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0.  Problem Definition

A. Problem Description

There is a recent call for deep space, high payload exploratory missions. SpaceX is planning a
manned mission to Mars around 2026, and NASA is planning a manned mission to Mars
around 2030. The company, Orbital Assembly Corporation has announced their plans to open
a hotel in space by 2027, named the Voyager Station (Street, 2021). However, it is undeniable
that in order for these feats to succeed, rockets need better fuel tank capacity. Missions to
Mars will require four to six astronauts living in a spacecraft the size of a recreational vehicle
and will span roughly three years (Temming, 2020). Voyager Station will require all necessities
of Earth hotels in addition to keeping a full-time staff aboard and transporting customers to
and from the hotel. The current anatomy of rockets does not allow for long distance travel or
sizable payloads that missions such as these are going to demand. Ninety percent of the mass
of rockets are rocket propellants, six percent is the rocket’s structure, and four percent is the
payload which covers humans, equipment, miscellaneous storage, etc. (MIT, 2021).

B. Problem Substantiation

The only feasible way to increase the distance travelled, and the amount of payload that
spaceships can hold is to cut down on the mass dedicated to rocket propellants. By
engineering more efficient propulsion systems, less mass will be dedicated to propellants, and
more can be dedicated to payload. Without finding ways to increase fuel tank capacity,
humans will never be able to transport the massive payloads they wish to transport in their
future. The furthest object humans have sent into space is NASA’s Voyager 1, which launched
on September 5th, 1977, and is 152.6AU away from Earth. The farthest humans have traveled
in space is only 0.00267AU, which is along the moon’s orbit used by Apollo 13 to return to
Earth after a mission failure. Mars is 2.06AU from Earth so sending a manned mission to Mars
is going to require significant improvement to current rocket technology.

C. Population(s) that Most Benefit

The population which benefits the most is subjective. Initially scientists, engineers, and

astronauts will benefit as they will be able to launch missions that can reach further depth of

space currently unexplored, and carry the necessary payload for large scale missions.

Entrepreneurs involved with Voyager Station will also benefit rapidly as they will be able to

complete and launch their business. The next phase is indirect yet is dependent nevertheless.

While the target audience will most likely be the wealthiest population, the general public will

have the opportunity to experience life outside of our planet. Additionally, with the increased



effects of climate change, life on Mars may become a viable option in the near future for the

human race. Moving society from Earth to Mars will require significant payloads and thus will

call for rockets with more efficient fuels, so that the percent mass dedicated to payload can

be higher.

1. Description of System Operation

A.  Conceptual Model

In the figure above, a basic illustration of rocket anatomy can be seen. This can help visualize

the relative size of each of the parts. It should be noted that the payload is the smallest

section of the rocket, and the fuel chamber is the largest part. The fuel tank/chamber works

by mixing an oxidizer with a propellant in a combustion reaction to create thrust for the

rocket. Some rocket thrusters work differently, but on a general level, the fuel chamber



becomes extremely hot as the reaction occurs, and the thrust lifts the rocket into the air,

allowing it to leave the atmosphere and travel as far as it’s fuel can take it. The materials are a

big importance for the rocket. The rocket needs to be able to withstand massive amounts of

heat from air friction and from the reaction taking place in the fuel chamber. Additionally,

there also needs to be a temperature resistant storage unit for liquid hydrogen, the most

common rocket fuel, where it can be kept at -423℉. Without this fuel being kept at the

proper temperature, the rocket will not be able to burn the fuel to produce thrust, and it will

be useless. The other parts of the rocket are designed with aerodynamic shapes and

lightweight construction as the main factors. This rocket design will not be good enough to

get humans and all of their equipment, food etc. to Mars, or to make it around the globe on

commercial orbit trips. Unless fuel tanks and propulsion systems are made more efficient, this

ratio of payload to rocket chamber size will not be feasible for future goals.

B. Key Challenges

The challenges associated with this dilemma are either knowledge-based or technological.
Aside from Earth, the Moon, and a small understanding of Mars, we don’t know what we
don’t know. There could be answering to questions about our solar system or the universe as
a whole yet to be discovered at nearby locations that we cannot access yet. This is where our
lack of knowledge meets our lack of technology. We do not have a rocket fuel efficient
enough with our current storage capabilities to travel long-distance through space, nor can
we have sizable payloads for these missions. While many alternatives to chemical based
propulsion that is used now are being researched and tested, they each come with their own
challenges.

2.  Alternatives to Be Considered

● Liquid Hydrogen

Some of the recent advancements made in engineering better rocket fuels have

included investigation into alternate storage methods, and methods of obtaining

liquid hydrogen in an attempt to increase its candidacy as a fuel for the future.

Hydrogen is the lightest element, and there is more research being conducted to

perfect the use of this reliable fuel. Today, liquid hydrogen is the signature fuel of the

American space program and is used by other countries in the business of launching

satellites.  Rocket engines of each shuttle flight burn about five hundred thousand

gallons of liquid hydrogen with another two hundred thirty-nine gallons depleted by

storage boil off and transfer operations (NASA,2021). Advancements in increasing

rocket fuel capabilities have recently included construction of a supercooling tank

which is attached to the rocket during take-off, as well as a “glass bubble”. Both of

these technologies help conserve fuel by reducing the amount of fuel which is lost due

to boiling off during take-off. According to NASA, “With glass bubble insulation, liquid



hydrogen losses through boil off can be reduced by as much as forty six percent”. If

the losses due to the boil-off of liquid hydrogen can be minimized near zero by the

implementation of both of these technologies, liquid hydrogen could provide the

necessary power and longevity needed for deep space missions. In the short term,

finding better ways to store liquid hydrogen for use in rockets helps NASA test their

rockets more often, as less fuel is wasted during testing. For the long term, to support

their SLS rocket, NASA started construction of a new liquid hydrogen storage tank at

Pad 39B. This rocket is designed to launch the Orion spacecraft, which is NASA’s

current shuttle candidate for the Moon and Mars missions. The shuttle will require

seven hundred thirty thousand gallons of liquid hydrogen and oxygen. This is notably

higher than the average rocket currently burns on its missions, providing for greater

endurance on missions.

● Refueling Station

Another solution related to liquid hydrogen research is the possibility of a moon

refueling station. In an article by Neel Patel titled “Here's how we Could Mine the

Moon for Rocket Fuel”, Patel writes about the purpose and implications of a moon

fueling station. The reason the moon is being considered, is that according to

estimates by NASA, there is about six hundred million to a billion metric tons of lunar

ice to be mined for water. This water could be separated into hydrogen and oxygen,

which as mentioned before, are the respective propellant and oxidant for most

rockets today. By establishing a moon refueling station, this allows rockets the ability

to have to carry less fuel upon their take-off from Earth because they only need to get

to the moon, and can fill up for the rest of the mission on the moon. This would be

favorable, not only because launching from Earth would now be cheaper, but more

people and equipment can be carried to the moon instead of fuel. Starting rockets on

a path to Mars would be easier from the moon because the fuel would be sourced

there, and because the moon’s atmosphere and gravity is less, the rocket could carry

more weight, which is essential to maximizing both fuel capacity and payload size. In

addition, commencing missions from the moon would give spacecraft nearly a two

hundred fifty-thousand-mile head start. As we reach further into space, refueling

stations could become more common to continue extending how far we can travel.

● Metastable Metallic Hydrogen

Another approach to the rocket fuel problem is investigation into other fuels entirely.

One of these, according to the Journal of Physics: Conference Series, includes using

metastable metallic hydrogen, which is a very light-weight, low volume, powerful

rocket propellant (Cole & Silvera, 2010). One of the characteristics of a propellant is its

specific impulse (Isp). Liquid molecular hydrogen-oxygen used in modern rockets has

an Isp of ~460s, whereas metallic hydrogen has a theoretical Isp of 1700s. This is an



increase of over 4 times to the current fuel. However, while it is one of the most

efficient, lightweight and powerful propellants, it is limited by other design factors. If

pure metallic hydrogen is used as a propellant, the reaction chamber temperature

would be six thousand degrees Kelvin, too high for currently known rocket engine

materials. The research suggests a dilution can decrease the temperature of the

chamber significantly, at a little loss of efficiency and lightweight. By diluting metallic

hydrogen with liquid hydrogen or water, the reaction temperature can be reduced,

and there is still a significant performance improvement for the diluted mixture.

● Nuclear Propulsion

An additional approach to the fuel problem is to ditch chemical based fuels and

processes, and use nuclear propulsion systems. According to Jeff Sheehy, chief

engineer of NASA's Space Technology Mission Directorate, an NTP (nuclear thermal

propulsion) system uses a nuclear reactor to generate heat from a uranium fuel. This

heat then burns a chemical propellant such as liquid hydrogen (Lewis, 2021). So,

instead of the rocket being fueled by an oxidizer and liquid hydrogen, it will be

uranium and liquid hydrogen. According to Sheehy, NTP rockets produce twice the

thrust per unit of propellant than a chemical system. On the other hand, nuclear

electric propulsion systems use propellants much more efficiently than chemical

rockets but provide a low amount of thrust. These systems use a nuclear reactor to

generate electricity that induces positive charge in gas propellants, which push ions

out of a thruster in order to move the ship forward (NASA, 2021). The advantage of a

nuclear electric propulsion system (NEP’s) is that the amount of propellant needed by

the rocket is cut drastically, at the cost of thrust. In essence, this makes the rocket

have much more mass dedicated to payload, but will leave it with less ability to

take-off successfully (due to less thrust power). A rocket with NEP is thought to be the

ideal “long-distance” design of a spacecraft for these reasons.

● Solar Electric Propulsion

Another alternative is Solar Electric Propulsion (SEP). Engineers at NASA’s Glenn

Research Center are researching how to effectively use SEPs for deep space missions

that require large payload. Spacecraft equipped with SEPs would not entirely abandon

the current chemical-based rocket propulsion system that is currently in use as it

would be used to move the spacecraft out of the atmosphere. However once in space,

the SEP system would become available. The SEP system is powered by on board solar

arrays which power an electrically propelled system that uses ten times less propellant

than current chemical propulsion systems. NASA collaborated with two companies,

ATK Systems Inc. and Deployable Space Systems Inc. to design the solar arrays. The

arrays were designed to be held in the spacecraft until it had left the atmosphere,

then exit the spacecraft in a folding motion similar to a fan, and a rolling motion



comparable to blinds in a window. These arrays can survive long periods of time in

orbit and can withstand radiation belts. The energy harnessed from the arrays is fed to

electrostatic Hall thrusters, which are used to provide thrust (Mohon, 2021). The Hall

thrusters trap electrons from the magnetic field and ionize them using a propellant

gas, creating an exhaust plume which initiates acceleration (Reckart, 2020). This

process uses significantly less propellant than the current chemical-based system,

which could optimize storage and payload while increasing endurance. Unfortunately,

sunlight is not an infinite resource. The equation for sunlight intensity is 1r2, where r

is the distance from the Sun (Nagaraja, 2021). As you move further away, the intensity

exponentially decreases and more arrays would be required to produce the same

amount of power. Under current conditions, we could utilize sunlight four

astronomical units (AU) from the Sun which is roughly 1AU from Jupiter. As solar

technology improves the outlook on our capabilities is that we will be able to harness

solar energy further into the solar system. According to the most recent test results of

SEP, at 13.5kW of input power, the SEP provides 57% efficiency, 589mN of thrust, and

a specific impulse of 2600s at a mass of only 123kg (Barber & Cassady & Jackson &

Miller & Peterson & Soendker & Welander, 2019).

3.  Metrics of Comparison

● Cost (USD)
If the cost of producing the spacecraft, rockets, hiring astronauts, equipment,
acquiring rocket fuel, or creating a new propulsion system is beyond a certain
threshold it may not be worthwhile. Although space exploration is an interesting topic
that could answer our questions about the universe, there is not access to free
resources and labor so there are still monetary restrictions.

● Specific Impulse (s)
Specific Impulse measures how efficiently a rocket makes thrust from its propellant.
The higher the specific impulse, the higher the efficiency of the rocket in terms of fuel
use. If a rocket has a high specific impulse, it requires less fuel to travel distances
compared to that of rockets with low specific impulse. It also suggests that with large
amount of fuel, the rocket could travel long distances.

● Endurance / Range (AU / km / mi)
Range can be measured using the Breguet equation (Range =

). The maximum range of a rocket can give insight on how𝑉𝑡
𝑓
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many rockets to use and where missions can take place. This metric should be
compared alongside other metrics such as velocity and payload as it does not matter
how far you can go if the time it takes to get there is not feasible or if you cannot bring
sufficient equipment.

● Thrust (mN)



Thrust is a vital metric for space travel. Escape velocity is roughly 11.2km/s, and once
you have left the atmosphere, your destination could be days to months away. If you
can travel faster the time it takes to complete these missions could be cut significantly.
Thrust should be compared with acceleration when comparing metrics considering
that even if there is a high maximum velocity, it is most efficient to have a high
acceleration as well so it does not take long periods of time to gain speed.

● Feasibility
This metric is based upon the technology currently available and how efficient it is.
The amount of research already conducted on an alternative and the planned
missions using that alternative give insight on the reliability and feasibility of future
use of the alternative.

4.  Decision Matrix Analysis

Liquid
Hydrogen

Moon Fuel
Station

Metastable
Metallic
Hydrogen

Nuclear
Propulsion
(thermal/ele
ctric)

Solar Electric
Propulsion

Cost (USD) $3.26/kg $100,000/kg
equipment

$35,000/kg
lunar
deployment

Years of RnD
in materials
and
high-pressur
e physics

$2,000,000,0
00 / flight

Specific
Impulse (s)

460s 460s 1700s 850-950s (t)

4000-8000s
(e)

2600s

Endurance
(AU / km /
mi)

0.00267AU N/A

Thrust (mN) 1250mN 1250mN 240mN (e)

400mN (t)

589mN

Feasibility Feasible Feasible Not
Currently
Feasible

Feasible Feasible

Storage of Liquid Hydrogen

When analyzing the storage of liquid hydrogen using the metrics shown in Figure 1.2, cost
was found to be very low (hence the green), at 3.26/kg (Schwing, 2008).  The specific impulse
of liquid hydrogen is 460 seconds, which is good, but compared to the other alternatives in



the matrix is a yellow quantity. The thrust is noted to be 1250 mN, which is impressive and
ranked green. Lastly, as mentioned earlier, liquid hydrogen is a very common fuel, and there
have been numerous projects, some being adopted by NAS currently, which seek to help
liquid hydrogen become more viable (by optimizing storage). This makes liquid hydrogen an
overall extremely feasible alternative, so it was ranked green for this metric. However, the
farthest distance a human has ever reached using liquid hydrogen was around the moon,
which is noted as yellow because the distances being considered when discussing alternative
rocket fuels are far more like the distance to Mars. For comparison, the distance to Mars is
approximately 1.5 AU, and the farthest humans have ever been (using liquid hydrogen) is
approximately .002 AU. 

Moon Fuel Station

When considering a rocket fueling station on the moon, the specific impulse, thrust and
distance can be assumed to be around the same as in the liquid hydrogen storage row,
however they will vary depending on how much more fuel can be added into the rocket due
to the moon having weaker gravity, and less atmosphere. In reality, these values will be
higher, so the specific impulse is ranked yellow, while the distance and thrust are both ranked
green. The metric which is most consequential when considering a moon fueling station is the
cost, and with estimates like $100,000/kg of equipment, and $35,000/kg for lunar
deployment (Shishko, 2019), the cost of transporting materials to the moon, construction,
testing, transportation of humans, etc., the cost becomes extremely high. Also, this has never
been done before, or tested, and Americans have not been to the moon since 1972. If the
money is not a problem, then a moon fueling station is an extremely feasible alternative.
However, cost is important, so a moon fueling station was ranked somewhat feasible because
it is a large-scale project, and extremely large amounts of planning and money would be
needed to make it happen. 

Metastable Metallic Hydrogen 

Metastable metallic hydrogen has not yet been tested as a fuel yet. Metallic hydrogen has not
been produced on Earth. However, according to calculations, it would have a specific impulse
of 1700, which is nearly 4x the specific impulse of the current fuel, liquid hydrogen. Atomic
metallic hydrogen, if metastable at ambient pressure and temperature could be used as the
most powerful chemical rocket fuel (Silvera, 2013). This fuel would have one of the highest
possible distances and thrusts imaginable. Exact figures have not been predicted, but its high
specific impulse implies this. Therefore, these three metrics are all green. However, on top of
metallic hydrogen never being produced on Earth, using it as fuel would create temperatures
in the fuel chamber which exceed the limit of currently used rocket engine materials. When
weighing the cost of this alternative, the cost of creating metallic hydrogen, the cost of
creating new materials which can withstand the heat from metallic hydrogen, and all of the
research and development which comes with it need to be factored in. However, when
comparing this cost with the potential cost of a moon fueling base, or the billions of dollars it
is currently estimated to send humans to Mars, the cost of metallic hydrogen as an alternative
fuel is rated yellow. If metallic hydrogen becomes the fuel of the future, trips to Mars and the
moon will be much less costly. In conclusion, although metallic hydrogen is an amazing,



exciting fuel in theory. It is still “in theory”, and until the research and development allows it
to be tested, this fuel will not be feasible. It earns a red rank for the feasibility metric. 

Nuclear Thermal Propulsion

Nuclear thermal propulsion (NTP), has been researched before, and is one of the systems
currently being considered for NASA’s future missions. It should be noted that the cost of a
manned Mars mission using NTP, would cost about $20B and $2B per flight. This is an
extremely consequential cost, and is thus denoted red. While NTP has been researched by
NASA since 1972, there isn’t much data on distance estimates. However, the specific impulse
and thrust provided by NTP are about 850-900 seconds and 400 respectively (Houts, 2021).
This specific impulse is respectable, especially when compared to our current specific impulse
of 460 seconds (liquid hydrogen). It is denoted green. The thrust is on the average side,
ranked yellow, and falls below the thrust provided by liquid hydrogen. The ability of NTP to
make chemical propellant fuel span large amounts of time certifies that NTP is one of the best
fuel options for long-distance manned missions. Its distance metric is green for this reason.
NTP has only become more and more feasible as more research is being done, and designs
are being tested. NTP is a real option being considered by NASA, and doesn’t have any
limitations other than research and development costs attached to its use. Its feasibility runs
green. 

Nuclear Electric Propulsion

Much like NTP, nuclear electric propulsion (NEP) uses nuclear power to create thrust. The
costs will be around the same, because NEP and NTP are both being constantly researched
and tested the same, and will be used for the same missions. The cost metric runs red.
However, as mentioned earlier, NEP works differently and doesn’t require chemical
propellant. Instead, NEP only requires electricity which would be produced by the nuclear
reactor in the rocket engine. This process yields a significant range of specific impulses, and
depends on which ions are utilized for thrusting in the order of magnitude of 1,000 to 10,000
seconds (Black, 2003). While these values are extremely high, the thrust provided by NEP is
very poor, and technological advancements need to be made on battery storage and power in
order to fix this downfall. NEP earns a green specific impulse rank, and a red thrust rank.
There is much more distance to go with this technology, and NASA is still investigating it for
the future. This makes NEP extremely feasible, as it has potential to send humans long
distances in relatively short times by utilizing high speeds (NASA, 2021). NEP is assigned a
green rank in distance and feasibility. NEP technology has a long way to go, but faces no direct
limitations (such as materials), and instead just needs research and development.   

Solar Electric Propulsion 

According to the most recent tests by NASA scientists, SEPs are proving to be a reliable
alternative propulsion system. The price of producing the arrays and the mechanisms for SEPs
has not been disclosed, however the latest tests used nearly $40,000 in solar panels alone.
SEPs would also require the use of another propulsion system to leave the atmosphere,
increasing cost. The specific impulse of SEPs is over five times as much as liquid hydrogen,
which is the current rocket fuel. It does however have roughly half the thrust in comparison
to the current model, however as the number of panels increases along with higher sunlight



intensity, specific impulse and thrust are expected to increase. Additionally, spacecraft
equipped with SEPs would have the longest range of any manned vehicle due to its reliance
on sunlight. As mentioned previously, with today's technology the furthest usable sunlight
reaches nearly to Jupiter. This is a feasible option due to its success in NASA trials and the
expectation that it will be used so send a manned mission to the lunar surface by 2024, which
is why it is marked green.

5.  Engineering Recommendation

Figure 1.3: Comparison of 4 Types of Rocket Fuel Systems 
Source: NASA (Houts)

After analysis of multiple rocket fuels across multiple metrics, the case for liquid hydrogen
remains strong. Specifically, the case for liquid hydrogen is strong if its storage can be
improved, and is especially strong in the event that a moon fueling station is affordable. This
is a multilateral conclusion, but is supported by the estimate that there is about six hundred
million to a billion metric tons of lunar ice to be mined for water, and the fact that that water,
combined with effective storage could prove liquid hydrogen to be the key to interplanetary
travel. As mentioned earlier, new storage technologies for liquid hydrogen could see



“boil-off” percentages drop to 0. In this case, the estimated 730,000 gallons of liquid
hydrogen needed for a Mars mission, would be much easier to accommodate, considering
that the current shuttle receives about 500,000 gallons of fuel, with 239,000 boiling off. By
reducing this boil off to zero, it allows liquid hydrogen to become more efficient than it has
ever been. In figure 1.3, the chemical rocket fuel systems section of the graphic spans a large
area. However, as the graphic represents the fuels’ abilities to get large payloads (vertical
axis) in short amounts of time (horizontal axis), the top left of the graph is where the
(currently) reliable fuels will lie. In the event of optimized, advanced storage techniques
which minimize boil-off, and/or a moon fuel station, the section which represents chemical
propellants will undoubtedly shift even higher left. In other words, liquid hydrogen has a
distance to go. Feasibility is also high because research is already underway, and two possible
approaches to the storage and efficiency problem have been mentioned previously. These
new possibilities breed an amazing case for a moon fueling station. And combining the
increased efficiency of liquid hydrogen, the new technology which allows increased storage,
and the moon's low gravity and lesser atmosphere, and liquid hydrogen along with a moon
fueling station becomes a very feasible, impactful alternative to the current model of rocket
fueling. 

Nuclear thermal propulsion is the future of deep space and interplanetary exploration. It
produces twice the specific impulse of liquid hydrogen rockets and through further testing
will also provide high thrust. As represented in figure 1.3, mission duration is significantly
decreased using nuclear propulsion, which decreases cost and allows for more trips through
space to be made. Nuclear propulsion also requires less fuel than chemical propulsion,
allowing for a greater percentage of payload to be assigned to necessary equipment. This also
implies that through the use of more fuel, spacecraft using nuclear propulsion systems could
reach unexplored depth in our solar system. Although there has yet to be significant research
into nuclear propulsion systems, we are familiar with nuclear energy. In 2020, the United
States budgeted the Department of Energy $31.7 billion to fund nuclear energy. As NASA
continues to research the possibilities of utilizing nuclear propulsion, it becomes more likely
that nuclear propulsion will be relied on for missions of great distance and payload.
Considering the bright future and high efficiency of this propulsion system, it should continue
to be researched as it could replace the current chemical-based, liquid hydrogen system used
today.
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