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Ferroptosis is a newly identified form of regulated cell death characterized by

iron accumulation and lipid peroxidation. Ferroptosis plays an essential role in

the pathology of numerous diseases and has emerged as a key area of focus in

studies of chronic kidney disease (CKD). CKD is a major public health problem

with high incidence and mortality that is characterized by a gradual loss of

kidney function over time. The severity and complexity of CKD combined with

the limited knowledge of its underlying molecular mechanism(s) have led to

increased interest in this disease area. Here, we summarize recent advances in

our understanding of the regulatory mechanism(s) of ferroptosis and highlight

recent studies describing its role in the pathogenesis and progression of CKD.

We further discuss the potential therapeutic benefits of targeting ferroptosis for

the treatment of CKD and the major hurdles to overcome for the translation of

in vitro studies into the clinic.
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Introduction

Ferroptosis is an iron-dependent form of non-apoptotic cell death, first described in

2012 by Dixon and colleagues (Dixon et al., 2012). This form of regulated necrosis is

characterized by lipid peroxidation at the plasma membrane and subcellular components,

ultimately leading to cell rupture (Dixon et al., 2012; Yang and Sockwell, 2016; Latunde-

Dada, 2017; Galluzzi et al., 2018; Gao et al., 2019; Hirayama et al., 2019; Li et al., 2020).

Ferroptosis has distinct morphological and biochemical features that distinguishes it from

other forms of cell death. Morphologically, ferroptosis is characterized by unique

mitochondrial changes, including the rupture of mitochondria membranes, a

reduction in mitochondrial crests and a decrease in mitochondria numbers (Otasevic

et al., 2021). The contribution of mitochondria to ferroptosis has emerged as a promising

target to prevent cell death through blocking ferroptosis. Biochemically, ferroptosis is

characterized by an increased consumption of glutathione (GSH) and decreased activity

of glutathione peroxidase 4 (GPX4) and system Xc− (a cysteine/glutamate antiporter
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system). Other biochemical features of ferroptosis include an

increased production of reactive oxygen species (ROS), an

accumulation of lipid peroxides and aberrant iron metabolism

(Zheng and Conrad, 2020; Chen et al., 2021). In recent years,

ferroptosis has emerged as a critical contributor and potential

therapeutic target in the context of a range of pathologic states,

including acute and chronic kidney disease, cardiovascular and

neurodegenerative disease, stroke and chemotherapy-resistant

cancers, amongst others (Xie et al., 2016; Stockwell et al., 2017;

Conrad et al., 2021; Maremonti et al., 2022).

Chronic kidney disease (CKD) is a major global public health

problem that afflicts 8%–16% of the population and is estimated

to contribute to 5–10 million deaths annually (WHO, 2018; Xie

et al., 2018; Chen et al., 2019). CKD is characterized by kidney

damage (albuminuria) and a gradual decline in kidney function

(estimated glomerular filtration rate (eGFR) < 60 ml/min/

1.73 m2) (Levey et al., 2005). Cardiovascular disease is a

significant adverse outcome in CKD patients that increases its

mortality rates (Chandrajay, 2010). Despite improvements in the

care of CKD patients and disease management, life expectancy

remains low across all stages (Turin et al., 2012) and its global

burden continues to rise (Xie et al., 2018). A deeper

understanding of the molecular mechanism(s) governing CKD

pathogenesis are required to delay its progression, improve

diagnostics and to advance the discovery of novel therapeutics.

In recent years, ferroptosis has been widely studied in the

context of kidney disease (Müller et al., 2017; Wenzel et al., 2017;

Guan et al., 2021; Li et al., 2021) and has emerged as a major area

of focus in CKD studies. Understanding the regulation of

ferroptosis in CKD is a pre-requisite to reduce kidney cell

death and its associated morbidity and mortality.

Herein, we review our latest understanding of ferroptosis in

the kidneys and discuss its regulatory genes and links to CKD.

We further describe challenges and future perspectives for the

use of modulators of ferroptosis as much needed anti-CKD

therapeutics.

General mechanisms of ferroptosis

Ferroptosis is regulated by a multitude of metabolic and

signaling pathways, including system Xc− (Cysteine/Glutamate

FIGURE 1
Molecular mechanisms of ferroptosis. Ferroptosis is an iron-dependent form of non-apoptotic cell death, regulated by a range of molecular
mechanisms and metabolic pathways, including system Xc− and GPX4 signaling, and iron and lipid metabolism. Recent studies have shown that
VDACs and other signaling pathways—FSP1-CoQ10-NADPH and GCH1-BH4 work cooperatively with the GPX4/glutathione system to regulate lipid
peroxidation and ferroptosis. GSH: Glutathione; GSSG: Glutathione disulfide; GPX4: Glutathione Peroxidase 4; Fe2+: Ferrous iron; Fe3+: Ferric
iron; TFR1: Transferrin Receptor 1; HO-1: Heme oxygenase-1; NCOA4: Nuclear receptor coactivator 4; LOXs: Lipoxygenases; LPCAT3:
lysophosphatidylcholine acyltransferase 3; ACSL4: Acyl-CoA Synthetase Long Chain Family Member 4; PUFAs: Polyunsaturated fatty acids; PUFA-
CoA: Polyunsaturated fatty acyl-coenzyme A; PUFA-PE: Polyunsaturated fatty acid-phosphatidylethanolamine; GTP: Guanosine triphosphate; BH4:
tetrahydrobiopterin; GCH1: Guanosine triphosphate cyclohydrolase 1; FSP1: Ferroptosis suppressor protein 1; VDACs: Voltage-dependent anion
channels; CoQ10: Coenzyme Q10.
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Antiporter), GPX4, iron homeostasis, ROS and lipid signaling. In

this section, we summarize the role of these pathways during

ferroptosis (Figure 1).

System Xc− and glutathione
peroxidase 4 pathways

System Xc− is a widely occurring cysteine (Cys)/glutamate

(Glu) antiporter, first identified by Banai et al. (1986) and a

known regulator of ferroptosis (Badgley et al., 1979) System Xc is

composed of light and heavy chains that are encoded by SLC7A11

and SLC3A2, respectively (Lewerenz et al., 2013). System Xc−

mediates the exchange of Glu and Cys across the plasma

membrane, ultimately favoring reduced glutathione (GSH)

synthesis (Koppula et al., 2018; Liu et al., 2021). Inhibition of

system Xc− decreases GSH expression, leading to oxidative

damage and ferroptosis. Erastin (the first identified inducer of

ferroptosis), extracellular glutamate, sorafenib and sulfasalazine,

can block system Xc− and trigger ferroptosis (Dixon et al., 2012;

Gao et al., 2015; Zhao et al., 2020).

GPX4 is a peroxide-degrading enzyme that uses GSH as a

substrate to produce glutathione disulfide (GSSG), ultimately

preventing lipid peroxidation and maintaining redox

homeostasis (Ingold et al., 2018). The genetic ablation of

GPX4 (Seiler et al., 2008) or its pharmacological inhibition

with RSL3 (Yang and Stockwell, 2008) leads to impaired

antioxidant capacity and favors cell death by ferroptosis,

independently of system Xc status (Yang et al., 2014). In

addition to its ability to directly inactivate GPX4, erastin

indirectly suppresses GPX4 through the upregulation of

activating transcription factor 3 (ATF3) (Zhang et al., 2021).

FINO2 and FIN56 have also been identified as direct- and

indirect inhibitors of GPX4 activity, respectively (Gaschler

et al., 2018).

Iron metabolism

Iron overload is one of the major hallmarks of ferroptosis.

Iron is naturally present in the human body, however its active

redox activity favors ROS production and lipid peroxidation,

ultimately leading to ferroptosis (Hassannia et al., 2019; Battaglia

et al., 2020; Li et al., 2020). Under physiological conditions, iron

uptake and export are regulated by transferrin receptor and

ferroportin respectively at the extracellular level, and by

ferritin (iron storage) intracellularly. Ferritin is an intracellular

protein that oxidizes ferrous iron (Fe2+) to ferric iron (Fe3+)

avoiding the occurrence of the Fenton reaction and subsequent

oxidative damage (Hassannia et al., 2019). Ferritin promotes iron

storage, its degradation leading to the release of iron stores and

subsequent ferroptosis (Rui et al., 2021). Controlling iron

metabolism/homeostasis holds great potential for the control

of ferroptosis. Accordingly, it has been shown that iron

homeostasis is related to the nuclear receptor activator 4

(NCOA4), which can mediate ferritinophagy, a process in

which ferritin is delivered to lysosomes and is selectively

degraded via autophagy (Mancias et al., 2014; Gao et al.,

2016; Hou et al., 2016; Torii et al., 2016; Buccarelli et al.,

2018). Heme oxygenase-1 (HO-1), catalyzes the degradation

of heme to produce Fe2+ and contributes to iron homeostasis

(Chang et al., 2018; Tang et al., 2018). The activation of

ferritinophagy and/or HO-1 overexpression increases free iron

levels, leading to the accumulation of lipid peroxides and

subsequent ferroptosis.

Lipid metabolism

Lipid metabolism is closely associated with ferroptosis and

can be triggered by non-enzymatic (Fenton chemistry) and

enzymatic mechanisms [lipoxygenases (LOXs)] (Doll and

Conrad, 2017; Feng and Stockwell, 2018). Polyunstaturated

fatty acids (PUFAs), such as arachidonic acid (AA) and

adrenoyl acid are phospholipids that increase the susceptibility

to lipid peroxidation during ferroptosis (Friedmann Angeli et al.,

2014; Kagan et al., 2017; Wenzel et al., 2017), their abundance

and localization impacting lipid peroxidation and the sensitivity

of cells to ferroptosis (Doll and Conrad, 2017; Stockwell et al.,

2017). More specifically, PUFA metabolism by Fe2+ and LOXs

leads to the production of lipid peroxides that disturb membrane

structure and function (Hassannia et al., 2019). In this regard, the

fatty acid metabolism gene Acyl-CoA synthetase long-chain

family member 4 (ASCL4) and lipid remodeling gene

Lysophosphatidylcholine acyltransferase 3 (LPCAT3), regulate

the insertion of PUFAs into cellular membranes and have

been identified as pivotal biomarkers of ferroptosis (Dixon

et al., 2015). ACSL4 silencing inhibits ferroptosis, whilst its

overexpression modulates cellular lipid composition and

sensitivity to ferroptosis (Yuan et al., 2016; Doll et al., 2017).

Increasing the expression and/or catalytic activity of ASCL4,

LPCAT3, and LOXs or the Fenton reaction increases the

accumulation of lipid peroxides and ultimately, ferroptosis (Li

and Li, 2020).

Other signaling pathways

Recent studies have revealed a range of signaling pathways

that regulate ferroptosis in a multitude of cellular systems. The

mevalonate pathway has been shown to inhibit ferroptosis in

studies by Stockwell et al. (2017), and two independent studies

identified FSP1 [ferroptosis suppressor protein 1, formerly

named Gene apoptosis-inducing factor mitochondrial 2

(AIFM2)], as a novel ferroptosis resistance gene. FSP1 was

shown to complement the loss (GPX4 KO) or inhibition
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(RLS3-treated) of the master regulator GPX4 (Bersuker et al.,

2019; Doll et al., 2019). FSP1 NADH-dependent oxireductase is

recruited to membranes of organelles where it converts oxidase

CoQ10 (ubiquinone) into reduced CoQ10 (ubiquinol),

preventing oxidative lipid production and its incorporation

into membranes and lipoproteins. Collectively, this highlights

new methods to suppress ferroptosis independently of GPX4.

In recent studies by Kraft et al. (2020), Guanosine

triphosphate (GTP) cyclohydrolase 1 (GCH1), the rate-

limiting enzyme in the synthesis of the antioxidant

tetrahydrobiopterin (BH4), was identified as a highly potent

suppressor of ferroptosis. More specifically, the overexpression

of GCH1 favored BH4 synthesis, suppressing ferroptosis by

abolishing lipid peroxidation. The GCH1-BH4 axis is a master

regulator of ferroptosis resistance, controlling the endogenous

production of BH4, the abundance of CoQ10, and the

peroxidation of phospholipids independently of the GPX4/

glutathione system.

Mitochondria drive the production of cellular ROS and play a

central role in ferroptosis by promoting lipid peroxidation.

Voltage-dependent anion channels (VDACs) transport iron

and metabolites and are essential to ferroptosis (DeHart et al.,

2018). Erastin inhibits VDACs, leading to mitochondrial

dysfunction, ROS production and iron-mediated cell death

(Yagoda et al., 2007).

Ferroptosis and chronic kidney
disease

CKD is a major public health issue (WHO, 2018; Xie et al.,

2018; Chen et al., 2019). The two main risk factors contributing

to the increasing prevalence of CKD are diabetes and

hypertension. Other causes include primary

glomerulonephritis, inherited diseases such as polycystic

kidney disease, kidney stones and repeated urinary infections

(Couser et al., 2011). Despite recent interest into the molecular

mechanisms regulating CKD pathogenesis and the contribution

of environmental and genetic risk factors to disease susceptibility

and heterogeneity (Cañadas-Garre et al., 2019), considerable

knowledge gaps remain. As a consequence, therapeutic

approaches for the management of CKD progression remain

scarce.

The kidney is an iron metabolism-related organ. A loss of

GPX4 activity (Friedmann Angeli et al., 2014), through genetic

deletion leads to albuminuria, kidney tubular epithelial cell death

and mortality within weeks (Friedmann Angeli et al., 2014).

More specifically in the context of CKD, preclinical studies

support the correlation between renal iron deposition, lipid

deposition and ferroptosis in multiple forms of CKD,

highlighting its clinical significance (Nankivell et al., 1992;

Wang et al., 2001; Shah et al., 2007; Martines et al., 2013;

Wenzel et al., 2017; Guan et al., 2021; Li et al., 2021).

Improved understanding of the mechanisms regulating

ferroptosis in the kidney and defining key genes regulating

these processes will advance the discovery of new molecular

targets for multiple forms of kidney disease.

Ferroptosis regulatory genes in
chronic kidney disease

Ferroptosis regulates CKD and kidney function. The altered

expression of genes that regulate ferroptosis may influence the

incidence and predisposition to CKD. Table 1 summaries recent

advances in this area.

To date, approximately 250 kidney function-associated loci

have been identified, with around 50% showing relevance to

kidney function in the context of CKD (Wuttke et al., 2019).

Despite promise in this area, only a small number of these genes

have been functionally characterized including UMOD (Trudu

et al., 2013), DAB2 (Qiu et al., 2018), SHROOM3 (Miao et al.,

2021), DACH1 (Doke et al., 2021) andMANBA (Gu et al., 2021).

In recent genome-wide association studies for kidney disease,

Dpep1 and Chmp1a, were identified as key regulators of

ferroptosis (Guan et al., 2021). At the molecular level, Dpep1

and Chmp1 were shown to alter cellular iron trafficking,

ultimately favoring the development of kidney disease. To our

knowledge, this is the only study to-date that identifies two

potential casual genes of CKD progression that are important

regulators of ferroptosis. This highlights the potential therapeutic

benefits of pharmacologically targeting ferroptosis through

DPEP1 and/or CHMP1 in patients with kidney disease to

prevent multiple forms of CKD.

Other ferroptosis regulatory genes that are not specifically

identified as casual genes of CKD progression have been studied

in the context of diabetic nephropathy (DN), renal fibrosis and

autosomal dominant polycystic kidney disease (ADPKD). These

are summarized in Table 1.

DN is the most common cause of mortality and morbidity in

CKD patients (Iyengar et al., 2015). The main factors involved in

DN pathogenesis include high glucose levels, oxidative stress and

inflammatory responses (Perrone et al., 2021). Recent studies

suggest that, in addition to other forms of programmed cell

death, ferroptosis plays a crucial pathological role in the

development of DN (Wang et al., 2020). In studies using

in vitro (proximal kidney tubular cells), in vivo [streptozotocin

(STZ)-induced DN mice model] and ex vivo (kidney biopsy

samples) models, a significant reduction in the mRNA and

protein expression of the ferroptosis-related molecules

SLC7A11 and GPX4 were observed, leading to increased lipid

peroxidation in DN compared to non-DN models (Kim et al.,

2021). In addition, the changes associated with ferroptosis under

diabetic conditions were ameliorated by specific ferroptosis

inhibitors. Studies using STZ-induced DN and db/db mice

further confirmed the involvement of ferroptosis in the
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progression of DN (Wang et al., 2020). More specifically,

significant changes in the expression of the ferroptosis-

associated markers ACSL4 and GPX4 were observed. This was

accompanied by an increase in lipid peroxidation and iron

content in DN mice. In vitro studies using known inducers of

ferroptosis including erastin and RSL3, induced renal tubular cell

death through increasing iron levels and ACSL4 expression,

sensitizing cells to ferroptosis (Wang et al., 2020). Other

studies showed that the increased expression of HO-1 favors

the inhibition of oxidative stress and the restoration of redox

balance, which may be beneficial for DN (Lee et al., 2009;

Rodriguez et al., 2011). High-mobility box-1 (HMGB1) was

shown to be activated in DN patients and mesangial cells in

response to high glucose. In studies using high glucose-treated

mesangial cells as in vitro model, increased translocation of

HMGB1 to the nucleus was reported, which decreased

Nrf2 expression and its subsequent downstream targets (Wu

et al., 2021). Collectively, these findings suggest that HMGB1 acts

as a positive regulator of ferroptosis viaNfr2 signaling. Targeting

HMGB1 and ferroptosis therefore holds potential for the

development of novel therapeutic strategies for DN.

Renal fibrosis is an important pathological process that

contributes to the progression of CKD (Efstratiadis et al.,

2009). The role of ferroptosis was demonstrated in studies

using doxorubicin-induced renal fibrosis models (Fang et al.,

2019). More specifically, increased expression of renal

prostaglandin-endoperoxide synthase (Ptgs2) as a putative

marker of ferroptosis was observed in the kidneys. Other

ferroptosis-related molecules, including GPXs, iron and lipid

peroxides have also been demonstrated (Sponsel et al., 1996;

TABLE 1 Expression of ferroptosis-regulatory genes in CKD models.

CKD model Genes Outcome References

Kidney biopsy tissue Slc7a11 Gpx4 Decreased expression compared to non-DN conditions Kim et al. (2021)

TGF-β1-exposed proximal tubular epithelial
cells (NRK-52E cells)

STZ-induced DN mice

STZ-induced DN and db/db mice Acsl4 Increased expression Wang et al. (2020)

Gpx4 Decreased expression

STZ-induced DN rat and immortalized mouse
podocytes

Ho-1 Increased expression of HO-1 prevents podocyte apoptosis in diabetic
models

Lee et al. (2009)

DN patients Ferritin Increased expression Wu et al. (2021)

Ldh

ROS

Mda

Hmgb1

Acsl4

Ptgs2

Nox1

Gpx4 Decreased expression

Mesangial cells Hmgb1 Increased HMGB1 expression regulates glucose-induced ferroptosis via
Nrf2

Wu et al. (2021)

Doxorubicin induced-renal fibrosis Ptgs2 Increased mRNA levels Fang et al. (2019)

UUO or IRI-induced fibrosis mouse kidneys Gpx4 Decreased expression Li et al. (2017); Zhou et al.
(2022)4-HNE Increased expression

Pdk1mutant renal epithelial cells and Pkd1RC/RC

mice
GSH Decreased expression Zhang et al. (2021)

Ferroportin

Gpx4

Tfr1 Increased expression

Dmt1

Ho-1

4-HNE Increased expression in Pkd1 null cells, promotes cell proliferation via
activation of Akt, S6, Stat3 and Rb

TGF-β1, Transforming growth factor 1; STZ, streptozotocin; DN, diabetic nephropathy; UUO, unilateral ureter obstruction; IRI, Ischemia/reperfusion injury; Pkd1, Polycystin-1; SLC7A11,

Solute Carrier Family seven Member 11; GPX4, Glutathione peroxidase 4; ACSL4, Acyl-CoA, Synthetase Long Chain Family Member 4; HO-1, Heme oxygenase-1; LDH, lactate

dehydrogenase; ROS, reactive oxygen species; MDA, Melanoma differentiation-associated gene; HMGB1, High Mobility Group Box one; PTGS2, Prostaglandin-Endoperoxide Synthase;

NOX1, NADPH, Oxidase 1; 4-HNE, 4-Hydroxynonenal; GSH, gluthatione; TFR1, Transferrin receptor protein one; DMT1, Divalent metal transporter one; Nrf2, Nuclear factor-erythroid

factor 2-related factor 2.
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Himmelfarb, 2005; Zhang et al., 2022), corroborating the

involvement of ferroptosis in the pathogenesis of renal

fibrosis. Transforming growth factor β1 (TGF-β1) was shown

to be a key mediator of renal fibrosis (Ikeda et al., 2014). More

specifically, in vitro studies using renal tubular cells showed that

TGF- β1 treatment increases the expression of SLC7A11 and

GPX4, an effect that could be reversed by treatment with

Ferrostain-1 (Fer-1), a well-characterized inhibitor of

ferroptosis (Kim et al., 2021). The potential role and

mechanisms underlying tubular cell ferroptosis during kidney

fibrosis were demonstrated in kidney biopsies from patients with

CKD and mouse models of fibrotic kidney disease unilateral

ureter obstruction (UUO) or ischemia/reperfusion injury (IRI)

nephropathy. Downregulation of the ferroptosis-associated

marker GPX4 and upregulation of 4-hydroxynonenal (4-

HNE) were observed (Li et al., 2017; Zhou et al., 2022).

Moreover, inhibitors of ferroptosis were protective against

kidney fibrosis in patients with CKD.

Ferroptosis has also been linked with ADPKD, a disease

caused by mutations in polycystin-1 and -2 (PKD1 and PKD2)

leading to the growth of cysts in the kidneys (Raaij et al., 2018;

Zhang et al., 2021). Zhang et al. (2021) showed for the first time

that ferroptosis regulates ADPKD progression, representing a

promising therapeutic target (Zhang et al., 2021). Low levels of

cell death were observed in Pdk1 mutant mice as a result of

ferroptosis as opposed to apoptosis. Pdk1 mutant cells and

kidney tissues from Pdk1 mouse models also showed

decreased GSH expression and increased Transferrin receptor

1 (Tfr1), divalent metal transporter 1 (DMT1) and HO-1

expression. This resulted in high iron levels, low GSH and

GPX4 activity, increased lipid peroxidation and ultimately

ferroptosis. Erastin and Fer-1 prevented disease progression in

Pkd1 mutant mice and 4-HNE expression, a lipid peroxidation

product that increases in abundance during ferroptotic processes,

increased in Pdk1 mutant renal epithelial cells, which regulated

their proliferation via activation of Akt, S6, Stat3, and Rb.

Collectively, these studies demonstrate the critical role of

ferroptosis in the regulation of CKD progression, highlighting

its promise as a novel therapeutic strategy.

Targeting ferroptosis in chronic
kidney disease

A range of preclinical studies have shown the potential of

inhibitors of ferroptosis to prevent kidney disease. These include

Fer-1, Rosiglitazone, Deferasirox (DFX) and Deferoxamine

mesylate (DFO), and are summarized in Table 2.

Under physiological conditions, iron homeostasis is

maintained by hepcidin and iron regulatory proteins (Ueda

et al., 1996). In CKD patients, iron homeostasis is disrupted

as a result of altered iron uptake and/or insufficient iron export

TABLE 2 Ferroptosis-targeting inhibitors in CKD.

Inhibitors Effect Experimental model Mechanism and outcome References

Fer-1 Prevents ROS formation and
lipid peroxidation

Pkd1RC/RC mice Inhibits cell proliferation mediated by the activation of Akt, S6,
Stat3, and Rb signaling during ferroptotic process

Zhang et al. (2021)

Diabetic db/db mice Regulates iron metabolism and inhibits HIF-1α/HO-1 Linkermann et al.
(2014)

Diabetic mice Reduces lipid peroxidation via the HIF-1α/HO-1 pathway Wiggin et al. (2008)

UUO or IRI mouse model Decreased FN and α-SMA, inflammatory cell accumulation,
MCP-1 secretion and kidney fibrosis

Li et al. (2017)

Rosiglitazone ACSL4 inhibitor STZ-induced diabetic mice Reduction of ROS, inhibition of NF-κB and reduced MCP-1
expression

Li et al. (2022)

STZ-induced diabetic DBA/2 J
mice

Reduced oxidative stress and regulation by novel transcription
factors described

Bao et al. (2007)

STZ-induced diabetic mice and
db/db mice

Improved kidney function, reduction of lipid peroxidation and
iron content

Wang et al. (2020)

DFO Iron chelators UUO or IRI mouse model Reduction of FN and α-SMA, inflammatory cell accumulation
and kidney fibrosis

Li et al. (2017)

5/6 nephrectomy-
induced CKD

Lower levels of renal injury and fibrosis via regulation of iron
metabolism and the TGF-β1/Smad3 axis

Feng et al. (2021)

UUO mouse model Reduces renal iron accumulation by regulating TGF-β1-
Smad3 and, oxidative stress signaling pathways

Zhou et al. (2022)

DFX 5/6 nephrectomy-
induced CKD

Wang et al. (2022)

Tectorigenin Antioxidant activity UUO mouse model Inhibits Smad3-mediated ferroptosis and fibrosis Bebber et al. (2020)

Fer-1, Ferrostain-1; DFX, deferasirox; DFO, deferoxamine mesylate; Pkd1, Polycystin one; HIF-1α, Hypoxia-inducible factor 1-alpha; HO-1, Heme oxygenase-1; UUO, unilateral ureter

obstruction; IRI, Ischemia/reperfusion injury; FN, fibronectin; α-SMA, alpha smooth muscle actin; MCP-1, Monocyte Chemoattractant Protein-1; STZ, streptozotocin; ROS, reactive

oxygen species; ACSL4, Acyl-CoA, Synthetase Long Chain Family Member 4.
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(Ueda et al., 1996). This leads to increased Fenton-mediated

oxidative damage and renal injury (Naito et al., 2015). This

suggests that iron accumulation in CKD patients occurs during

ferroptosis. Therapeutic strategies to regulate the expression of

iron metabolism-related proteins and alleviate ferroptosis

through iron chelation (e.g., DFX or DFO) represent attractive

approaches for the treatment of CKD. Indeed, studies (Table 2)

using UUO or 5/6 nephrectomy-induced CKD rat/mouse models

showed that DFX (Wang et al., 2022) and DFO (Li et al., 2017;

Feng et al., 2021; Zhou et al., 2022) treatment reduced iron

accumulation and renal injury through the regulation of the

TGF-1β/Smad3 axis, inflammation and oxidative stress signaling

pathways. As an alternative to iron chelators, the potential of Fer-

1 to prevent ROS production and lipid peroxidation via hypoxia-

inducible factor 1-alpha (HIF-1α)/HO-1 signaling was

demonstrated in diabetic mouse models (Wiggin et al., 2008;

Linkermann et al., 2014). In Pdk1 mutant mice, Fer-1 could

inhibit ferroptotic cell death, Akt-mediated proliferation, S6,

Stat3, and Rb signaling, delaying cyst growth in ADPKD

mouse models (Zhang et al., 2021). Treatment of STZ-induced

DN animal models with rosiglitazone (an ACSL4 inhibitor), led

to a reduction in lipid peroxidation and iron content in the

kidneys, improving kidney function (Bao et al., 2007; Wang et al.,

2020; Li et al., 2022). In more recent studies, tectorigenin showed

protective effects against kidney injury and fibrosis, two key

factors during CKD pathogenesis (Bebber et al., 2020). In vitro,

tectorigenin suppressed ferroptosis and TGF-β1-stimulated

fibrosis in primary renal tubular epithelial cells (TECs).

Consistent with these studies, UUO-mouse models

administered tectorigenin showed attenuated tubular cell

damage and fewer fibrotic lesions in the kidneys as a result of

the inhibition of Smad3-mediated ferroptosis and fibrosis. More

specifically, tectorigenin inhibited Smad3 phosphorylation and

the expression of Nox4, a downstream modulator of ferroptosis.

Moreover, isoflavone could indirectly restore the expression of

GPX4, a negative regulator of ferroptosis. Collectively, these

studies highlight the potential of tectorigenin as a therapeutic

strategy for CKD. Future studies are now required to dissect the

mechanisms of action and potential therapeutic applications of

this compound.

From a therapeutic standpoint, pharmacological modulators

of ferroptosis have been explored in vitro and in vivo CKD

experiments (Table 2). Despite promising results, the efficacy of

these modulators and their potential side effects requires

assessment in future clinical studies.

Challenges and future perspectives

Numerous lines of evidence now support a role for ferroptosis in

CKD,which ismediated by the iron-dependent accumulation of lipid

peroxidation. Accordingly, we have discussed the major signaling

pathways that regulate ferroptosis, its regulatory genes, the role of

ferroptosis in CKD and potential therapeutic strategies to inhibit

ferroptosis. Despite obvious progress, future studies must address the

following concerns:

1) Ferroptosis is not an isolated event and is closely associated

with other forms of cell death (apoptosis, necrosis and

autophagy). The molecular mechanism(s) regulating this

cross-talk require characterization to reveal potential

antagonistic or synergistic roles in the context of kidney

disease, and more specifically CKD.

2) Although a range of regulatory factors of ferroptosis have

been described, they do not represent specific markers of

ferroptosis. In this regard, reliable biomarkers, specifically in

the context of kidney disease remains a challenge.

3) Accumulating evidence indicates that ferroptotic cell death

can inhibit tumor growth and improve the efficacy of

chemotherapeutic drugs. [99] However, in kidney disease,

ferroptosis may negatively impact kidney health. Further

mechanistic studies are therefore warranted.

4) Although the link between ferroptosis and acute kidney injury

(AKI) has been widely explored and characterized, studies on

ferroptosis and CKD remain limited. Indeed, the majority of

studies to-date have used in vitro or in vivomodels. However,

as in vitro cell culture conditions and animal models of kidney

diseases drastically differ, the interpretation and

establishment of a link between ferroptosis and CKD can

be challenging. Methods to translate scientific research into

clinical applications should therefore be developed.
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