
1 | P a g e

Comparing and Ranking Data with MySQL

By Julie Odenbach

We often need to compare and rank records in databases. By comparing and re-ordering our data for

various reports and ranking our data, we are able to provide more useful information for our clients and

also for our own business needs.

We look at several MySQL functions in this article that are helpful in making those comparisons.

• ROW_NUMBER() – returns a unique sequential number for records in a given result set.

• RANK() – allows us to find the highest or lowest field value in a result set. Skips positions after

records with equal values. Values {2, 4, 4, 6, 7} would result in rank values of 1, 2, 2, 4, 5.

• DENSE_RANK() – Similar to rank(), but does not skip positions, so that values {2, 4, 4, 6,7} would

result in rank values of 1, 2, 2, 3, 4, with no gap in rank values following rows with equal values.

• PERCENT_RANK() – gives the percentile rank of a row within a given result set.

See the SQL commands used to create the database table used for our ranking examples:

The general format for these commands is:

SELECT column, ROW_NUMBER() OVER(
 PARTITION BY column1
 ORDER BY column2 [ASC/DESC]
) FROM TABLE

CREATE TABLE AnimalRescue (

 ID INT PRIMARY KEY,

 Name VARCHAR(50),

 Category VARCHAR(50),

 Breed VARCHAR(50),

 Gender VARCHAR(1),

 Expenditures int,

 AdoptionFee int,

 Adopted boolean

);

INSERT INTO AnimalRescue Values (1001, 'Rosie', 'Dog', 'Golden Retriever', 'F', 350, 425, true);

INSERT INTO AnimalRescue Values (1002, 'Kingston', 'Dog', 'Labrador Retriever', 'M', 200, 250, false);

INSERT INTO AnimalRescue Values (1003, 'Chloe', 'Dog', 'Springer Spaniel', 'F', 225, 200, true);

INSERT INTO AnimalRescue Values (1004, 'Mosby', 'Dog', 'Poodle', 'M', 450, 410, false);

INSERT INTO AnimalRescue Values (1005, 'Maddie', 'Dog', 'Beagle', 'F', 625, 250, true);

INSERT INTO AnimalRescue Values (1006, 'Max', 'Dog', 'Terrier', 'M', 225, 350, false);

INSERT INTO AnimalRescue Values (1007, 'Boots', 'Cat', 'Domestic Short Hair', 'F', 150, 200, true);

INSERT INTO AnimalRescue Values (1008, 'Kiara', 'Cat', 'Siamese', 'M', 200, 225, true);

INSERT INTO AnimalRescue Values (1009, 'Hazel', 'Cat', 'Rag Doll', 'F', 150, 250, true);

INSERT INTO AnimalRescue Values (1010, 'Goldie', 'Cat', 'Domestic Shorthair', 'M', 280, 160, false);

INSERT INTO AnimalRescue Values (1011, 'Midnight', 'Cat', 'Domestic Shorthair', 'F', 320, 220, true);

INSERT INTO AnimalRescue Values (1012, 'Maverick', 'Cat', 'Persian', 'M', 410, 250, false);

2 | P a g e

ROW_NUMBER Examples

The ROW_NUMBER() function generates a unique sequential rank for each row retrieved for a specified

partition. This SQL query below will generate a unique row number for each record retrieved for each of

the two partitions resulting for each Category. Our results list all of the cats and dogs in the AnimalRescue

table, listed in the order of their AdoptionStatus for each Category.

RowNumber Category Breed Name AdoptionStatus

1 Cat Domestic Shorthair Goldie InFosterCare

2 Cat Persian Maverick InFosterCare

3 Cat Domestic Short Hair Boots Adopted

4 Cat Siamese Kiara Adopted

5 Cat Rag Doll Hazel Adopted

6 Cat Domestic Shorthair Midnight Adopted

1 Dog Labrador Retriever Kingston InFosterCare

2 Dog Poodle Mosby InFosterCare

3 Dog Terrier Max InFosterCare

4 Dog Golden Retriever Rosie Adopted

5 Dog Springer Spaniel Chloe Adopted

6 Dog Beagle Maddie Adopted

SELECT

ROW_NUMBER() over(

 PARTITION BY Category

 ORDER BY Adopted

) as RowNumber,

 Category,

 Breed,

 Name,

 CASE

 WHEN Adopted = 0 THEN 'InFosterCare'

 WHEN Adopted = 1 THEN 'Adopted'

END as AdoptionStatus

FROM AnimalRescue;

3 | P a g e

RANK Examples

Let’s generate a list of pets that ranks expenditures for each pet using the RANK() function. We are

partitioning by Category, so all the cats are listed first, and then all the dogs are listed. The pets in each

Category are ranked in descending order for Expenditures. Note that for Id=1007 and 1009, that the

ExpendituresRank is 5 for both Cat rows, since the $510 Expenditures are equal. Also note that for Id =

1003 and 1006, the ExpendituresRank is 4 for both dogs. The ExpendituresRank = 6 for dog Id = 1002. The

rank generated following multiple equal values is handled differently if you are using RANK() versus

DENSE_RANK().

Id Name Category Expenditures ExpendituresRank

1012 Maverick Cat 410 1

1011 Midnight Cat 320 2

1010 Goldie Cat 280 3

1008 Kiara Cat 200 4

1007 Boots Cat 150 5

1009 Hazel Cat 150 5

1005 Maddie Dog 625 1

1004 Mosby Dog 450 2

1001 Rosie Dog 350 3

1003 Chloe Dog 225 4

1006 Max Dog 225 4

1002 Kingston Dog 200 6

What is the highest expenditure for a dog?

 Id Name Category Expenditures DogExpendituresRank

 1005 Maddie Dog 625 1

list expenditures for all pets in desc order

select Id, Name, Category, Expenditures,

 Rank() over (partition by Category order by Expenditures DESC) as ExpendituresRank

FROM AnimalRescue;

What is the highest expenditure for a dog?

select Id, Name, Category, Expenditures,

 Rank() over (partition by Category order by Expenditures DESC) as DogExpendituresRank

FROM AnimalRescue

WHERE Category = 'Dog' LIMIT 1;

4 | P a g e

DENSE_RANK Examples

 Id Name Category Expenditures catExpendituresRank

 1012 Maverick Cat 410 1

 1011 Midnight Cat 320 2

 1010 Goldie Cat 280 3

 1008 Kiara Cat 200 4

 1007 Boots Cat 150 5

 1009 Hazel Cat 150 5

The DENSE_RANK() function is used below to find the 2nd highest expenditure for cats. In this query, we

specify ‘WHERE Rnk=2’ to find the 2nd highest expenditure in our result set for cats.

 ID Name Category Breed 2ndHighestCatExpenditure

 1011 Midnight Cat Domestic Shorthair 320

Showing the dense_rank() numbering for ordering catExpenditures:

select Id, Name, Category, Expenditure,

 Dense_Rank() over (partition by Category order by AdoptionFee DESC) as CatExpendituresRank

FROM AnimalRescue

WHERE Category = 'Cat';

What is the second highest expenditure for a cat?

WITH T AS

(

SELECT ID, NAME, Category, Breed, Expenditures,

 DENSE_RANK() OVER (ORDER BY Expenditures Desc) AS Rnk

FROM AnimalRescue

WHERE Category = 'Cat'

GROUP BY ID

)

SELECT ID, Name, Category, Breed, Expenditures as 2ndHighestCatExpenditure

FROM T

WHERE Rnk=2;

5 | P a g e

PERCENT_RANK Examples

Sometimes it’s useful to know the percent ranking of our data to tell us where our field values fall along

the spectrum of values for a given field. The PERCENT_RANK() function is used for this purpose. In the

example below we rank the expenditures for each pet in our AnimalRescue table.

Name Category Breed Expenditures PercentileRank

Boots Cat Domestic Short Hair 150 0%

Hazel Cat Rag Doll 150 0%

Kingston Dog Labrador Retriever 200 18%

Kiara Cat Siamese 200 18%

Chloe Dog Springer Spaniel 225 36%

Max Dog Terrier 225 36%

Goldie Cat Domestic Shorthair 280 55%

Midnight Cat Domestic Shorthair 320 64%

Rosie Dog Golden Retriever 350 73%

Maverick Cat Persian 410 82%

Mosby Dog Poodle 450 91%

Maddie Dog Beagle 625 100%

WITH t AS (

 SELECT ID, Name, Category, Breed, Expenditures

 FROM

 AnimalRescue

 GROUP BY ID

)

SELECT

 Name, Category, Breed, Expenditures,

 Concat(

 FORMAT(percent_rank() over (

 order by Expenditures ASC

)

 * 100,0), '%'

) as PercentileRank

FROM

 t

order by Expenditures ASC;

6 | P a g e

Our last example shows how to display our expenditures as a percentage spent on the dogs versus the

cats.

Conclusion for Comparing and Ranking Data

We have provided examples for demonstrating ROW_NUMBER(), RANK(), DENSE_RANK(), and

PERCENT_RANK() functions which offer useful ways to order database records and determine the highest

or lowest rankings of data. Of course, our examples only used a small sample database, but these

functions provide an excellent way to make sense of your data when dealing with much larger real-life

databases.

I hope that you found these examples a good starting point for using ranking functions, and there will be

much more to learn as you apply these data ranking functions to your data.

Category Expenditures CatVsDogExpenditures

Dog 2075 58%

Cat 1510 42%

With P as (

 SELECT Category, Expenditures,

 (SELECT SUM(Expenditures) FROM AnimalRescue WHERE Category = 'Dog') as dogExpenditures,

 (SELECT SUM(Expenditures) FROM AnimalRescue WHERE Category = 'Cat') as catExpenditures,

(SELECT SUM(Expenditures) FROM AnimalRescue WHERE Category = 'Cat' OR Category = 'Dog') as

TotalExpenditures

 FROM AnimalRescue

)

SELECT

 Category,

 CASE

 WHEN Category ='Dog' THEN dogExpenditures

 WHEN Category = 'Cat' THEN catExpenditures

 END as Expenditures,

 Concat(

 FORMAT(

 (CASE

 WHEN Category ='Dog' THEN dogExpenditures/TotalExpenditures

 WHEN Category = 'Cat' THEN catExpenditures/totalExpenditures

 END) * 100,0), '%'

) as CatVsDogExpenditures

FROM P

Group by (Category);

