

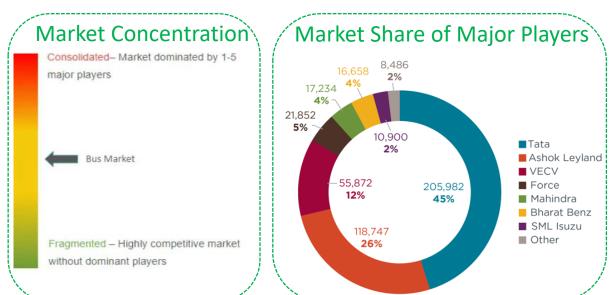
Electric Commercial Vehicle

Automotive Industry

Bus Industry

n percent

-100


2018

2019

2020

The Market structure

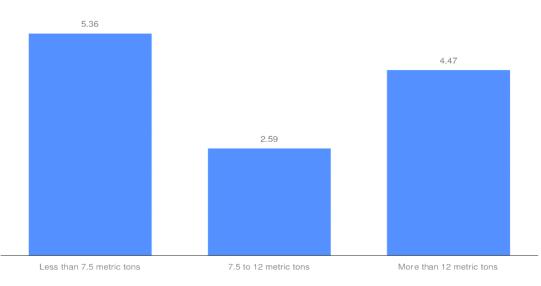
- Based on fuel type: Diesel, electric, and hybrid
- Based on bus type: Double deck, single deck
- Based on seating capacity
- Based on usage: Intercity buses, coaches, transit buses

Bus Revenue Growth for Indian Market

2022

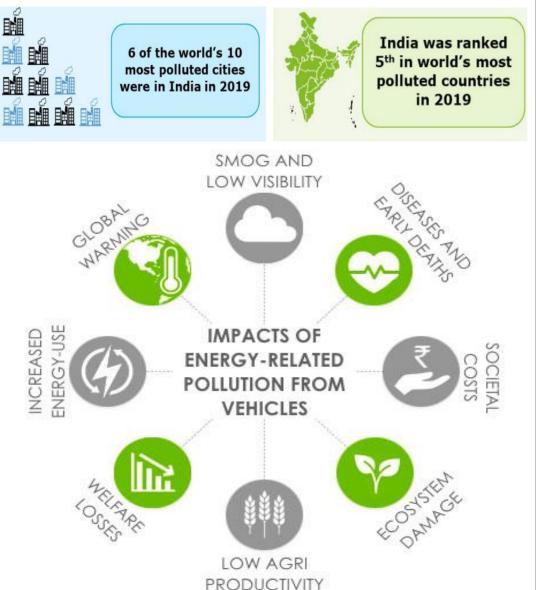
2023

2024


2025

2026

2027

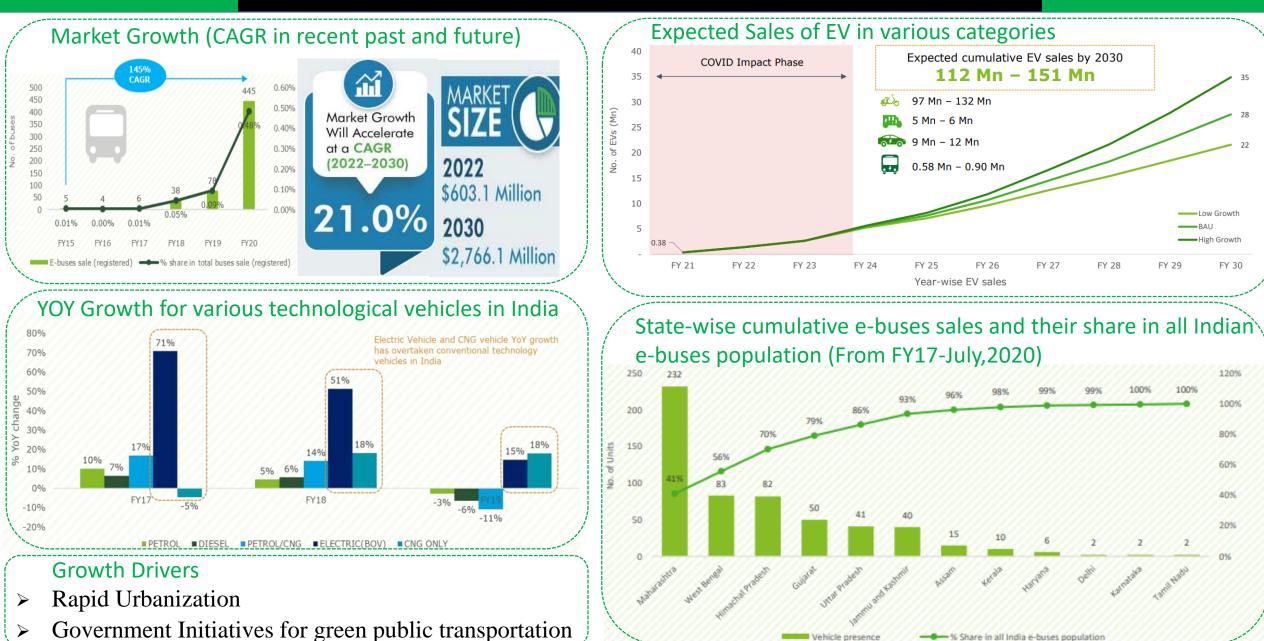

2021

Sales volume of buses in India by weight in 2021

Reason for Shift to Electric Vehicles

Pollution Crisis in India

Change of Regulation: Migration to BSVI

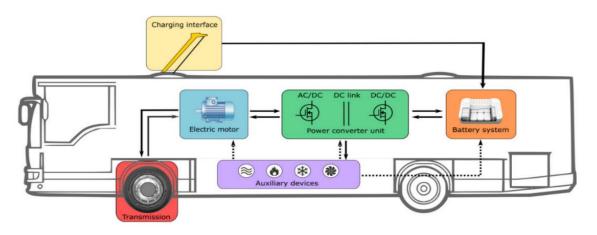

BS VI Emission test	CO (g/kWh)	НС	CH4	NOx	РМ	PN
<u>WHSC(CI)</u>	1.5	0.13	-	0.40	0.01	8×10 ¹¹
<u>WHTC(CI)</u>	4.0	0.16	-	0.46	0.01	6×1011
<u>WHTC(PI)</u>	4.0	0.16 ^g	0.5	0.46	0.01	6×1011

Energy Crisis: High Dependence on Oil

Consumption of petroleum products Production of petroleum products Crude oil production in India

Electric Bus Industry in India

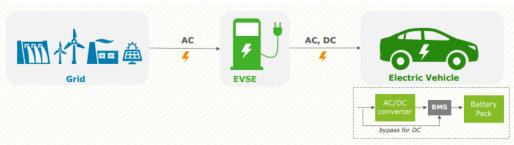
% Share in all India e-buses populatio


Vehicle presence

Electric Bus Working Methodology

An electric vehicle (EV) is propelled by an electric motor, powered by rechargeable battery packs.

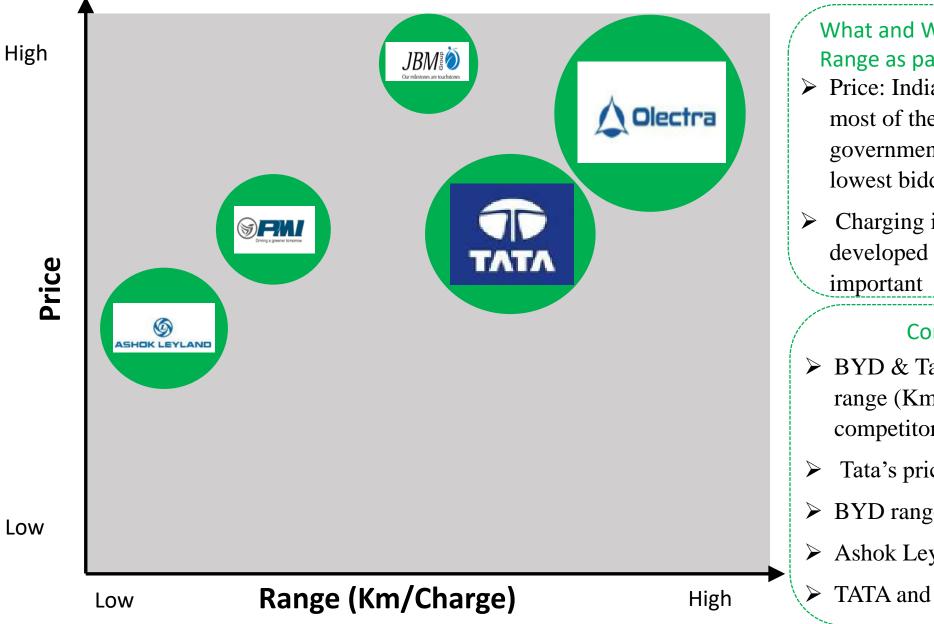
Below are the key components of an EV


- a) Electric motor;
- b) Power control unit;
- c) Rechargeable battery

Operating principle: The electric vehicle operates on the principle of converting electricity to kinetic energy to drive motor(s) which in turn rotates the wheels of the vehicle. It uses batteries that are charged to store power for running the electric motor(s). Unlike conventional technologies, there are no tail-pipe emissions from electric vehicles.

Electric Vehicle Charging Infrastructure (EVSE)

The electric motor gets its power from a controller which in turn is powered by a rechargeable battery

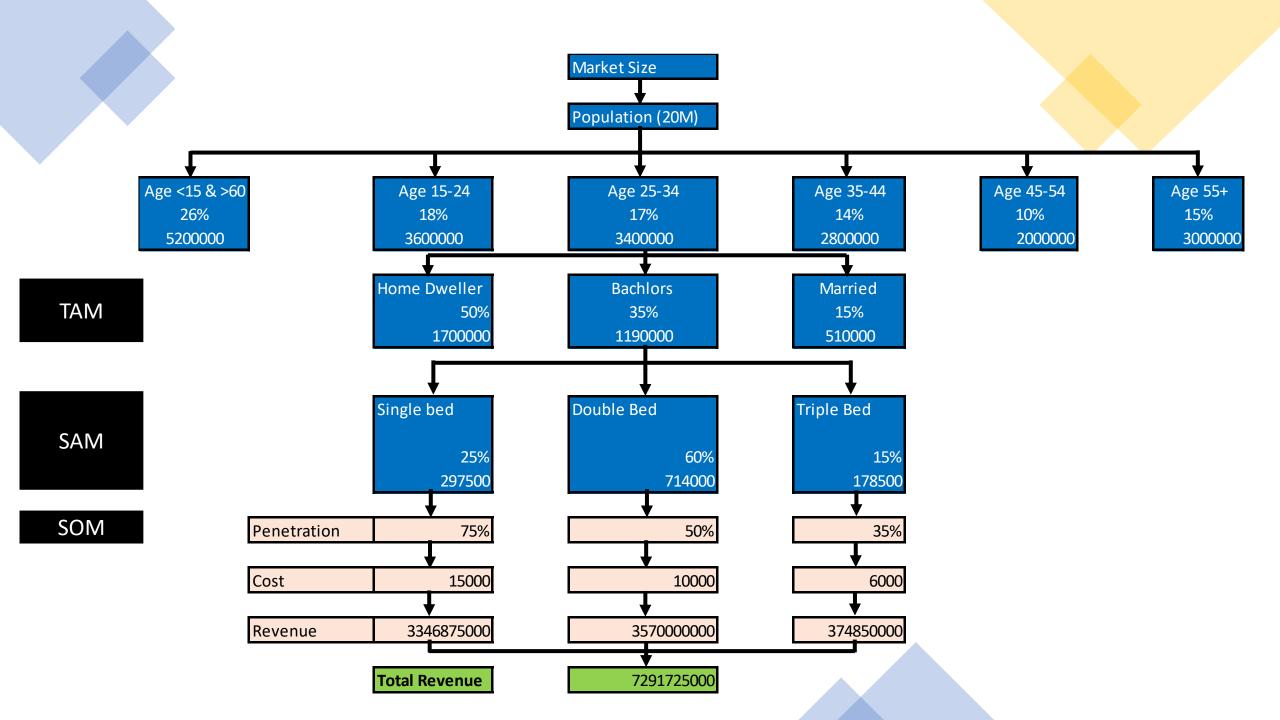

There are different ways to classify an EVSE, depending on

- ➢ power supply (AC or DC)
- power rating levels
- ➤ speed of charging
- Communication
- connector type

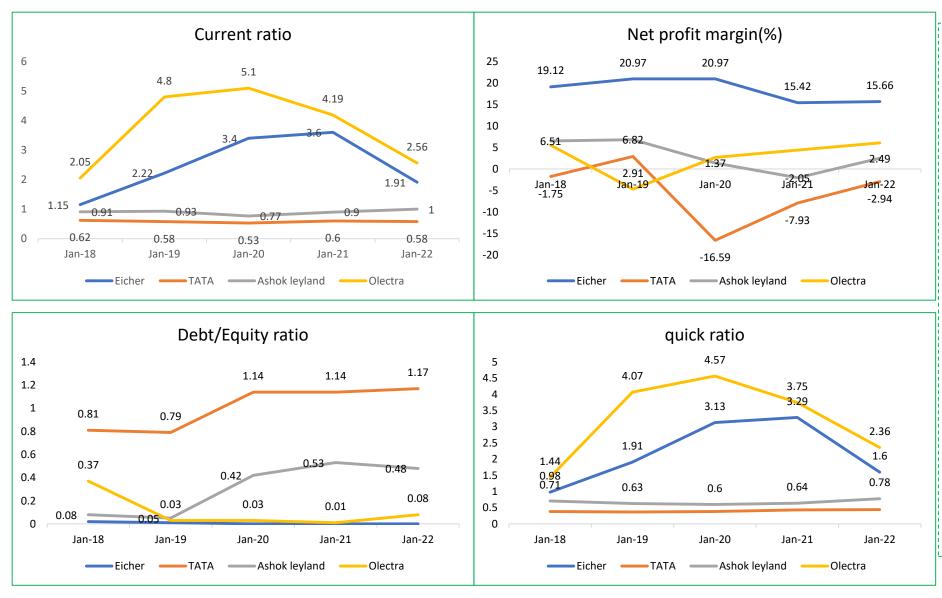
Recent key Initiatives by major players

	Operator	Vehicle category	Key Initiative
	Ashok Leyland	Bus/trucks	 a)Ashok Leyland is looking to enter into a partnership with multinationals to start a joint venture in the electric mobility space b)Ashok Leyland setup its electric vehicle (EV)facility in its Ennore plant.
EICHER	Volvo Eicher	Buses	VE Commercial Vehicles (VECV), a joint venture of Volvo Group India Pvt. Ltd and Eicher Motors Ltd, is developing a new line of products, including a complete range of electric vehicles for public transportation
	Olectra- BYD	Buses	Olectra – BYD launches electric buses in Hyderabad

Strategic Group Mapping


What and Why we have chosen price and Range as parameter

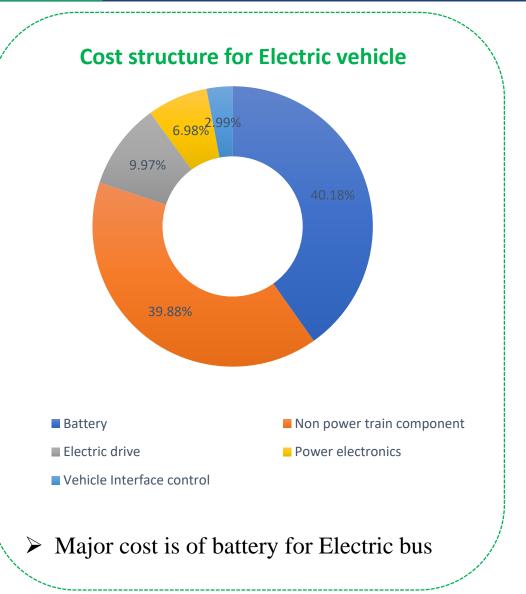
- Price: India is a price-sensitive market and most of the current demand is from government orders. In case of bidding, the lowest bidder wins the order
- Charging infrastructure is still not developed in India therefore range becomes important

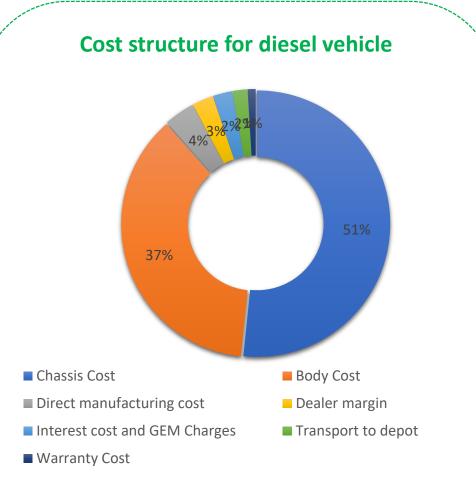

Competitive Advantage

- BYD & Tata have higher market share and range (Km/charge) than the rest of the competitor
- > Tata's price is slightly lower than BYD
- > BYD range is slightly higher than Tata
- ➤ Ashok Leyland has the lowest range

> TATA and BYD are the closet rivals

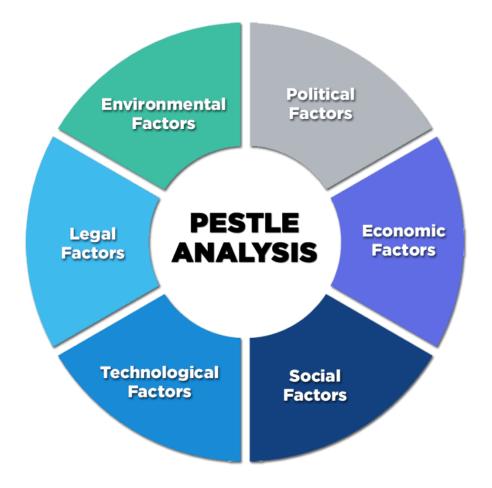
Finance Analysis of Major Players In EV




1. From the overall data of last 2 years, it could be seen that Eicher is gaining on the competition, posting a higher operation profit margin and return on capital when compared to Ashok Leyland and TATA motors.

2. Current ratio in FY'22 has decreased owing to increased investment in electric vehicles

3. Olectra has fair quick ratio which shows company agility to pay off the debt and less dependency on long term assets


Cost Structure of Electric to Diesel buses

Major cost is of Chassis and body because of the high vibration in a diesel bus

Strategic Group Mapping

Porter's Five Forces of EV Buses Industry

Threat of new Entrants Large Investment in a

- production facility, market reach, and service makes it difficult for new entrants
- Easier to design and hence fewer complications
 - Growing industry and High ROI

>

Threat of Substitutes The primary substitutes are public, such as metros, trains, and planes are not a major problem because these are used for larger distance and have fixed routes

Sharp increase in the total cost of ownership of private vehicle

New Entrant specific for electric vehicles such as BYD

Bargaining Power of Suppliers

- Localization in EV manufacturing is minimal and hence Key value chain and expensive components have limited availability in India's present EV ecosystem
- Batteries and power electronics are currently imported, making up about 60–70% of an EV's value addition.

Bargaining Power of Customers

- lack of suitable charging infrastructure
- high upfront costs persist
- Lack of nationwide service network
- Lack of Variety since it still an emerging technology

SWOT of EV Bus Industry

National Electric Mobility Mission Plan (NEMMP):

Laid down the vision and roadmap for EV penetration in India. It outlines incentives along four priority areas for EVs:

- demand incentives
- manufacturing of Evs
- □ charging infrastructure development
- □ research and development.

The Mission aims to achieve 6-7 million on-road electric vehicles by 2020.

The total investment requirement envisaged in the mission document for setting up the required infrastructure to achieve the target (both power and charging infrastructure) as the government of India , is summarized in the following table:

Area	4W	2W	3W	Buses	LCV Total
Additional generation Capacity (MW)	150-225	600	10-15	<5	10- 775- 20 865
Power Infrastructure (Rs Crore)	1,200-1,300	3,300-3,400	75-85	20-30	90- 4,685- 100 4,915
Charging Infrastructure (Rs Crore)	950-1000	-	70-80	10-20	115-1,145- 125 1,225

The rollout of the EV charging infrastructure was planned in a phased manner as follows:

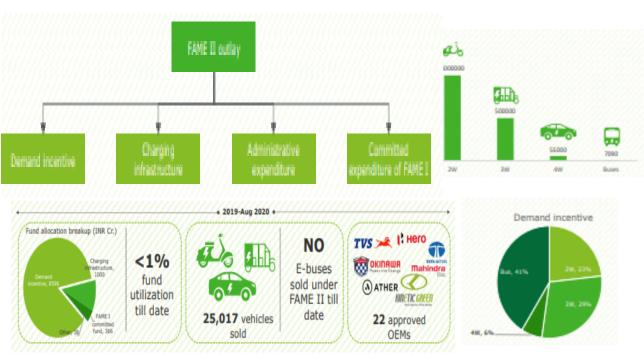
Phase I (first year)	This will involve detailed and in-depth evaluation of various options, prioritization and puttin in place the required frameworks and models for EVSE adoption, enabling policies, charging infrastructure standards, laws and undertaking detailed studies that will facilitate the roll ou of the optimum EV infrastructure.							
Phase II (Year 1 - 3)	The activities in the medium time frame would build on the initial basic work done and include deeper impact assessment studies and programs, pilot projects in various cities, EV infrastructure consortium building activities, development of possible business models, etc.							
Phase III (Year 3 to 2020)	 This will include the following activities:- i. Ensuring availability of reliable and regular electricity supply, ii. Making available adequate recharging facilities with convenient access, iii. Dewelopment of EV charging as a viable business entity, iv. Well established and synergic linkage between EV charging infrastructure with renewable energy generation infrastructure, v. Development of public recharging infrastructure that includes opportunities for rapid recharging through either setting up of optimal number of fast recharging centres or by use of batteries swapping stations that allows quick replacement of discharged battery packs with charged ones. 							

Outcome of NEMMP Policy:

The Government of India has taken considerable measures to keep efforts aligned with the provisions laid down under NEMPP, however, the EV sales penetration stands nowhere near to the planned target level. In all likelihood, the EV penetration target of 14%-16% by 2020 as envisaged under NEMMP is not achieved.

Faster Adoption and Manufacturing of (Hybrid and) Electric Vehicles (FAME) programme was launched by DHI in 2015. It is the flagship scheme under the NEMMP 2020 mission plan of Central government to enhance hybrid and electric technologies in India.

FAME Phase I scheme



- Launched for over a two-year period starting from FY 2015-16 to FY 2016-17 with an overall outlay of INR 795 Cr.
- Extended four times for six months each witan h additional outlay of INR 100 Cr.
- The funds were used to provide direct subsidies to EV buyers, grants for specific projects under pilot projects were sanctioned, R&D/technology development, and public charging infrastructure components
- 465 buses were sanctioned to various cities/states under this FAME I.
- The FAME I scheme failed in utilizing the complete allocated fund in four years of its period.
- The scheme was successful in creating awareness and momentum for electric mobility in the market.

FAME Phase II scheme

- The increased layout of Rs 10,000/- crores, which includes a spill over from FAME-I of Rs 366 Cr
- Focused on promoting demand as 86% of the scheme outlay is reserved for demand incentives.

The overall outlay is segregated into four categories:

Initial Allocation of Funds under FAME-I							
Component			Total Fund (Rs. cr)				
Technology Platform	70	120	190				
Demand Incentives	155	340	495				
Charging Infrastructure	10	20	30				
Pilot Projects	20	50	70				
IEC/Operations	5	5	10				
Total	260	535	795				

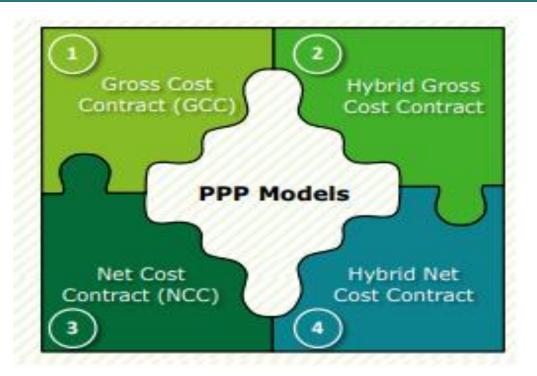
Initial Allocation of Funds under FAME-II							
Component		2020-21 (Rs. cr)		Total Fund (Rs. cr)			
Demand Incentives	822	4587	3187	8596			
Charging Infrastructure	300	400	300	1000			
Administrative Expenditure	12	13	13	38			
Total for FAME-II	1134	5000	3500	9634			
Committed from Phase-I	366	0	0	366			
Total	1500	5000	3500	10000			

Parameter	DL	AP	UP	MH	UK	KA	MP	KL	TN	BR*	PB*	TS*
Incentive for Home/Workplace charging	1		1					V				V
Manufacturing												
Incentive to manufacturer		1	1	1	1	1	1	1	1	1	1	1
Focus on promotion of auto-ancillary manufacturer		V		1	1	1	1	1	1	1	V	1
Provision for Industrial Parks and Clusters for EV/Ancillary manufacturing		V	V			V		V	V	V	V	V
Battery OEM			1	1	1	1	1	1	1	1	1	
Scrapping and recycling												
Vehicle scrappage incentive	1						1				1	
Battery recycling related provision	1	1	1		1	1	1	****	1		1	P# 1111111111111
Miscellaneous												
Payment system and information exchange	1	1					1	1				
Identification of source of funding for various incentives declared in policy	1						1					
Skill Development/Job creation	1	1	1	1	1	1	1	1	1		1	1
R&D	1	1	1	1	1	1	1	1	1		1	1
Public awareness	1						1				1	
Changes in building bye-laws	1	1	1			1	1	****				×

State-wise Government Incentives

Note: *Draft; DL: Delhi; AP: Andhra Pradesh; UP: Uttar Pradesh; MH: Maharashtra; UK: Uttarakhand; KA: Karnataka; MP: Madhya Pradesh; KL: Kerala; TN: Tamil Nadu; BR: Bihar; PB: Punjab; TS: Telangana

National Mission on Transformative Mobility and Storage


The aim of the mission is to drive strategies for transformative mobility and Phased Manufacturing Programmes for EVs, EV Components, and Batteries.

Role	Roadmap	Impact
 Drive strategies for transformative mobility and Phased Manufacturing Programmes for EVs, EV Components and Batteries Creating a Phased Manufacturing Program (PMP) to localize production across the entire EV value chain Details of localization will be finalized by the Mission with a clear Make in India strategy for the electric vehicle components as well as battery The Mission will coordinate with key stakeholders in Ministries/ Departments/states to integrate various initiatives to transform mobility in India 	 Phased battery manufacturing roadmap with initial focus on large-scale module and pack assembly plants by 2019-20 and Giga- scale integrated cell manufacturing by 2021- 22 Ensuring holistic and comprehensive growth of the battery manufacturing industry in India through PMP Preparing roadmap for enabling India to leverage its size and scale to produce innovative, competitive multi-modal mobility solutions that can be deployed globally in diverse contexts Roadmap for transformative mobility in "New India" by introducing a sustainable mobility ecosystem and fostering Make-in-India 	 Drive mobility solutions to benefits to the industry, economy and country Improving air quality in cities along with reducing India's oil import dependence and enhancing the uptake of renewable energy and storage solutions The Mission will lay down the strategy and roadmap which will enable India to leverage upon its size and scale to develop a competitive domestic manufacturing ecosystem for electric mobility Benefit all citizens as the aim is to promote 'Ease of Living' and enhance the quality of life of our citizens and also provide employment opportunities through 'Make-in-India' across a range of skillsets

Procurement Model for EV Buses

Procurement and operation of buses in India is largely done through PPP (Public Private Partnership) framework. There are multiple models available under PPP framework that differs in terms of


- Degree of operational control
- \Box Allocation of risk
- □ Investment contribution

Parameter	GCC	Hybrid GCC	NCC	Hybrid NCC
Suitability	Authority wants to retain control and is financially strong to assume revenue risk, has strong monitoring capacity	Authority wants to retain operational control and intends that operator shares some revenue risk	Competent operators willing to assume revenue risk exist and demand is relatively certain	Authority is willing to reduce control over operations, while financially compensating for unviable routes
Revenue risk	Authority	Shared: Base cost by authority; Ridership increase by operators	Operator	Operator: Subsidy by authority on unviable routes
	Low	High	High	High
Degree of operator's incentive to increase ridership	Fixed payment irrespective of ridership	Banus an increase in ridership	Revenue directly linked to ridership	Revenue directly linked to ridership
Monitoring and penalty regime	Requires strong and consistent monitoring with penalty for service below benchmark performance	Higher level of monitoring than GCC because of greater economic incentive for performance	Less monitoring Only service quality parameters monitored	Level of monitoring is higher than NCC In addition to service level parameters, monitoring of movement of bus on un-viable routes
俞	High	High	Low	Medium
Access to finance (Bankability of project)	Guaranteed income reduces credit risk	Part of income assured; decreases risk	Revenue risk borne by operator. Increases credit risk especially if no track record or demand is uncertain.	Since credit worthiness is increased as non- commercial routes are supported.
	Medium	High	Low	High
Operational efficiency	Since operators are assured of revenue and can focus only on operational efficiency	Since operators revenue is guaranteed, while incentives exist for increased ridership	Since operators bear the revenue risk and may skip trips/reduce frequency in case of low ridership	Since operators' gets revenue from un- viable routes also
	High on viability from the bus	High on viability from the bus	High on viability from the authority's perspective	High on viability from the authority's perspective

Procurement Model for EV Buses

Gross Cost Contract (GCC)

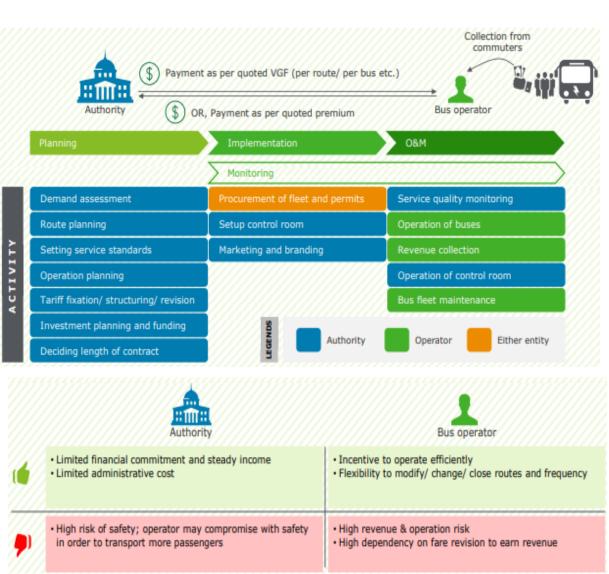
Bus operator

No revenue risk; receives agreed payment even when

Easy access to finance due to no revenue risk

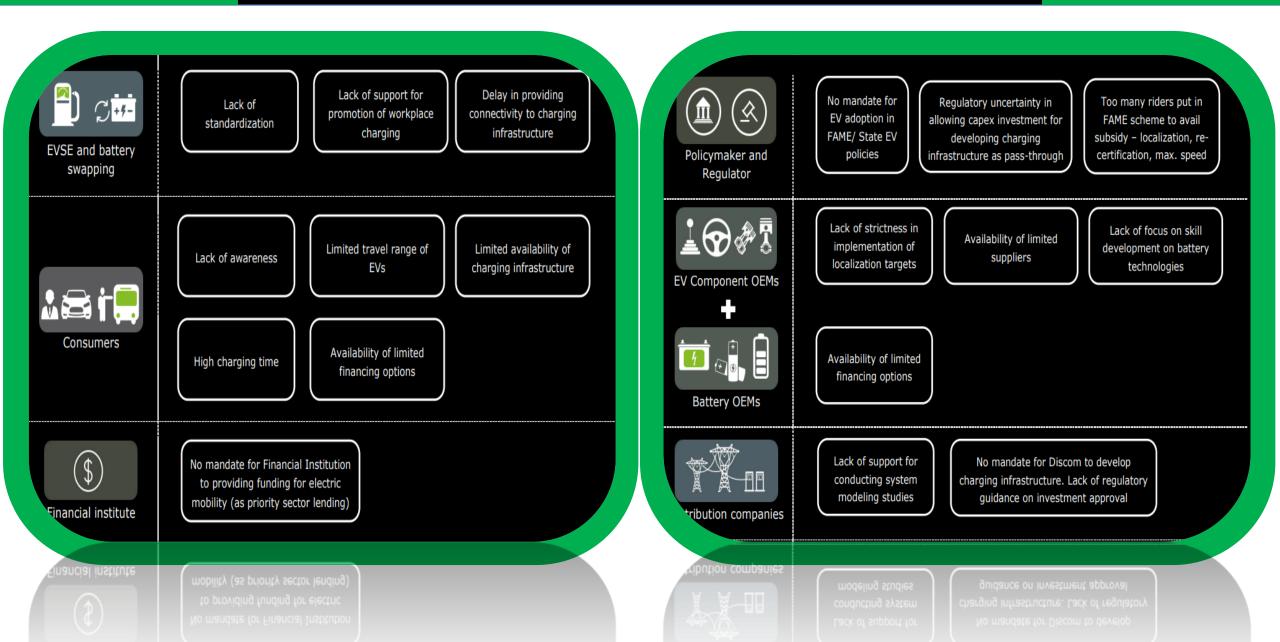
No incentive on providing quality service

demand reduces


Exposure to O&M cost risk

Full control on route and bus frequency
Controls the levers of supply, price, and service quality and system performance.
Retention of surplus revenue

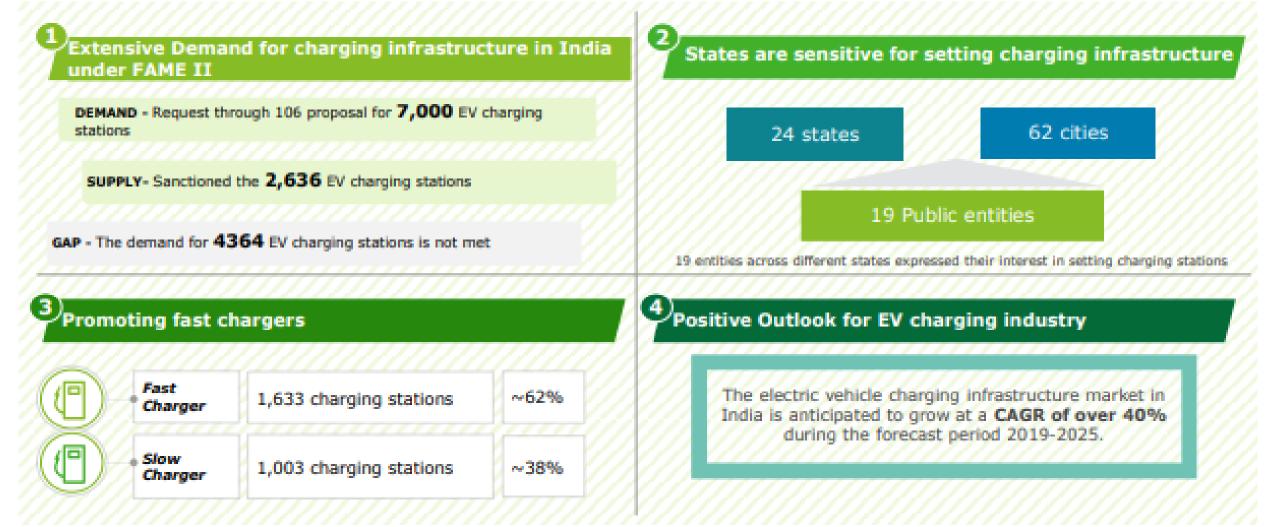
 Exposure to revenue risk
 Requires close monitoring; higher administration and monitoring cost


Net Cost Contract (NCC)

Localization Plan for EV Buses

Component (% cost contribution)	Current localization	Localization potential by 2030	Rationale
Battery Cell (30-35%)	Very Low	Low	 Unavailability of core raw materials like lithium Battery R&D is capital intensive Rapid evolving of battery technology Cost competitiveness of Chinese Li-ion batteries
Chassis and Body (10-15%)	High	Very High	 No requirement of special raw materials or technology Manufacturing know-how already exist locally
BMS and TMS (10-12%)	Moderate	Very High	 Primarily require software India is known for development and export of software
Motor (10-12%)	Very Low	Moderate	 Unavailability of rare earth magnets such as the Neodymium magnet China is the leading producer of rare earth magnets accounting for over 90% production and over 40% reserves. Geopolitical risk involved in sourcing raw material.
Power Electronics (8-10%)	Very Low	Very High	 No major challenge exists except requirement for capital for doing R&D and setting-up of infrastructure
Others (HVAC, Control units etc)	Moderate	Very High	 Indian manufacturers have experience and know-how Already manufacturing such system, minor adaptation is required for EVs

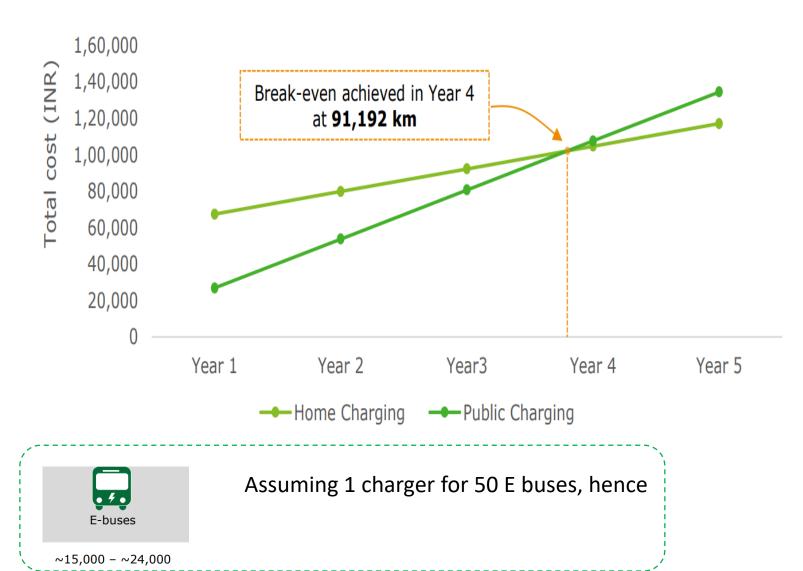
GAPS for EV Buses Industry


Risk for EV Buses Industry

Policy risk	Financial risk	Supply chain risk	Technological risk	Other r	isks	
- Non - implementation of policy	- High cost of funding due to perceived high	Insufficient access to mineral	- Fast evolution of technology (especially in	Uncertain - consume preferen		
measures after announcement	technology risk by FIs	resources for manufacturing	Battery) – risk of obsolesce	- High wag of skilled	e rate	
- Phasing-out of	- Exchange-rate	critical components	- Battery prices	manpow	High cost of EVs and dependence on imported batteries	
subsidy support/	risk due to	indigenously	may not go down as	shortage skilled manpow		
posing stiffer norms for availing incentives	import dependency for auto components	Quality of - indigenously manufactured	predicted (may be due to demand-supply	Evolving standard		
		auto ancillary				
- Policy risk	- Investment	component	mismatch)	their complian		
associated with	recovery risk -	- Demand-supply	- Interoperability	related ri	sk	
import-export of	evolving	issue of	- Price versus	- Environn	Insufficient charging infrastructure Barriers & Challenges Lack of public awareness	
automobile	business	indigenous auto	performance -	concern		
component	models, limited	ancillary	risk of	battery	Inadequate availability o	f cuitable
- Introduction of	charging infrastructure	component due	technology	scrappag		Suitable
any policy		to limited	preference	ra avalia a		
mandating		manufacturing	preference	recycling	Issues	
investment in		capacity				
recycling of		 Geo-political risk 				
battery		-unstable			Barriers & Challengs	
		relationship with				
		China (import				
		dependency on				
		China)				

Future Visibility for EV Buses Industry

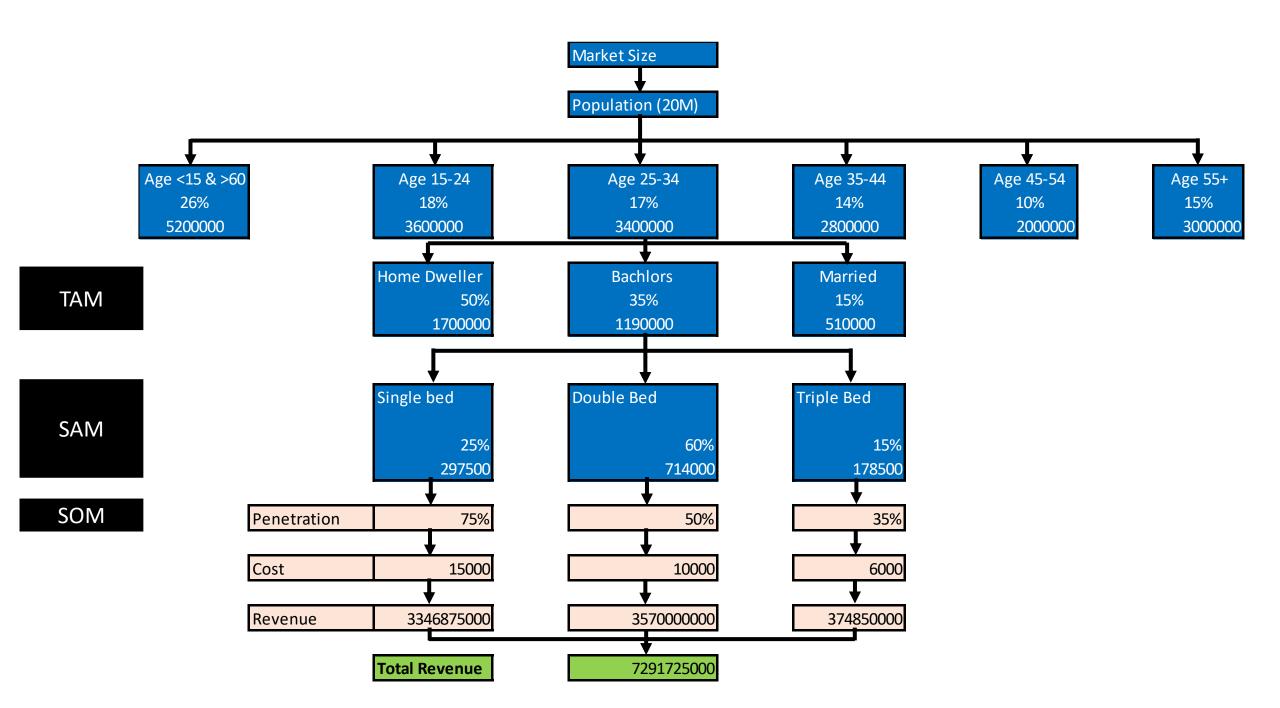
Present	Future (2025 & beyond)	Business impact	
Low EV Penetration	High EV penetration	More charging stations; need for fast charging	
Less competition	High competition	Innovative business model to retain customer, cost competitive business model, bundled model – product with services	Key Focus Areas
Focus on urban areas	EV charging expanding to Tier 2 & Tier 3 cities	Suitable business model for price sensitive customers in semi-urban and local areas, high volume and low prices based business models, e- roaming	 R&D Promotion Localization implementati
More focus on product	Service will be key in attracting customer	Need for innovative services, co- located charging, bundled services	 Strict adherence to governmental policies
Short range vehicle/ less distance travel	Long range vehicle/ long distance capable batteries	Need for fast charging facility; charging zone	Skill development on new
Conventional vehicles	Smart, autonomous, connected vehicles	Need for smart charging	technology
"Charging" is the only service	Energy feed back to the grid during from vehicle during unused hours	Need for Vehicle-to-Grid (V2G) facility, participation in demand response, Virtual power plants	 Developing charging infrastructure
No managed charging facility	Active and passive managed charging in place	Increased role of DISCOMs and third party service providers in managing the grid, smart charging	
Less cyber threat	High cyber threat	More investment in data security, secure data communication	
Single business-led	Partnership-led	Win-win partnership collaboration, co-located charging stations, charging zones with public amenities such as food zone, recreational activities	


Demand for Charging infrastructure

Setting up EV Charging infrastructure

Parameter	Costing
Electricity Connection (250 KVA):	7,50,000 /-
Civil Works:	2,50,000 /-
EVSE Management Software + Integration:	40,000 /-
Technicians, Manpower, Maintenance, etc:	3,50,000 /- yearly
Advertising and Promotion:	50,000 /-
Land Lease (if the land is at lease):	6,00,000 /- yearly
Total Approximate: (First year including setup and if the land is at lease)	Rs. 40,00,000 /-
Annual maintenance from the second year: (Including land lease)	Rs. 10,00,000 /-

Opportunities



 Maintenance cost in home charging is not considered

Future Visibility for EV Buses Industry

To leverage India's cost advantage and achieve desired level of supply chain localization for EV manufacturing in India, ecosystem stakeholders need to start with the following:

- Facilitate extensive support for Research, Development, and Demonstration of technologies using raw materials abundantly available in India, to find alternatives and reduce dependence on scarce natural resources required for EV manufacturing
- Commitment and investments in technology from incumbent OEMs and auto component companies
- Policymakers will have to strike a balance between promoting localization and making EVs economical. Need to rethink on waiving unrealistic riders of localization requirements for availing subsidy, at least during the demand creation phase.
- Invest in creating charging infrastructure, to build an ecosystem for Evs. Prospects for future demand in Evs would bolster investor sentiments, leading to the development of a local supply chain for EV components.
- Standardization of batteries should be done to enable battery swapping a plausible business model catering primarily to commercial vehicle
- Financial Institutions should be encouraged to extend their lending facility to the electric mobility sector.

