What is Electrophoresis?

Meta Title: "Electrophoresis: Separating Molecules by Size & Charge"

Meta Description: "Learn about **electrophoresis**, different molecules based on charge & size. Understand the types, applications, & procedures in biochemistry & molecular biology."

Table of content

- 1. Introduction
- 2. Electrophoresis Principle and its types
- 3. Gel electrophoresis procedure
- 4. Immunoelectrophoresis procedure
- 5. FAQs

Introduction

Electrophoresis is a laboratory technique used to separate and analyze different molecules based on their charge and size. It involves the use of an electric field to move charged particles through a medium, such as a gel or liquid. The molecules will migrate through the medium at different rates depending on their charge and size, allowing them to be separated and analyzed. **Electrophoresis** is commonly used in biochemistry and molecular biology to analyze DNA, RNA, and proteins.

Electrophoresis Principle and its types:

The **principle of electrophoresis** is based on the movement of charged particles in an electric field. When a voltage is applied to a medium containing charged particles, the particles will migrate towards the electrode of the opposite charge. The rate of migration will depend on the charge and size of the particles. Smaller, more highly charged particles will migrate faster than larger, less highly charged particles.

There are several **types of electrophoresis**, each with its specific applications and advantages.

- 1. **Gel electrophoresis:** This is the most common form of electrophoresis. It uses a gel matrix, such as agarose or polyacrylamide, to separate molecules based on size. **Gel electrophoresis** is used to separate DNA, RNA, and proteins.
- 2. **Capillary electrophoresis:** This technique uses a small, thin capillary tube as the separation medium. Capillary electrophoresis allows for high resolution and sensitivity and is commonly used in DNA sequencing and protein analysis.
- 3. **Isoelectric focusing**: This technique separates molecules based on their isoelectric point (pI), which is the pH at which a molecule has a net charge of zero.

- 4. **Two-dimensional electrophoresis:** This technique uses a combination of gel electrophoresis and isoelectric focusing to separate molecules based on both size and charge.
- 5. **Affinity electrophoresis:** This technique uses a specific binding agent, such as an antibody, to separate molecules based on their binding affinity for the agent.
- 6. **Field-Flow Fractionation:** This method separates molecules based on their size, charge and shape by using a combination of centrifugal force and an electric field.

Gel electrophoresis procedure:

Gel electrophoresis is a laboratory technique used to separate and analyze different molecules based on their size. The basic **procedure for gel electrophoresis** is as follows:

- 1. **Prepare the gel:** A gel matrix, such as agarose or polyacrylamide, is prepared and poured into a gel electrophoresis chamber. The gel is allowed to solidify.
- 2. **Load the sample:** The sample to be analyzed, such as DNA, RNA, or protein, is mixed with a loading buffer and added to wells cut into the gel. The loading buffer contains dyes or stains that help to visualize the separated molecules.
- 3. **Apply the electric field:** The gel chamber is placed in an electrophoresis apparatus and a voltage is applied to create an electric field. The positive electrode is placed at one end of the chamber and the negative electrode at the other end.
- 4. **Run the electrophoresis**: The sample is subjected to the electric field, causing the charged molecules to migrate through the gel. Smaller, more highly charged molecules will migrate faster than larger, less highly charged molecules.
- 5. **Visualize the separated molecules:** After the **electrophoresis** is complete, the gel is removed from the chamber and stained with ethidium bromide or other DNA-specific dyes. The separated molecules can be visualized under UV light. Bands corresponding to the different molecules will be visible on the gel.
- 6. **Analyze the results:** The separated molecules are then analyzed to determine the size and quantity of each molecule in the sample. This information can be used to identify unknown samples, detect mutations, or study protein interactions.

Note: The above procedure is the basic procedure, variations of the procedure may apply depending on the type of gel, the sample and the research question.

Immunoelectrophoresis procedure:

Immunoelectrophoresis is a laboratory technique used to separate and analyze different molecules based on their size and antigenicity. The **basic procedure for Immunoelectrophoresis** is as follows:

1. **Prepare the gel**: A gel matrix, such as agarose or polyacrylamide, is prepared and poured into a **gel electrophoresis chamber**. The gel is allowed to solidify.

- 2. **Prepare the antibodies:** The antibodies specific to the antigen of interest are prepared and diluted to the appropriate concentration.
- 3. **Incubate the gel and the antibodies:** The gel is incubated with the antibodies, allowing them to bind to their specific antigen.
- 4. **Load the sample:** The sample to be analyzed, such as serum, urine or other body fluids, is added to the wells cut into the gel.
- 5. **Apply the electric field:** The gel chamber is placed in an **electrophoresis apparatus** and a voltage is applied to create an electric field. The positive electrode is placed at one end of the chamber and the negative electrode at the other end.
- 6. **Run the electrophoresis:** The sample is subjected to the electric field, causing the charged antigens to migrate through the gel. Antigens will be captured by the specific antibodies that were incubated with the gel.
- 7. **Visualize the separated molecules:** After the **electrophoresis** is complete, the gel is removed from the chamber and stained with a suitable stain, such as Coomassie Brilliant Blue, that will visualize the separated molecules.
- 8. **Analyze the results:** The separated molecules are then analyzed to determine the size and quantity of each antigen in the sample. The analysis will reveal the presence or absence of the antigen of interest and its concentration.

Note: The above procedure is the basic procedure, variations of the procedure may apply depending on the type of gel, the sample and the research question.

Additionally, **Immunoelectrophoresis** can be performed in two different formats: Single radial immunodiffusion (SRID) and Double radial immunodiffusion (DRID)

FAQs

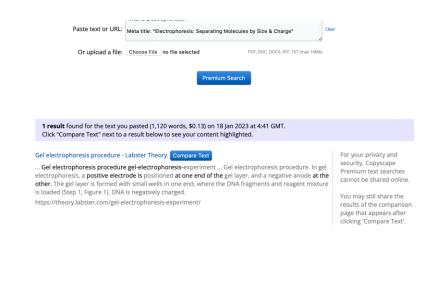
Q1. Can electrophoresis be used to separate all types of molecules?

Ans. No, electrophoresis is most commonly used to separate biomolecules such as DNA, RNA, and proteins.

Q2. Can electrophoresis be used to purify molecules?

Ans. Electrophoresis can be used to separate and purify molecules, but it is not the most efficient method for purification.

Q3. How is electrophoresis different from chromatography?


Ans. Electrophoresis separates molecules based on their charge and size, while chromatography separates molecules based on their chemical properties such as polarity or binding affinity.

Q4. Can you perform electrophoresis in a liquid medium?

Ans. Yes, there are different types of electrophoresis that can be performed in a liquid medium, such as capillary electrophoresis.

Q5. What are some common applications of electrophoresis?

Ans. Electrophoresis is commonly used in biochemistry and molecular biology for DNA and protein analysis, identification of unknown samples, detection of mutations, and studying protein interactions.

