20, 2023

MMRC-BMN255-00023 October 2023

WELCOME

2023 STRATEGIC COUNCIL

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS

GROUND RULES

As our advisor, please...

- Ensure confidentiality of this discussion
- Refrain from taking screenshots
- Provide open and candid feedback
- Engage in constructive discussion
 - Share your perspectives and build on those of your peers
 - Varied opinions are valued consensus is not necessary

Housekeeping

Active attendees: Please keep your video camera on while we are in session

Passive attendees: Please keep your video camera off for the duration of the meeting Active attendees: Please keep your line muted when you are not speaking

Active attendees: Feel free to use the *raise your hand* feature and the *chat* feature in Zoom

The meeting is being recorded to aid with a report for internal reference

Passive attendees:

Please keep your line muted for the duration of the meeting Passive attendees can raise questions to active BioMarin attendees but may otherwise not talk

Today's Objectives

Gene Therapies Landscape:

- Explore payers' points of view regarding the roles and coverage of currently-approved gene therapies
- Identify key evidence requirements and likely coverage for gene therapies potentially to be approved in next five years.

• Non-Alcoholic Fatty Liver Disease (NAFLD)-associated Hyperoxaluria:

- To understand payer perceptions of the residual unmet need for patients with NAFLD-associated Hyperoxaluria with Recurrent Kidney Stones and the implications for evidence requirements
- To explore payer receptivity to an investigational therapy, BMN 255, and expected payer coverage across various potential development scenarios.

US Strategic Payer Council Advisors 2023

NAME	ORGANIZATION	
Ed Pezalla, MD	Enlightenment BioConsult	
Felicia Wade, MD	United Healthcare	
James Bowerman, MD	Molina Healthcare	
Joe Biskupiak, PhD	University of Utah School of Pharmacy	
John Fox, MD	OneOncology	
Kenneth Schaecher, MD University of Utah Health Plan		
Lon Castle, MD	Express Scripts EviCore	
Lou Garrison, PhD	University of Washington School of Pharmacy	
Lynne Milgram, MD	Sharp Healthcare	
Marc Dinnel, PharmD	Mercy Health Plan	

Participants

Heather Ollison	Group Vice President, US Commercial	
PJ Keith	Vice President, US Market Access	
John Nelson	Director, US Pricing and Market Access Strategy	
Joost Van Backle	Senior Director, Global Market Access, Pipeline/Gene Therapies	
Johnny Chew	Associate Medical Director, Clinical Development	
Jolene Lau	Director, Corporate Intelligence	
Paul Okhuoya	Director, Global Market Access Lead, BMN 255	
Thomas Morgan	Medical Director, Early Discovery Medicine, BMN 255	
Carolina Amador	Associate Director, Corporate Intelligence, BMN 255	

FACILITATORS	ORGANIZATION	
Lee Blansett	HMP Market Access Insights (MODERATOR)	
Cindy Chen	HMP Market Access Insights	
Taylor Crutison	HMP Market Access Insights	
Samuel Amadi	HMP Market Access Insights	
Corinne Cusumano	Mirada Life Sciences	

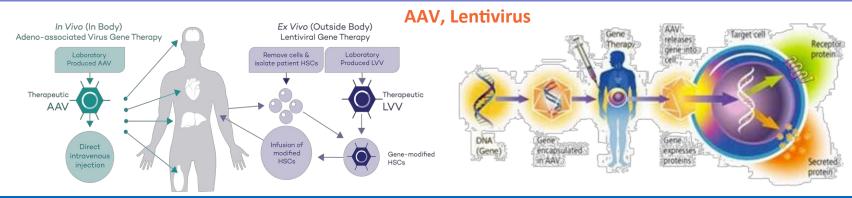
Today's Agenda

FRIDAY, C	OCTOBER 20TH	11:00AM—4:00PM PT
11:00-11:10	Lee Blansett	Organizational approach, ground rules, introductions
11:10-11:20	Heather Ollison	Overview of BMN Development/Pipeline
11:20-1:20	Johnny Chew/ Jolene Lau	 Gene Therapy: Perception, Management and Planning for the future Current and pipeline landscape Management of gene therapy Value perception
1:20-1:40		Break
1:40-3:45	Thomas Morgan/ Carolina Amador	 BMN 255: Non-Alcoholic Fatty Liver Disease (NAFLD)-associated Hyperoxaluria Disease background Unmet need (therapeutic landscape) Development plan: product profile, trial design and endpoints Large group discussion Break out group discussion
3:45-4:00	Lee Blansett	Meeting recap, advisor feedback for 2023

BMN Development Pipeline

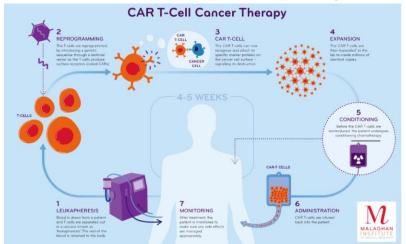
	Product Candidate	Research	IND- Enabling	Phase 1	Phase 2
	BMN 255 Hyperoxaluria (Small Molecule)				
	BMN 351 DMD (Exon 51 Oligonucleotide)				
nt	BMN 349 A1ATD (Small Molecule)				
ne	BMN 333 Long Acting CNP (Peptide)				
Early Development	MSK (Oligonucleotide)	4 Candidates			
elc	MSK (Gene Therapy)				
)e	Metabolic (Biologic)	2 Candidates			
	HEM (Biologic)				
arl	HEM (Oligonucleotide)	2 Candidates			
	BMN 331 HAE (AAV Gene Therapy)				
and	BMN 293 MYBPC3 HCM (AAV Gene Therapy)				
	BMN 365 PKP2 ACM (AAV Gene Therapy)				
Research	BMN 355 for LQT (Monoclonal Antibody)				
Sea	CV (AAV Gene Therapy)	2 Candidates			Muscu
Re B	CV (Oligonucleotide)	2 Candidates			Non-O
	CV (Monoclonal Antibody)				Cardio
	CNS (AAV Gene Therapy)	4 Candidates			Centra
	CNS (Oligonucleotide)	3 Candidates			Other
	CNS (Biologic)				

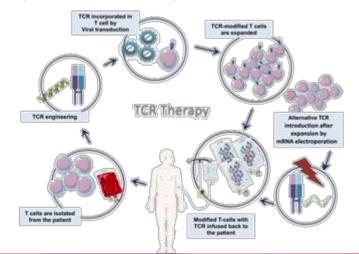
Musculoskeletal (MSK)/Metabolic
 Non-Oncology Hematology
 Cardiovascular (CV)
 Central Nervous System (CNS)
 Other

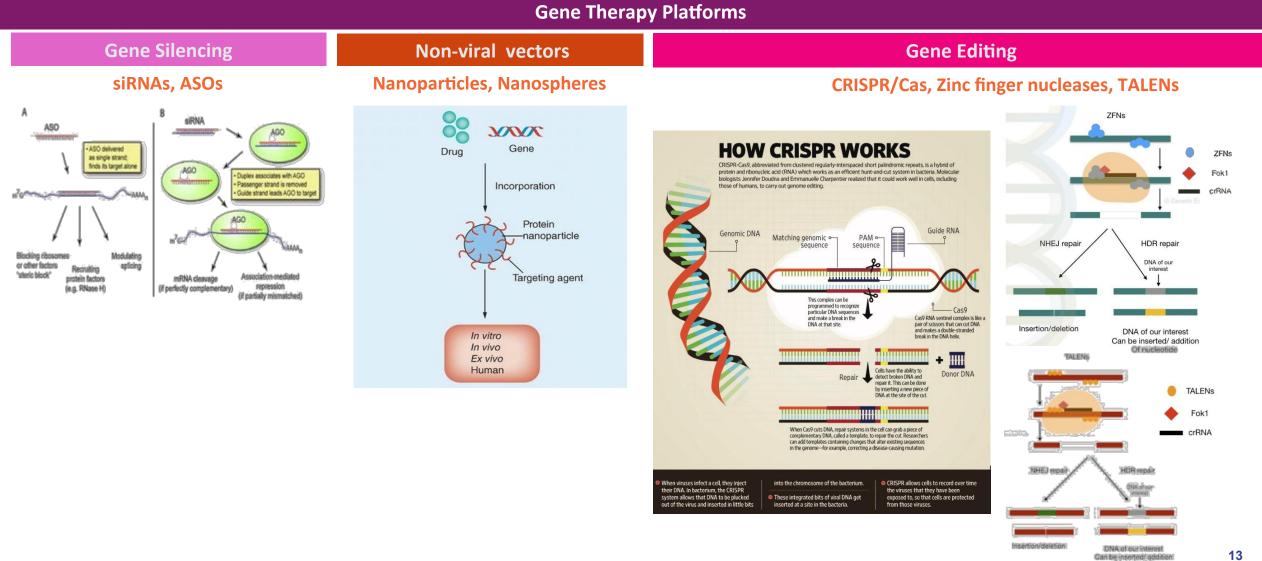

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS

GENE THERAPY

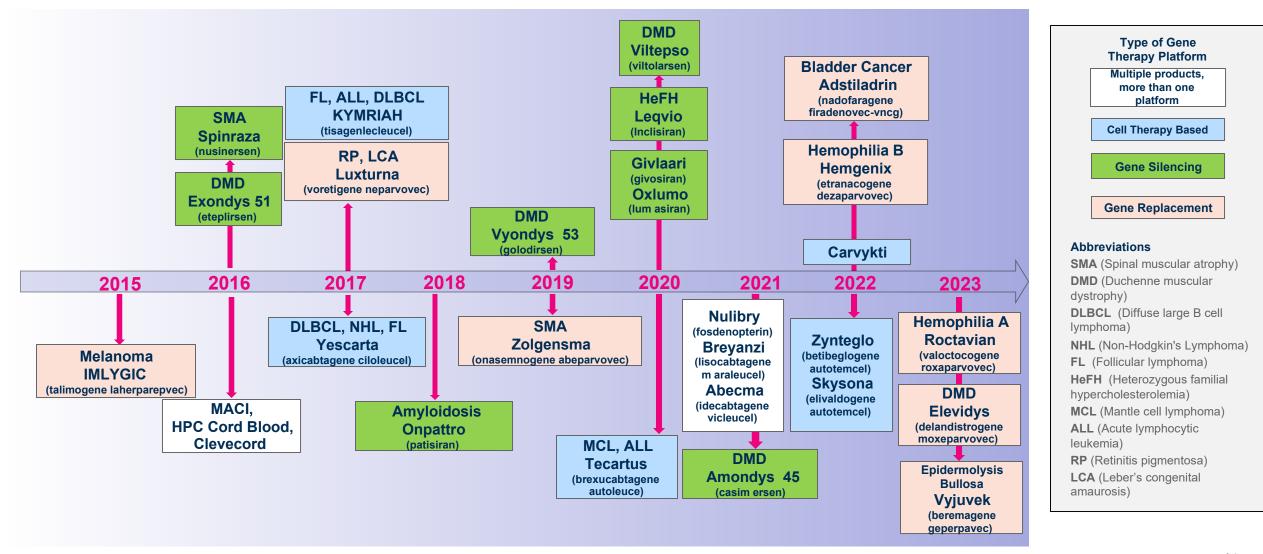
Gene Therapy Platforms


Gene Therapy Platforms


Gene replacement (viral vectors)


Genetically modified cell-based immunotherapies

CAR T cell therapies, TCR therapies, NK cell therapies



Gene Therapy Platforms

Of nucleotide

Gene Therapy Development and First Approvals Dates

Select FDA Approved Gene Therapies (1/2)

	LUXTURNA (voretigene neparvovec-rzyl)	ZOLGENSMA (onasemnogene abeparvovec-xioi)	ADSTILADRIN (nadofaragene firadenovec-vncg)
Manufacturer	Spark Therapeutics	Novartis	Ferring Pharmaceuticals
FDA Approval date	2017	2019	2022
Indication	Biallelic <i>RPE65</i> mutation-associated Retinal Dystrophy ²	Spinal Muscular Atrophy (Type I)	Bladder Cancer ⁴
Key clinical data *Tumor responses determined using modified World Health Organization (WHO) criteria by a blinded, independent Endpoint Assessment Committee (EAC) ^{3,4}	Study Design NCT00999609 • Phase III, open-label, RCT • N=31 patients, aged 3 or older 1 • N=31 patients, aged 3 or older 1 • Intervention Arm (n=21): subretinal administration of AAV2-hRPE65v2 (voretigene neparvovec-rzyl) • Control Arm (n=10): No intervention, uninjected Primary Endpoint • Multi-luminance Mobility Testing (MLMT)*, Bilateral (1-year change from baseline) Secondary Endpoint • Full-field Light Sensitivity Threshold (FST) Testing: White Light (1-year change from baseline) Results • MLMT score change for bilateral eyes, median(min,max) • Luxturna: 2(0,4) ² ; Control: 0(-1,2) ² • Luxturna's demonstrated efficacy at 1-year • 55% of all participants had an MLMT score change of 2 or greater ³ *MLMT is a standardized, lab-based test w here participants were observed navigating an obstacle course of varying height under	Study Design NCT03381729 • Phase III, open-label, single-arm, single-dose • N=22 patients, aged 6 months or younger ^{1,2} • Intervention: AVXS-101 delivered intravenously Primary Endpoints • Independent sitting for at least 30 seconds (up to 18 months) ¹ • Event-free survival (14 months) Secondary Endpoint • Ability to thrive (18 months) ¹ Results • Motor milestone: 59% of patients could sit independently for at least 30 seconds ² • Event free survival: 91% of patients were alive and did not need permanent breathing suppoft • 64% of patients could sit without support for at least 30 seconds at any point in the study ^{2*}	 During the 12-month study period²: 96% of patients did not progress to MIBC 74% of patients were cystectomy free 36% of patients remained free of high-grade recurrence up to 2 years. *Based on patients (n=50) w ho achieved a CR; reflects period from
	different levels of illumination?-4	months of age study visit (end of study) ²	the time CR w as achieved!
Price	\$425K (per eye) one-time treatment	\$2.1M WAC	\$60k per administration, every 3 months (quoted cash price)

Select FDA Approved Gene Therapies (2/2)

	HEMGENIX (etranacogene dezaparavovec-drib)	Vyjuvek (beremagene geperpavec)	ELEVIDYS (delandistrogene moxeparvovec)	ROCTAVIAN (valoctocogene roxaparvovec-rvox)
Manufacturer	CSL Behring	Krystal Biotech	Sarepta Therapeutics	BioMarin
FDA Approval date	2022	2023	2023	2023
Indication	Hemophilia B (congenital Factor IX deficiency)	Dystrophic Epidermolysis Bullosa (DEB)	Duchenne Muscular Dystrophy (DMD)	Hemophilia A (congenital factor VIII deficiency)
Key clinical data	Study DesignNCT03569891• Phase III, open-label, single-dose, RCT• N=54 patients²• Experimental arm: A single infusion of AAV5-hFIXco-Padua (AMT- 061)!• Active comparator:FIX replacement 1Primary Endpoint• Annualized bleeding rate (ABR)1Secondary Endpoint• Factor IX Activity Levels after AMT-061Results• 54% reduction of all bleeds on Hemegenix (average of 4.1 ABR while on factor IX prophylaxis; 1.9 ABR on Hemegenix)²• 37% average factor IX sustained increase in 2 years on Hemegenix• 63% reported zero bleeds in the 7 to 18-month period following Hemgenix• 94% of Hemegenix patients remained prophy-free.2	Study DesignNCT04491604• Phase III, intra-subject parallel study• N=31 patients• Experimental arm: Primary wound receives B-VEC• Placebo comparator arm: Primary wound receives placeboPrimary Endpoint• Primary wound with 100% wound closure on Weeks 22 and 24 or Weeks 	 Study Design Phase 1&2 (SRP-9001) NCT03769116 Study 1: Multi-center study including: Part 1: 48-week, randomized, double-blind, placebo-controlled period¹ Part 2: 48-week period that began following completion of Part 1.¹ Study 2: Open-label, multi-center study with a cohort of 20 ambulatory male DMD subjects aged 4 through 7 years. Primary Endpoints for Study 1: Expression of Elevidys micro-dystrophin in skeletal muscle and effect of Elevidys on the North Star Ambulatory Assessment (NSAA) total score¹ Primary Endpoints for Study 2: Effect of Elevidys micro-dystrophin expression ¹ Results¹ Mean Elevidys micro-dystrophin expression levels (change from baseline) at Week 12 following infusion for patients 4 to 5 were: 95.7% (N=3, SD: 17.9%) in Study 1 51.7% (N=11, SD: 41.0%) in Study 2 	Study Design (BMN 270-301) NCT03370913 • Phase III, open-label, single-arm study • N=112 patients • Population: Hemophilia A patients With residual FVIII Levels ≤ 1 IU/dL receiving prophylactic FVIII infusions ¹ Primary Endpoint • Change in FVIII activity post-BMN 270 infusion ³ Secondary Endpoints • Change in the annualized utilization of exogenous FVIII replacement ³ • Change in the annualized number of bleeding episodes requiring FVIII replacement treatment ³ • Results ^{1,2} Annualized bleeding rate (ABR) and events: • 52% mean ABR reduction post Roctavian (2.6 bleeds/year vs 5.4 bleeds/year baseline) ² • Roctavian ABR: 0.5 bleeds/year for spontaneous bleeds and 0.6 bleeds/year for joint bleeds • Baseline ABR on FVIII prophylaxis: 2.3 bleeds/year for spontaneous bleeds and 3.1 bleeds/year for joint bleeds ²
Price	\$3.5 M (WAC) per one-time dose, flat pricing	\$631K per patient per year (\$24,250 per vial)	\$3.2 M (WAC), flat pricing	\$2.9 M (WAC) average per patient, weight- based

Group Discussion

PERCEPTION & MANAGEMENT (OF CURRENT GENE THERAPIES)

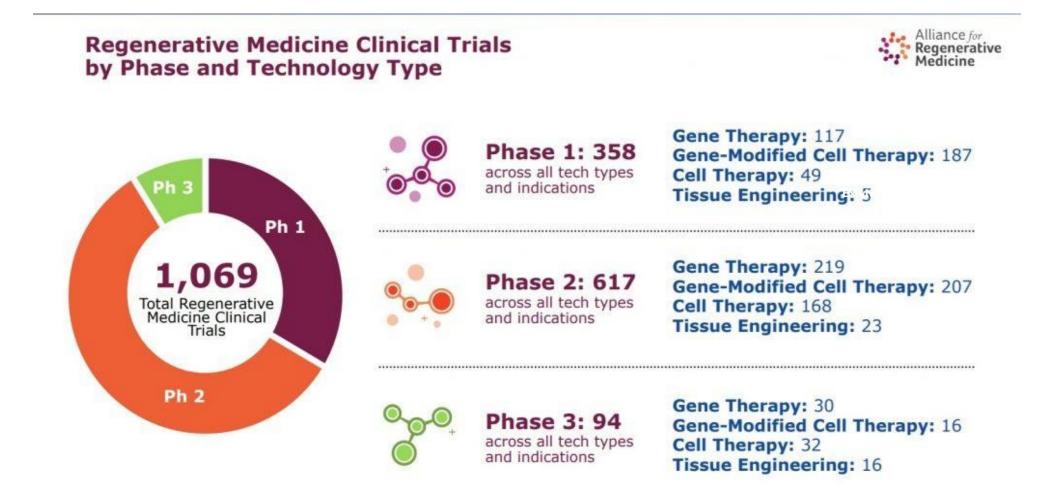
- Have you reviewed/authorized any of the currently available gene therapies?
- What kinds of advantages are current gene therapies providing for patients? For payers?
- Does your plan have an overall gene therapy management strategy or is it ad hoc, one product at a time?
- What is your current coverage policy and management strategy for gene therapies/gene therapy platforms?
 - How do you prioritize or manage coverage for gene therapies?
 - Who's involved in managing/overseeing coverage?

Please tell us what you think: Polling

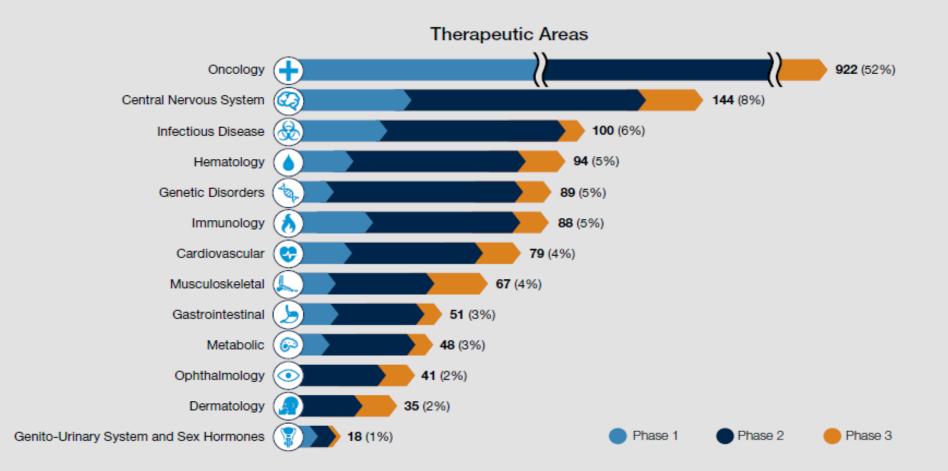
• Poll #1

• Poll #2

Elevidys: Accelerated approval in pediatric patients aged 4 through 5 years with Duchenne muscular dystrophy (DMD)


Accelerate	d approval was primarily based on data from Study 1* and Study 2* described below:				
 Duchenne Muscular Dystrophy (DMD) Outcome: Elevidys increased the expression of the Elevidys micro-dystrophin protein in individuals aged 4 		% of ELEVIDYS Micro-Dystrophin Expression Compared to Control at Week 12 (Western Blot Assay) ^{sbc}			
Primary EnChange a	rs with DMD. dpoints: at week 12 in SRP-9001 dystrophin protein expression (Western Blot Assay) (Study 1 and Study 2) at week 48 in North Star Ambulatory Assessment (NSAA) Total Score (Study 1)		Study 1 Part 1	Study 1 Part 2	Study 2 Cohort 1
Study	Trial Design	Mean change	43.4	40.7	54.2
Study 1*	 Part 1: a 48-week, randomized, double-blind, placebo-controlled period Part 2: a 48-week period that began following the completion of Part 1. Patients who received placebo during Part 1 were treated with ELEVIDYS, and patients treated with ELEVIDYS during Part 	from baseline (SD) Patients 4-7 yrs	(48.6) n=6	(32.3) n=21	(42.6) n=20
	1 received placebo.	Mean change	95.7 (17.9) n=3		51.7 (41.0) n=11
	Patients were randomized to receive either ELEVIDYS (N=20) or placebo (N=21). In the ELEVIDYS group, 8 patients received 1.33×10^4 vg/kg of ELEVIDYS, and 12 patients received lower doses.	from baseline (SD) Patients 4-5 yrs			
	Primary objective: To evaluate expression of ELEVIDYS micro-dystrophin in skeletal muscle, and to	Change in NSAA Total Score at Week 48 (Study 1) ^d			y 1) ^d
	evaluate the effect of ELEVIDYS on the North Star Ambulatory Assessment (NSAA) total score.		ELEVIDY	(Se	Placebo
Study 2*	Cohort study of 20 ambulatory male DMD subjects aged 4 through 7 years. All 20 subjects have a confirmed frameshift mutation, canonical splice site mutation, or premature stop codon mutation in the DMD gene.	Least squares mean change from baseline			1.9 (0.7)
	Subjects received corticosteroids for DMD before infusion. All subjects had baseline anti-AAVrh74 antibodies titers <1:400 and received a single intravenous infusion of 1.33×10^{10} vg/kg ELEVIDYS.	(SE) Patients 4-5 yrs	n=8		n=8
	Primary objective: Evaluate the effect of ELEVIDYS micro-dystrophin expression.	 a Change f rom baseline was statistically b All patients receiv ed 1.33 x 1014 v g/k c Adjusted f or muscle content. Control v d Data are f rom exploratory subgroup at e Demonstrates a numerical adv antage 	g, as measured by ddP was lev el of wild-ty pe naly ses	(normal) dy strophin in	normal muscle

Group Discussion


PERCEPTION OF ELEVIDYS

- What is your perception in terms of clinical value based on Elevidys' clinical package?
 - What is your reaction to the change in micro-dystrophin levels? Is there value in the biomarker change?
 - Were the changes in NSAA scores in the approved population compelling in your decision to cover?
- Does your plan cover the recently approved Elevidys for DMD?
 - What were the most important factors that led to your coverage (or no coverage) decision? Are there any circumstances which may cause you to change your coverage decision?
 - How does the age limitation on label impact your management? Are you covering beyond 4 th to 6th birthdays?
 - Does its accelerated approval impact your perception or management?

Potential Gene Therapy Pipeline by Platform (as of 2020)

Percentage of Cell and Gene Therapy by Therapeutic Areas

1. Percentages (%) based on trials with known therapeutic areas; 317 trials with area unknown or unclassified

2. Unlisted areas include known areas with small numbers (<10) of CGT trials including mouth/dental, ear-nose-throat, and unspecified male/female disorders

Source: Alliance for Regenerative Medicine, "Regenerative Medicine: The Pipeline Momentum Builds", September 2022

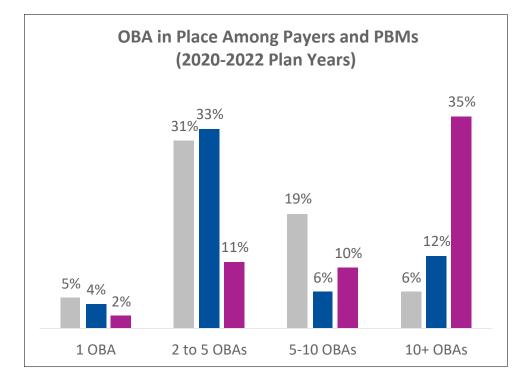
CGT (Cell and Gene Therapy)

Cell and Gene Therapy Pipeline Outlook

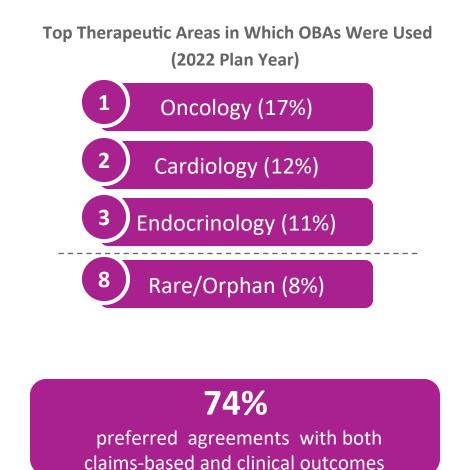
	Therapy Name and Manufacturer	Туре	Indication	Projected Approval Timing	Phase of Development
	Lovo-cel (bluebird bio)	Gene Therapy	Sickle cell disease	December 2023	Pending Approval
ccepted	Lifileucel (lovance)	Cell Therapy	Metastatic melanoma	November 2023	Pending Approval
A A A	NurOwn (BrainStorm Therapeutics Inc.)	Cell Therapy	Amyotrophic lateral sclerosis	December 2023	Pending Approval
BLA/M	CTX001 (Vertex Pharmaceuticals & CRISPR Therapeutics	Gene Editing Therapy	Sickle cell disease, β-thalassemia	SCD: December 2023 β-thalassemia March 2024	Pending Approval
	Fidanacogene elaparvovec (Pfizer/Spark Therapeutics)	Gene Therapy	The treatment of hemophilia B in adults	2024	Pending Approval
	UX111 (fka ABO-102) Abeona Therapeutics/Ultragenyx Pharmaceutical)	Gene Therapy	The treatment of mucopolysaccharidosis type 3A (also known as Sanfilippo syndrome type A)	2024	Phase III
	Fordadistrogene movaparvovec (Pfizer)	Gene Therapy	The treatment of ambulatory patients with Duchenne muscular dystrophy (DMD)	2025	Phase III
	Giroctocogene fitelparvovec (Pfizer/Sangamo BioSciences)	Gene Therapy	The treatment of hemophilia A in adults	2025	Phase III
	Resamirigene bilparvovec (Astellas Pharma/Audentes Therapeutics)	Gene Therapy	The treatment of X-linked myotubular myopathy in males aged younger than 5 years	2025	Phase I/II
	Laruparetigene zosaparvovec (Applied Genetic Technologies Corp.)	Gene Therapy	The treatment of X-linked retinitis pigmentosa in males aged 8–50 years with a mutation in the RPGR gene	2025	Phase II/III

Group Discussion

PLANNING FOR PIPELINE GENE THERAPIES


- What do you perceive as the key payer challenges as more gene therapy options become available in the next 2-5 years? What lessons (from current therapies) will be leveraged with new therapies?
- What has been your experience with the potential economic advantages of gene therapy? Have the potential cost offsets been realized with gene therapy?
- Will each new therapy be assessed on a "one-off" basis?
- What will happen if direct competition between two or more gene therapies emerges?
- What evidence constitutes the most compelling value arguments for gene therapies?
 - Does the type of gene therapy technology (e.g., AAV, lentivirus, CRISPR) change your perception of a potential treatment?
 - What would be considered compelling evidence if the primary endpoint is a biomarker?
 - Does the administration/treatment burden (e.g., in-patient, single infusion) impact your value perception?
- Do you anticipate a "holistic" review of manufacturers whose gene therapy might replace their existing products in the same therapeutic area (e.g., gene therapy and Factor XIII)?
- What do you believe are the major opportunities to improve the clinical value of future gene therapies?

Please tell us what you think: Polling


• Poll #4

• Poll #5

Percentage of payers using Outcomes-based Agreements (OBA) remain steady but volume of OBAs is increasing

	2020	2021	2022
% of payers/PBMs with at least 1 OBA	61%	55%	58%

Percentages used based on sources and calculation of cumulative categories. Source: 1. "Avalere Survey: Over Half of Health P lans Use Outcomes-Based Contracts", Avalere, November 4.2021. https://avalere.com/insights/avalere-survey-over-halfof-health-plans-use-outcomes-based-contracts 2."Survey Finds 58% of Payers Use Outcome-based Contracts", Avalere, April 5, 2023. https://avalere.com/insights/58-of-payers-use-outcomes-based-contracts

Challenges with structuring OBAs

Frequently Cited OBA Challenges from Payers

- Assessing upfront risk due to limited/immature clinical data and uncertainty of real-world performance
- Determining appropriate time zone given fragmented, multi-payer system
- Agreement on appropriate endpoints and outcomes in contract negotiations
- Leveraging data infrastructure to measure relevant endpoints and outcomes

- Administrative burden to set up and implement vs. traditional rebates and discounts
- Missing infrastructure to store, measure and share patient data (often in niche or orphan disease areas)
- Increasing physician burden and reliance on physician reporting to determine outcomes

Select OBAs Currently in Place

LUXTURNA

Manufacturer: Sparks Therapeutics Indication: biallelic RPE mutation-associated retinal dystrophy Timeframe: 30-90 days and 30 months Details: rebates tied to short-term efficacy and longterm durability based on light-sensitivity testing scores

ZOLGENSMA

Manufacturer: Novartis Indication: spinal muscular dystrophy for pediatric patients less than 2 years of age Timeframe: up to 5 years Details: installment option over 5 years, dependent upon demonstrating continued performance over the period.

ZYNTEGLO

Manufacturer: bluebird bio Indication: pediatric and adult β -thalassemia patients requiring regular red blood cell transfusions Timeframe: up to 2 years Details: single upfront payment with OBA in which payers will be reimbursed up to 80% if patient fail to achieve or maintain transfusion independence up to 2 years following infusion

Group Discussion

OUTCOMES BASED AGREEMENTS

- Has your plan entered (or plan to enter) into an outcomes-based agreement (OBA)? What are some key learnings or challenges you have experienced?
- What characteristics make OBAs worthwhile or feasible (e.g., price level, potential patients in plan, easy to monitor endpoints, etc.)?
- What do you perceive as an optimal construct for an OBA? Options may be rebates tied to efficacy, timebased patient response, pay-over-time with defined period? Individual patient vs. population/cohort-based agreements? Others?

Please tell us what you think: Polling

• Poll #6

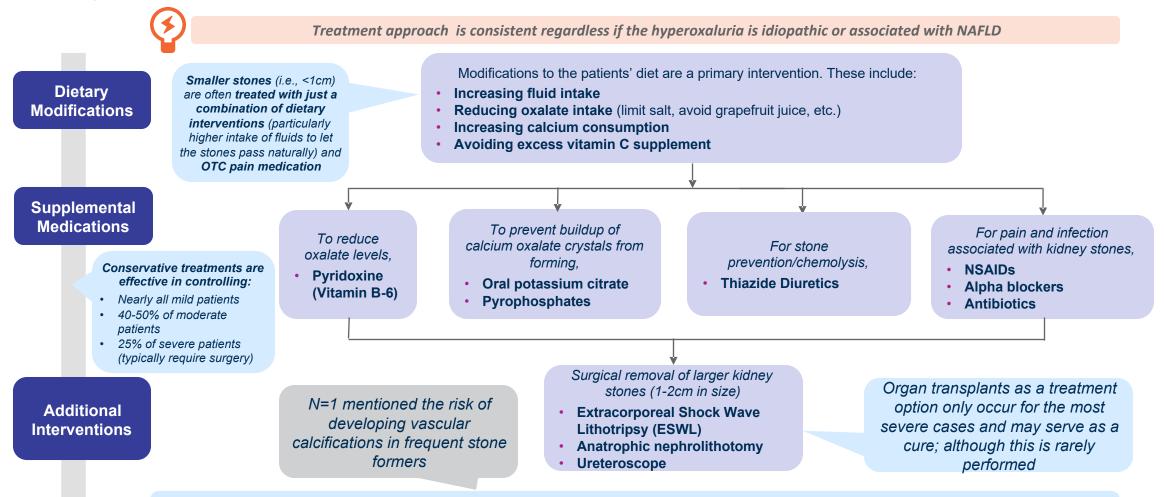
• Poll #7

Today's Agenda

FRIDAY, O	OCTOBER 20TH	11:00AM—4:00PM PT
11:00-11:10	Lee Blansett	Organizational approach, ground rules, introductions
11:10-11:20	Heather Ollison	Overview of BioMarin Development/Pipeline
11:20-1:20	Johnny Chew/ Jolene Lau	 Gene Therapy: Perception, Management and Planning for the future Current and pipeline landscape Management of gene therapy Value perception
1:20-1:40		Break
1:40-3:45	Thomas Morgan/ Carolina Amador	 BMN 255: Non-Alcoholic Fatty Liver Disease (NAFLD)-associated Hyperoxaluria Disease background Unmet need (therapeutic landscape) Development plan: product profile, trial design and endpoints Large group discussion Break out group discussion
3:45-4:00	Lee Blansett	Meeting recap, advisor feedback for 2023

BMN 255 IN HYPEROXALURIA WITH RECURRENT KIDNEY STONE FORMATION

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS



NAFLD-associated hyperoxaluria is a disorder characterized by elevated urinary oxalate levels due to AGXT downregulation and recurrent kidney stones

NAFLD-associated Hyperoxaluria Disease Overview and Pathophysiology

Current treatment paradigm predominantly consists of dietary interventions layered with drug therapy to mitigate oxalate buildup

<25% of the moderate-severe patients with recurrent kidney stones due to NAFLD-associated and idiopathic hyperoxaluria might develop additional complications such as CKD and progress to ESRD over a ~20-year period

Limited secondary information is available on the severity and progression of kidney stones for NAFLD-associated hyperoxaluria

Kidney Stones due to NAFLD-associated Hyperoxaluria

Progression

- Progression of NAFLD-associated hyperoxaluria is most characterized by **increased frequency of kidney stones**
- Deposition of calcium oxalate in kidney tissues (oxalate nephropathy) can cause tubular-interstitial injury, fibrosis, acute kidney injury, and/or chronic kidney disease¹

Prognosis

- If left undiagnosed/untreated, hyperoxaluria may lead to kidney damage and death in general
- Systemic oxalosis is less common in secondary hyperoxaluria such as NAFLD-associated hyperoxaluria²

There is little consensus among physicians on how kidney stone recurrence is defined, with most of them relying on their clinical experience

In general, **opinion-leader physicians have less knowledge about recurrence** as it relates to patients with NAFLD-associated hyperoxaluria because there is **lack of progression data/natural history on these conditions**

N=3 physicians define it as **multiple stones**, or increase in size of existing stones occurring within a 2-year window from the previous kidney stone Physicians are split on their definition of 'recurrence'

"There is no set criteria really for how we're defining this. It could be multiple stones within a 6-month period, or a stone increasing in size over a 2-year period. Really depends on the patient " -UK physician N=3 physicians (US) defines it as having had more than one kidney stone at any point in the patient's lifetime

How do physicians stratify their patients based on stone recurrence?

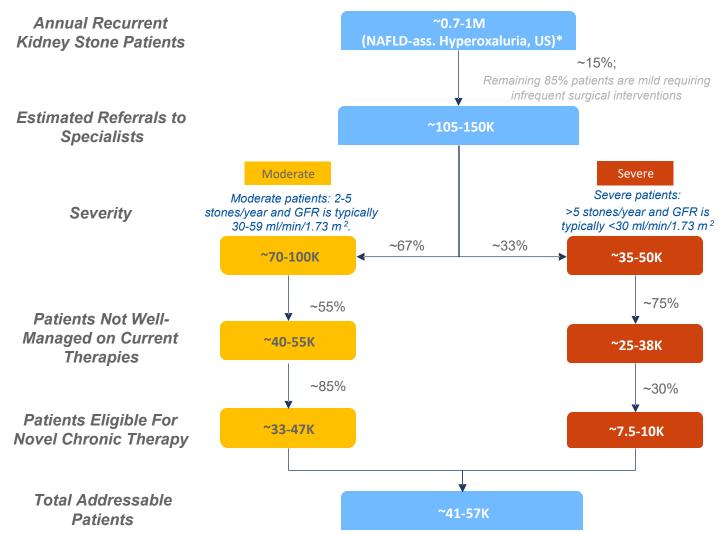
There is **no standardized way of segmenting/stratifying patients – physicians only rely on their personal clinical experience** to do this:

Mild Patients

- <2 stones per year
- GFR is 60 and above for most patients (normal functioning)
- Rarely require surgery

NOTE: There is a broader base population of mild patients with these conditions whom the physicians do not manage/receive as referrals

Moderate Patients


- 2-5 stones per year
- GFR is 30-59 for most patients (modest decline in kidney function)
- Require ~1 surgical intervention per year

Severe Patients

- >5 stones per year
- GFR is <30 for most patients, only a fraction remain eligible for new therapies (severe decline in kidney function)
- Require 2-3 surgical intervention per year

NOTE: physicians caveat that their managed patient population tends to skew towards more severe patients, as that is when patients are typically referred to them

In the US ~41-57K patients with >2 recurrent kidney stones per year due to hyperoxaluria would be candidates for a novel chronic therapy

Description/ Rationale

Secondary data suggests ~ 10-20% of patients with recurrent kidney stones require surgical intervention/hospitalization, assumed here to be a proxy for specialist referral\$,2

physicians estimate ~2:1 ratio on average between moderate and severe patients for NAFLD-associated hyperoxaluria

Physicians estimate ~40-50% of moderate patients are well managed with current treatments on average. In contrast, only avg. ~25% of severe patients are well managed

Physicians estimate ~85% moderate patients are eligible for novel medical interventions on average. Only avg. ~30% severe patients are eligible given the remaining may be ineligibility due to poor kidney function

Estimated cost for kidney stone treatments

Treatment:	Pyridoxine (Vitamin B-6)	Alpha Blocker (tamsulosin)	Potassium Citrate	Thiazide Diuretics (hydrochlorothi azide)	Extracorporeal Shock Wave Lithotripsy (ESWL)	Ureteroscope
Estimated Cost:	\$285.00 per year	< \$50 per year		~\$5-15k1	\$2,600²	

Price ranges for surgical interventions are The dependent on the severity of the kidney recommended The stone event; kidney stone removal The The recommended dose of recommended interventions are used when SoC recommended dose of potassium tamsulosin for dose of thiazide therapies do not work, dose of citrate for kidney diuretics such as kidney stones is Kidney transplants and dialysis are stones is between Pyridoxine for 0.4 MG daily until hydrochlorothiazid reserved for very severe patients that patients with 30-60 MG daily, successful e for kidney experience a loss in kidney function, kidney stones is and up to 100 MG expulsion stones is 25 to making them ineligible for most trials and 50 MG daily in some cases (average 1-2 100 MG daily new therapies weeks)

Sources: pricing analysis and secondary market research, additional sources in notes, please relevant PIs for further information

Group Discussion

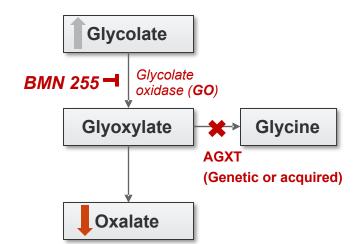
UNMET NEED

- What is your perception of the general unmet need for hyperoxaluria patients?
 - Which type of patients do you view as having the greatest unmet need? What type of unmet need?
- Do (or how do) you/your plan define "recurrent stone formation" (RSF) and severity? Do you consider GFR levels or number of kidney stones per year? Or the number of surgical interventions?
 - What do you see as challenges in identifying RSF patients? What criteria may/will you use?
 - Would a biomarker that could potentially indicate severity be valuable beyond what is listed above? What evidence would be needed to establish confidence in such a biomarker?
- What is your perception of the current standard of care for RSF in terms of provider awareness? Efficacy? Cost to plan?
- Which RSF patients do you believe are most suited for a novel therapy?
- What goals would you hope to achieve through treating these patients with a novel therapy?

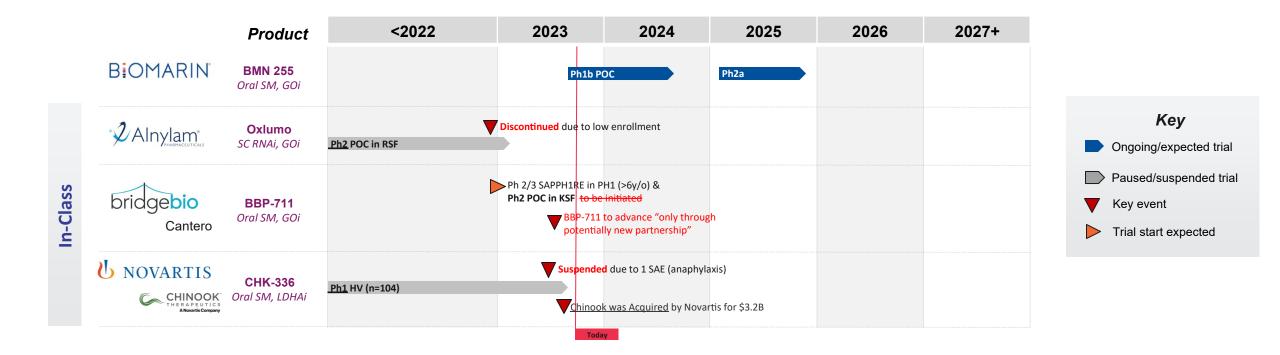
Please tell us what you think: Polling

- Poll #8
- Poll #9
- Poll #10

BMN 255 MOA, Target, and Therapeutic Goals


Therapeutic principle

- BMN 255: Small molecule, oral GO inhibitor, reducing glyoxalate
- Lower glyoxylate reduces oxalate


Lower urine oxalate reduces renal injury, oxalate burden and stone events

Therapeutic goals

- Reduce/Normalize urine oxalate
- Reduce nephrocalcinosis
- Reduce systemic oxalosis, where present
- Reduce stone events
 - e.g., Pain, infection, bleeding, hospitalizations, need for stone removal procedures (e.g., lithotripsy, surgery)
- Prevent decline in eGFR
 - AKI, CKD, ESRD

RSF Pipeline landscape

Potential pivotal study design

Patient Inclusion/Exclusion Criteria	 Inclusion Criteria: Adult patients with higher urinary oxalate levels at baseline 2 or more stone events per year ("moderate and severe patients) Exclusion Criteria: Patients with GFR<30 mg/ml/1.73m² (significant decline in kidney functioning), imminent liver transplant patients 			
Trial Design	 A randomized controlled trial <u>Arm 1:</u> New Agent (oral, once daily) + standard of care (dietary interventions along with supplements) <u>Arm 2 (comparator):</u> placebo + standard of care (dietary interventions along with supplements) 			
Efficacy and Endpoints	 Primary Endpoints Reduction in urinary oxalate level vs. comparator arm Reduction in kidney stone recurrence Secondary Endpoints Patient reported outcomes QoL improvement Reduction in rates of hospitalization due to recurrence of kidney stones Reduction in complication rate such as vascular calcification, cardiovascular event rate Improvements in radiological imaging 			
Safety/ Tolerability	 No significant impact on kidney functioning (as measured by GFR) 			

Hypothetical BMN 255 Trial Outcome Scenarios

	SCENARIO 1 KS & URINE OX DATA ONLY	SCENARIO 2 + QoL DATA	SCENARIO 3 + SURGERY OFFSET DATA			
TARGET PATIENT POPULATION	 Moderate-to-severe NAFLD-associated hyperoxaluria patients with ≥2-5 kidney stones per year and ≥1 surgical intervention per year 					
TRIAL DESIGN	BMN 255 vs. placebo + physician's choice of treatment (i.e., dietary interventions along with supplements)					
	 ~25% Reduction of urine oxalate levels vs. physician's choice ~30-40% Reduction of kidney stone incidence (over 3 years) vs. physician's choice 					
EFFICACY DATA Change from Scenario 1	 Additional evidence required: A strong link between oxalate levels and stone recurrence / morbidities 	 ≥ 15% Improvement in QoL, particularly on the pain domain (e.g., EQ5D) 	 ≥ 15% Improvement in QoL, particularly on the pain domain (e.g., EQ5D) ~30-40% Reduction of surgical interventions to remove kidney stones 			
COST COMPARATORS	 Current 2L treatments (i.e., OTC vitamin blockers and diuretics) 	 Kidney stone removal surgical interventions (i.e., ESWL, Anatrophic Nephrolithotomy, Ureteroscope) 				
Other Evidence	Historical cohort data on surgical outcomes in target population to model surgical intervention offset via ITC					

Breakout Groups

Each group will discuss all questions and report back to larger group Small Group Discussion: 40 minutes Report Back: 30 minutes

Group A

Felicia Wade, MD Kenneth Schaecher, MD James Bowerman, MD Joe Biskupiak, PhD Lynne Milgram, MD Heather Ollison Thomas Morgan Paul Okhuoya Corinne Cusamano Cindy Chen Samuel Amadi PharmD

Group B

Lon Castle, MD John Fox, MD Lou Garrison, PhD Marc Dinnel, PharmD Ed Pezalla, MD Joost Van Backle PJ Keith Carolina Amador John Nelson Lee Blansett Taylor Crutison

Breakout Group Discussion Points

CLINICAL DEVELOPMENT & ENDPOINTS

- Do you believe a head-to-head trial design (BMN255 vs placebo + standard care of choice) is compelling? What is your view on the comparators in the design?
- Are the endpoints proposed in Scenario 1 sufficient to demonstrate clinical value of new therapy?
 - What is your perception of urine oxalate (as endpoint) and its linkage to recurrent stone formation?
 - What about absolute vs. relative clinical improvements as endpoints? Is the proposed reduction compelling?
- Does the addition of QoL improvement in Scenario 2 increase the strength of clinical value?
- Does the potential reduction in surgical interventions in Scenario 3 increase the strength of clinical value?
- What are the strengths of the pivotal trial design? What are potential gaps?
- Is there value to an indirect treatment comparison vs. surgery in scenarios 1 or 2?

VALUE PROPOSITION

- What is your perception of the cost comparators proposed in Scenario 1 and 2? In Scenario 3?
- Are there other useful clinical or economic data that will be important to determine value and coverage of BMN 255?
- Are there any other disease areas/treatments that may serve as analog for the development of BMN 255?

Breakout Groups

Each group will discuss all questions and report back to larger group Small Group Discussion: 40 minutes Report Back: 30 minutes

Group B

Please tell us what you think: Polling

- Poll #11
- Poll #12
- Poll #13
- Poll #15
- Poll #16
- Poll #17

Final Large Group Discussion

COVERAGE POTENTIAL

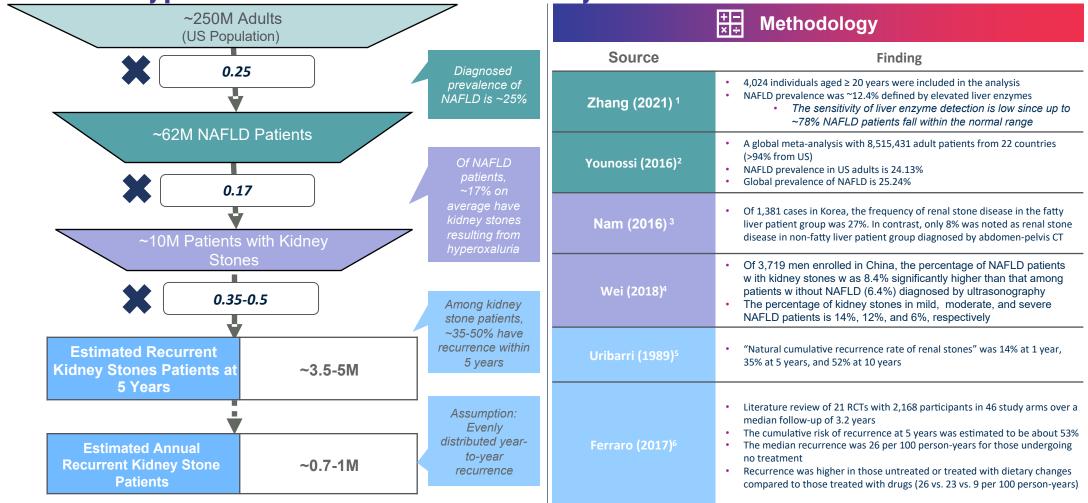
- How do you anticipate your plan will cover BMN 255 and why?
- What factors will be most influential in determining your coverage of BMN 255?
- What is your view on the value of BMN 255 vs comparators? How do you view the potential cost offsets derived from BMN 255? Are there any pricing analogs that come to mind?

Please tell us what you think: Polling

- Poll #18
- Poll #19
- Poll #20

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS

RECAP & FEEDBACK


THANK YOU

US STRATEGIC COUNCIL FOR DEMONSTRATING EFFECTIVENESS

APPENDIX

We estimate ~0.7-1M adult patients with recurrent kidney stones due to NAFLDassociated hyperoxaluria in the US annually

NAFLD Kidney Stones due to NAFLD-associated Hyperoxaluria

KOL insights indicate the potential to target moderate-to-severe patients that have 2-5+ kidney stones per year

		MILD PATIENTS	MODERATE PATIENTS	SEVERE PATIENTS	
	Idiopathic	85%	9%	6%	
Segment Size	NAFLD- Associated	85%	10%	5%	
Lifetime stone recurrence		<5 stones	5-10 stones	>10 stones	
1-year stone recurrence		<2 stones per year	2-5 stones per year	>5 stones per year	
Number of surgical procedures required/year		Rarely required	~1 surgical intervention per year (~10% of moderate patients require more than 1 per year)	2-3 surgical interventions per year (~40% of severe patients require more than 3 per year)	
Trial Design Required for P&MA Success			 H2H trial vs. physicians' choice of treatment Demonstrated H2H superiority in the reduction of kidney stones that require surgical intervention Trial inclusion criteria that specify the inclusion of patients with ≥ 2-5 kidney stones per year and ≥ 1 surgical intervention per year Trial exclusion criteria that excludes patients with severely impaired kidney function (i.e., require transplant or dialysis) 		

Group Discussion: Value Proposition of Gene Therapy

Advantages?

Challenges?