
P a g e 1 | 4

How-To Guide for Learning Basic XML
By Julie Odenbach

XML stands for Extensible Markup Language, and it provides us with a convenient way to define and

store information so we can then share that information with different computers, websites, and

applications.

An XML file or document builds a tree structure. The root element serves as the parent element, and

that parent element contains its child elements. Each child element may also include one or more child

elements. One significant advantage of XML is that it is easily readable to humans and easy to parse with

software.

XML stores data in plain text without specifying how that data should be displayed. Use HTML to display

the information on web pages in an easy-to-read manner. Remember that HTML is case-insensitive,

while XML is case-sensitive.

XML Root Element
All XML starts with a root element, and all other elements must be correctly placed within that parent

root element. In the example below, “WeatherReport” is our root element. We open it with our

“<WeatherReport>” tag. Each element must be closed using the element closing tag, such as

“</WeatherReport>”.

XML Tags
Within our WeatherReport XML document, we can define additional child data elements. Let’s add more

information to our XML example:

<WeatherReport> ➔ This is the root element

 … child tags will go here …

 </Weather Report> ➔ This closes the root element

<xml version=”1.0”?>

<WeatherReport>

 <Date>Thursday 06/15/2023</Date>

 <TimeOfDay>3:52 PM</TimeOfDay>

 <TempF>84</TempF>

 <WindDirection>South21west</WindDirection>

 <WindSpeed>21 mph</WindSpeed>

 <DewPointF>52</DewPoint>

 <BarometricPressure>1015.5<BarometricPressure>

</WeatherReport>

P a g e 2 | 4

We have added more detail about what information can and should be supplied with our XML document

to create a valid WeatherReport.

All XML elements must have a closing tag. So, a typical XML tag would look like “<tag> … </tag>.

XML Attributes and Elements
XML elements and attributes can be used interchangeably. Both forms are allowed. Attributes specify a

value for one specific field, such as <Meeting date=”06/15/2023>”, while an element can specify one or

more values for a field, such as “<Date>06/15/2023</Date>”.

Since attributes can’t contain multiple values, elements may offer more flexibility in defining your data

structure. In some cases, however, people may wish to provide a unique id attribute to identify different

sections in their XML. In that case, it’s recommended that metadata (data about the data) be defined as

an attribute, while the data itself is better represented as elements.

We can store data for our meeting notice using elements:

You can also see that we have included two meeting attendees using the same tag for each. This is

allowed, and each of those multiple elements can be parsed and retrieved.

Or we can store the same data using an attribute:

Note that attribute values must always be quoted, as date=”06/15/2023” Is quoted in this example.

<?xml version=”1.0”?>

<Meeting>

 <Date>06/15/2023</Date>

 <MeetingTitle>Resolve database issues</MeetingTitle>

 <StartTime>4:00 PM Central</StartTime>

 <EndTime>4:30 PM Cerntral</EndTime>

 <MeetingAttendee>mandy.shaw@gmail.com</MeetingAttendee>

 <MeetingAttendee>tim.lawrence@gmail.com</MeetingAttendee>

</Meeting>

<?xml version="1.0"?>
<Meeting date=”06/15/2023”>

 <MeetingTitle>Resolve database issues</MeetingTitle>

 <StartTime>4:00 PM Central</StartTime>

 <EndTime>4:30 PM Central</EndTime>

 <MeetingAttendee>mandy.shaw@gmail.com</MeetingAttendee>

 <MeetingAttendee>tim.lawrence@gmail.com</MeetingAttendee>

</Meeting>

P a g e 3 | 4

XML DTD
DTD stands for Document Type Definition, and it defines the legally allowed elements and attributes of

your XML document.

An XML document using correct syntax is said to be “Well Formed”, while an XML document validated

against a DTD is said to be both “Well Formed” and “Valid”.

This example of a DTD file defines the structure and elements of an XML document, as shown below.

This XML document’s root element is defined as “TeamMember”, and the document can contain

definitions for the address, name, email, and phone elements. The name field may contain entries for

both the first and last names. The two data types are “PCDATA” and CDATA. PCDATA is parseable

character data, while CDATA is not normally parsed.

You do not need to use a DTD to define your XML. The advantage of using a DTD for exchanging XML

information is that you can verify your own XML and any incoming XML from an external source.

Your DTD file can be provided within the same file as your XML as long as it precedes your XML. You can

also specify your DTD file by giving the name of your DTD file in your XML document.

<!DOCTYPE TeamMember
[
<!ELEMENT address (name, email, phone)>
<!ELEMENT name (first, last)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT phone (#PCDATA)>

]>

<?xml version="1.0"?>

<!DOCTYPE address SYSTEM "TeamMember.dtd">

<TeamMember>

 <name>

 <first>Roxanne</first>

 <last>Jensen</last>

 </name>

 <email>roxanne.jensen@gmail.com</email>

 <phone>701-555-4612</phone>

</TeamMember>

P a g e 4 | 4

Your third option is to specify an external DTD file with a URL, as shown below:

.

XML Version

An XML version of “1.0” means this XML file uses encoding=”utf-8” Unicode encoding. You could

also explicitly specify <?xml version=”1/0” encoding=”utf-8”>. The default encoding is UTF-8 or

UTF-16, so you would not need to specify the version if that default encoding works for your XML

document.

Summary
In summary, defining XML is a great way to define the information required to meet your goals. For more

detailed information on XML and DTD files, check out the W3Schools website at

https://www.w3schools.com/xml/xml_dtd.asp. You can learn how to specify which tags need to be

supplied, if those tags are required or may be empty, how many values may be supplied for those tags,

and more. Defining XML is always fun and provides a great way define the rules for your project’s data.

<!DOCTYPE Catalog PUBLIC "xyzCompany/Catalog""http://abc.xyzCompany.org/dtds/TeamMember.dtd">

https://www.w3schools.com/xml/xml_dtd.asp

