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Abstract | Developments in neuroscientific methods, such as the rise of tissue clearing, allow
researchers to examine the nervous system with a level of detail previously unimaginable. The
large and complex data generated by 3D imaging of cleared tissues requires novel, innovative
computational approaches. This review synthesizes trends identified in seven recent (2020-2021)
reviews of tissue clearing in neuroscience, beginning with background on tissue clearing and
associated labelling and imaging techniques. Computational approaches examined address four
main areas: image processing, image analysis, brain atlases, and image visualization. In addition
to modular options, these may be part of integrated software ecosystems or custom pipelines.
This review analyzes currently available software and identifies gaps between software needs
and capabilities by looking at specific neuroscientific applications.

Tissue clearing’s use of chemicals to turn blocks of
tissue transparent allows incredibly detailed
insight into even the deepest structures of the
nervous system1 while preserving spatial
resolution in three dimensions2. It has provided
valuable insight into both normal and pathological
neural circuitry3, neuroanatomy, nervous system
development, and brain microvasculature1, and has
been applied to a wide range of tissue samples,
including whole brains of small animals4.
Developments in light-sheet microscopy have
increased imaging resolution capabilities5,
resulting in increasingly detailed data. Data of this
size and complexity requires significant
computational power and software capabilities to
handle and interpret. This meta-analysis examines
seven reviews of tissue clearing in neuroscience
from the past two years to evaluate current
computational approaches to neuroscientific tissue
clearing data and identify areas with significant
gaps.

Tissue clearing in neuroscience
Tissue clearing, regardless of methodology, relies
on the principle of refractive indices (RI).
Differences in RIs of various tissue components

scatter light, which is perceived as opacity1,6 and
limits the penetration depth of light
microscopy3,6,7. Tissue clearing techniques
homogenize RI values, making tissue transparent
while preserving the tissue’s 3D structure1-6. This
is particularly important in neuroscience, where
structure and function are often tightly coupled.

Tissue clearing has been used to study
development, injury, disease, and aging in the
central as well as the peripheral nervous
system3,6,7. This has been done, for example,
through the profiling of cells, circuits, and
synapses2,5,7, as well as by examining blood vessel
morphology2. Each of these applications has
unique requirements, motivating incredible
diversity among tissue clearing methods. The
characteristics of the tissue clearing method
applied, the aims of the study, and the resources of
the researchers dictate which complementary
labelling and imaging techniques are used.
Researchers may use existing, custom, or
combined computational approaches to handle and
analyze the resulting data. While this review
focuses on computational methods, it will briefly
examine tissue clearing, labelling, and imaging
techniques as well.

NATURE REVIEWS | NEUROSCIENCE 16 APRIL 2021 | 1



Table 1 | Tissue clearing terminology in reviews examined

Ref Terms

1 Hydrophobic, hydrophilic, hydrogel-based, tissue-expansion

2 Solvent, simple immersion, hyperhydrating solution, tissue transformation (hydrogel)-based
clearing

3 Solvent-based, simple immersion, hyperhydation, hydrogel embedding

4 Hydrophobic, hydrophilic, hydrogel-based

5 Hydrophobic, hydrophilic, hydrogel-based

6 Hydrophobic-based, hydrophilic, hydrogel-based

7 Solvent-based, hydrogel, aqueous-based (including simple immersion, delipidation/hydration)

Classifications and methods
There is a lack of consistency in the classification
of tissue clearing methods, both in standards and
in terminology. J. Zhao et al. examine these in
Table 2 of their review1. The reviews mentioned
here all classify tissue clearing methods based on
their chemical principles and clearing
mechanisms, but differ in their exact terminology
(Table 1). All reviews use hydrogel-based clearing
as a category, but only J. Zhao et al. separate out
tissue expansion as its own category1. Other
categories are less consistent between reviews.
Four refer to hydrophobic clearing1,4-6, while the
remaining three name this category solvent-based
clearing2,3,7. The final category, which four of the
reviews call hydrophilic clearing1,4-6, is the most
varied. Tian and Li use aqueous-based, but specify
simple immersion and delipidation/hydration as
subcategories7, while both Liang and Lou and
Porter and Morton use two separate categories:
simple immersion and hyperhydation2,3. This
review uses hydrophobic, hydrophilic, and
hydrogel-based, as these are the most frequently
mentioned terms.

Each method has benefits and drawbacks, and
the optimum method depends largely on the
application. Generally, hydrophobic methods are
faster, simpler, and result in higher transparency

than other categories, but this comes at the cost of
increased fluorescence bleaching, harsher lipid
removal, and toxicity1,6. Hydrophilic methods tend
to be safer, milder, and are more compatible with
fluorescent labelling, but take longer1,6.
Hydrogel-based methods allow multiplexed
labelling, macromolecular preservation, and RNA
detection, but are significantly more demanding in
both equipment and technical operation required,
and take the longest1,6. Hydrogel-based methods
can also cause tissue expansion, which has been
intentionally amplified to produce
tissue-expansion methods1.

Labelling
Labelling can either be applied before tissue
clearing, in which case preserving fluorescence is
the main concern, or after tissue clearing, in which
case fluorescence preservation is not a concern but
permeability is; these methods may also be
combined1. Computational programs detect and
analyze these signals and their distribution. For
instance, ClearMap (see Table 2 and “Image
analysis”) can automatically map immediate early
gene (IEG) expression1,3.

Labelling can identify cell types, neuronal
activity, neural circuits, and tissue morphology and
molecular composition7. The type of labelling, and
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the computational analysis performed, depends on
the requirements. The properties of different
labelling types are outside of the scope of this
review. Broadly, pre-clearing approaches are
usually genetically driven, such as via transgenic
lines or viral vectors, while post-clearing
approaches tend to use antibodies or chemical
dyes1,7. The computational analyses are discussed
under “Image analysis.”

Imaging
Optical sectioning microscopy falls into three
categories: confocal laser microscopy, multiphoton
microscopy, and light-sheet fluorescence
microscopy1. Within these, there are variations,
particularly within light-sheet microscopy5. While
optical sectioning microscopy is not the only
option for imaging of tissue clearing, it is the most
commonly used1.

High-resolution microscopy produces huge
volumes of image tiles when the microscope's
field of view is smaller than the specimen, which
is typical for cleared tissues4. These tiles must then
be computationally stitched back together into
images1,4,5. Furthermore, imaging of cleared tissues
produces very large datasets. For instance, a single
mouse brain generates anywhere from 100 GB to
30 TB of data5. The size of datasets produced by
imaging of cleared tissues makes data
management and analysis computationally
expensive and challenging.

Imaging data
The data generated by imaging of cleared tissues
require multiple processing steps before they can
be analyzed or visualized. The 3D nature of the
data complicates these steps, and though 2D
approaches are adaptable, they are limited
compared to 3D-specific software.

Image processing
All seven reviews examined mention data
handling and analysis as a major challenge in
research applications of tissue clearing, especially
when large sections of tissue are of interest1-7. To
handle tissue clearing data, Tian and Li highlight
the need for powerful computational hardware,
with at least 128 GB of RAM, multicore CPUs,
modern GPUs, and efficient SSD storage7. Proper

data management becomes increasingly important
and increasingly difficult as data volume increases.
Data of this size is often compressed to facilitate
its storage and handling, requiring file formats
well suited to compression and decompression2,4.
Both Ueda et al. and J. Zhao et al. highlight KLB
as an image file format commonly used for tissue
clearing data, as its block-based implementation
enables lossless compression, fast read and write
speeds, efficient region-specific image access, and
CPU-based processing1,4. Ueda et al. also discuss
hierarchical data format version 5 (HDF5), another
file format created to work with data that is
significant in size and complexity4. Multiple file
formats can also be integrated as containers for
each other. The other reviews do not mention
specific file formats, though Parra-Damas and
Saura address the need for standardization in this
area6, indicating that there is still a significant
degree of variation in formats used. A lack of
standardization impedes data sharing, as data in a
format not compatible with the recipient’s
software will need to be converted, which can be
computationally expensive.

Image registration is essential to working with
tiled image data. Techniques for cross-registration
of image stacks include rigid affine and nonrigid
B-spline registration1. This step is necessary for
many subsequent image processing and analysis
steps, such as image reconstruction4. While a fully
automated registration algorithm has not yet been
successfully implemented, Bigwarp, an ImageJ
plugin (Table 3), allows for semi-automated
registration. Bigwarp has other capabilities, but the
registration aspect is the most emphasized in J.
Zhao et al. and Ueda et al.1,4. Bigwarp was
developed for the Fiji distribution of ImageJ4. Fiji
is the most common ImageJ distribution, and the
two are often used interchangeably2. For
simplicity, this review refers to the software as
ImageJ.

Once tiles generated by tissue clearing
imaging are registered, they can be reconstructed
into cohesive images by a process often referred to
as “image stitching,” which includes aligning the
tiles properly and fusing them together1,4. This can
be done with integrated image processing software
(Table 2), such as arivis Vision4D1,2,7, through
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Table 2 | Summary of open source and commercial software applied to cleared tissue data

Name Functionality Licensing Refs

Amira Integrated image processing and analysis Commercial 2,7

arivis Vision4D Integrated image processing and analysis Commercial 1,2,7

bioView3D Image visualization Open source 1,7

CATMAID Image visualization, image annotation, data sharing Open source 4

Cellprofiler Cell phenotyping Open source 2

ClearMap Object detection and registration Open source 1-3,6

DeepMACT Metastasis quantification Open source 1,2,6

iLastik Image classification, image segmentation Open source 4

ImageJ Integrated image processing and analysis Open source 1,2,4,7

Image-Pro Plus Integrated image processing and analysis Commercial 2

Imaris Integrated image processing and analysis Commercial 1,2,4,7

ManSegTool Manual image segmentation Open source 3

Neu Tracer Neuronal tracing Open source 1

NeuTube Neuron reconstruction, neuronal tracing Open source 1

qBrain Cell phenotyping Open source 5

RINZO Nucleus distance Open source 2

TeraFly Image visualization, image annotation Open source 1,4

TrailMap Axonal mapping Open source 1

TeraStitcher Image stitching Open source 1

Vaa3D Integrated image processing and analysis Open source 1,7

VesSAP Vascular mapping Open source 1,2

plugins (Table 3), like BigDataViewer1,4,7 or
BigStitcher1,4,5 for ImageJ, or with a dedicated
stitching software (Table 2), such as TeraStitcher1.

Of these, BigDataViewer, part of the extensive and
entirely open source ImageJ ecosystem1,4, is
mentioned by the most reviewers, indicating its
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popularity. Notably, BigStitcher is built on
BigDataViewer4, demonstrating the highly
interdependent nature of some specific software
plugins. Arivis Vision4D, on the other hand, is a
commercial software1,2,7. While it is mentioned in
the same number of reviews, only J. Zhao et al.
address its stitching capabilities1. Presumably, this
software places a greater emphasis on image
stitching than other commercial integrated
software, but, unlike the previously mentioned
ImageJ plugins, does not single out this
functionality. Integrated software approaches to
image data, such as arivis Vision4D and ImageJ,
are further explored under “Integrated software
ecosystems.”

Image analysis
Once images have been processed, researchers can
perform a variety of analyses, depending on their
research question. While this may be
supplemented with manual analysis, the bulk is
ideally automated to increase efficiency and
decrease tedium. One common application is the
detection of objects, such as cells and/or nuclei,
usually ones previously labelled. Since the
detection specifications may vary significantly,
researchers may opt to develop a custom
computational pipeline, which could focus
specifically on identifying labelled cells6 or
identifying all cells within a region, or even the
whole brain5. ClearMap, built for iDISCO+, is a
widely used open source software for automated
object detection, and furthermore automatically
registers the data it gathers (Table 2)1-3,6. The
reviews emphasize different aspects of ClearMap.
Liang and Luo and Porter and Morton highlight
ClearMap’s neuronal activity mapping capabilities,
though only the latter pair discusses the
registration of this information2,3. Parra-Damas and
Saura mention it in reference to plaque
quantification in Alzheimer’s6. J. Zhao et al.’s
description is the broadest, summarising the
software’s detection and registration capabilities1.

Since its inception, ClearMap has been applied
well beyond its original intention.

Detection is sometimes used for simple
quantification5, but may also be part of a more
complex operation, such as segmentation or

phenotyping. Segmentation broadly differentiates
different tissue types. Integrated software
packages, such as Amira, Imaris, Image-Pro Plus,
and arivis Vision4D usually include segmentation
options2. Only one review explicitly states this,
revealing a general assumption that integrated
software packages address this type of analysis.
Additionally, some software is specific to image
segmentation. Traditionally, segmentation is done
manually or with a filter based approach, but
machine learning offers entirely automated
options1. ILastik (Table 2) is a machine
learning-based software that allows users to train
and use the model through a GUI, making it
accessible for researchers without extensive
experience in machine learning4. Still, some
software focus on enabling manual segmentation,
as the accuracy of automated segmentation
depends largely on the similarity between the
training data and the data being analyzed.
ManSegTool is a segmentation-specific software
(Table 2)3; MaMuT is similar, but is an ImageJ
plugin rather than its own software (Table 3)4.
BigStitcher and Bigwarp (Table 3) also both have
segmentation options4. No segmentation-specific
software is mentioned in more than one review,
implying that none are significantly better than
segmentation included in integrated software.
Whether this is a strength of integrated software, a
weakness of specific software, or both is unclear.

Phenotyping is more specific than
segmentation, focusing on profiling properties of
cell types. It is also less commonly used in cleared
tissues. Cellprofiler is a Python-based software
primarily for cell profiling, though plugins lend it
additional flexibility2. QBrain, on the other hand,
is entirely specific to cell profiling, and integrates
convolutional neural networks into genetic-based
neuroscience methods5. For more detailed
examination of neuronal properties, specialized
software and plugins allow tracing and analysis of
neurons and their parts. Neuronal tracing can be
accomplished by software such as NeuTube and
Neu Tracer (Table 2)1, while plugins like Simple
Neurite Tracer and Sholl Analysis provide further
options for neuronal analysis (Table 3)2. There is
no dominantly used software for phenotype
analysis in cleared tissues, which may be due to
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Table 3 | ImageJ plugins specific or applicable to data generated by imaging of cleared tissues*

Name Software Base Functionality Refs

BigDataViewer ImageJ (Fiji) Image stitching, image visualization 1,4,7

BigStitcher ImageJ (Fiji) Image stitching 1,4,5

Bigwarp ImageJ (Fiji) Image alignment, image transformation,
semi-automated registration

1,4

MaMuT ImageJ (Fiji) Manual segmentation, cell tracking 4

Sholl Analysis ImageJ (Fiji) Neuron analysis 2

Simple Neurite Tracer ImageJ (Fiji) Neuron analysis 2
*Based on the Fiji distribution of ImageJ

lacking or varied phenotype research in this area
or deficits in software capabilities.

After objects have been identified, they can be
mapped anatomically. Anatomical mapping takes
advantage of the structural preservation in tissue
clearing and frequently includes the integration of
brain atlases (see “Brain atlases”) to provide
reference points. ClearMap, for example, can
neuroanatomically map neuronal activity (Table
2)2,6. Mapping software, including ClearMap,
tends to be application-specific. Unsurprisingly,
discussion of mapping software varies between
reviews. J. Zhao et al. mention TrailMap, which
uses machine learning to map axonal projections1

and vesSAP, which focuses on vascular mapping
and is also mentioned in Liang & Luo1,2. Ueda et
al. discusses WholeBrain and Openbrainmap
(Table 4), which draw on the Allen Brain Atlas
(see “Brain atlases”) and together form a
framework for reference mapping, visualization,
and data sharing, but only in one of their reviews4.
As mapping needs tend to be more specific than
other areas, this area is largely dominated by
custom approaches with little overlap. Mapping
can also refer to the registration of anatomical
information to brain atlases, which is discussed in
the “Brain atlases” section.

Image analysis in neuroscience often focuses
on pathology, and certain software is specific to
this purpose. DeepMACT was developed for the
quantification of cancer metastasis (Table 2),

although it may be adaptable to related
pathological analysis1,2. In other cases, researchers
have adapted existing software, such as ClearMap,
to their research question, or developed a custom
pipeline6. Still, Parra-Damas and Saura highlight
the need for further development of computational
tools for neuropathological analysis6. This pattern
holds true for other areas of neuroscience research
as well, part of a broader issue of balancing
generalizability and specificity in computational
approaches. The 3D nature of the data produced by
tissue clearing poses additional challenges to
software traditionally used in bioimage analysis,
although all those mentioned here have been
adapted.

Image visualization
Visualizing 3D images poses a unique challenge,
one complicated by the size of the images and not
entirely mitigated by compression. Visualization is
a standard component of integrated image
processing and analysis platforms, such as Imaris
(Table 2)1,7. Of all the visualization software
examined in these reviews, bioView3D (Table 2)
is the most specific to 3D visualization1,7. TeraFly
provides image visualization options, in addition
to image annotation (Table 2)1,4. BigDataViewer,
an ImageJ plugin, also has some image stitching
capability, and is the foundation for the
stitching-specific BigStitcher (Table 3)1,4,7.
BigDataViewer is mentioned the most often in
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Table 4 | Packages and libraries relevant to tissue clearing data*

Name Software Base Functionality Ref

ImgLib2 ImageJ Generic image processing 4

Openbrainmap R Image visualization, data sharing 3,4

WholeBrain R Brain mapping, atlas integration 3,4
*All packages and libraries mentioned here  are open source

these reviews, and seems to be commonly used.
This is likely because, as part of the ImageJ
ecosystem, it is open source and easy to integrate
with other image processing and analysis software,
while retaining the necessary specificity to
perform well. Some other software have
visualization capability to support their primary
purpose. The R-based Openbrainmap integrates
image visualization into its mapping framework3,4.
Similarly, CATMAID, while primarily for data
collaboration, facilitates this by including data
visualization capabilities4. Variations in
visualization capabilities aside, the additional
features or integration capabilities offered by each
data visualization software dictate the software’s
suitability.

Brain atlases
Tissue clearing images and analytic data may be
registered to a brain atlas. Brain atlases combine
detailed anatomical data from the whole brain,
creating a sharable reference to enable subsequent
data integration and mapping for image processing
and analysis1,2,4,5. Researchers may elect to
generate their own brain atlases, or use and/or
contribute to an existing brain atlas. Two
commonly used atlases are the Allen Brain
Atlas1,2,4-6 and CUBIC-Atlas1-5. The use,
contribution to, and sharing of atlases facilitates
the consolidation of data vast not only in size, but
in scope. Their importance is underscored by the
mention of brain atlases in all but one of the
reviews.

Outside of atlases, but related in purpose,
software frameworks with a collaboration focus
can also facilitate data sharing. The only one
mentioned in the reviews examined here is
CATMAID, a toolkit to facilitate the sharing of

annotated image data4. Importantly, data in atlases
is shared after it has been processed and analyzed,
whereas CATMAID is intended for collaboration
during processing and analysis4. It is unclear how
widely CATMAID is used, but based on the
reviews examined here, atlases are a much more
common method of data sharing.

Applications of computational approaches
Integrated software ecosystems prioritize ease of
deployment, while custom pipelines can be
tailored to specific use cases but require significant
computational ability. Furthermore, commercial
and open source integrated software options differ
in their strengths and weaknesses. The differences
between the two types of integrated software
ecosystems and the possibilities offered by open
source pipelines are clearest in their application.
To further elucidate the differences between
commercial and open source integrated software
platforms, this review will discuss a comparative
application of Imaris and ImageJ. Subsequently,
the SHANEL computational pipeline will be used
to examine custom pipeline approaches.

Integrated software ecosystems
All commercial software examined here are
integrated software systems, though the reverse is
not true: ImageJ and Vaa3D are both open source
integrated software ecosystems (Table 2).
Presumably, this difference is because
wide-ranging and flexible software is more
marketable, but open source software often arises
out of a specific need. This is especially clear
when looking at the variety of plugins available
for ImageJ, a selection of which are noted in Table
3.
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Gautier and Ginsberg compared ImageJ and
Imaris for endosome quantification8. They found
that accuracy of quantification was higher in 3D
reconstructions in Imaris, whereas ImageJ 3D
reconstructions overcounted small particles and
particularly struggled to account for overlapping
objects8. This echoes Liang and Luo, who state
that ImageJ is not as capable as commercial
software or custom pipelines2. It should be noted
that endosome counting is a highly specific
operation, and ImageJ may be more successful in
other applications.

ImageJ’s image segmentation function uses
global thresholding, making it less accurate when
there is a low signal-to-noise ratio and a lack of
landmarks8. Imaris, on the other hand, uses local
thresholding, allowing it to better filter out noise8.
Thus, when the signal-to-noise ratio is high,
ImageJ is likely to be more successful.
Furthermore, the incorporation of noise-reduction
plugins might improve ImageJ’s performance on
noisy images. However, when accurate detection is
important in a low signal-to-noise ratio image,
Imaris is a better option. Depending on the
specificity of the need, computational capabilities,
and funding, a custom pipeline might offer an
alternative solution.

Custom pipelines
When existing software options do not satisfy the
scientific need, researchers may develop their own
custom pipeline. Due to lack of standardization6

and the unique challenges associated with 3D
images, this happens frequently in tissue clearing.
S. Zhao et al. developed a custom pipeline in
conjunction with SHANEL, a new tissue clearing
technique, to accommodate the terabytes of data
they produced9. Many of the integrated softwares
mentioned here are sufficient for relatively smaller
tissue clearing data, but are difficult to scale to the
amount of data the SHANEL group generated.
Their approach employed convolutional neural
networks (CNNs), and was able to demonstrate
improved
performance in key areas: detection, segmentation,
and quantification9. While adapting software built
for analysis of 2D images allows for faster
deployment, creating custom approaches based on
3D data that leverage machine learning improves

capability and accuracy. Fortunately, most
researchers make their code openly available.
Unfortunately, this software usually lacks a user
interface and may be difficult to navigate without
prior machine learning experience. It may also be
less generalizable, and need to be adapted if not
used as originally intended. With further
developments in computational approaches to
tissue clearing, the gap between software needs
and capabilities will close.

Conclusion
Tissue clearing has the potential to provide
unparalleled insight in the field of neuroscience,
particularly in the examination of circuitry on a
whole brain level. In order to realize its full
potential, tissue clearing must be paired with
powerful computational approaches. Custom
pipelines that leverage machine learning,
especially deep learning, currently perform the
best. The SHANEL group’s deep learning
approach to data analysis outperformed both
Imaris and ImageJ, and was able to process
massive data volumes with speed and accuracy9.
As advances in tissue clearing, labelling, and
microscopy produce increasingly large and
complex data, machine learning is becoming
increasingly indispensable. Yet the SHANEL
group’s deep learning algorithms and other
existing custom approaches lack the breadth of
features and ease of use necessary to be broadly
applicable by researchers with varying research
goals and levels of computational expertise. In this
ImageJ has the advantage, due to its intuitive GUI
and wide array of plugins, including, but far from
limited to, those listed in Table 3.

Currently available ImageJ software options
do not perform as well as commercial options8 or
custom approaches9. However, the open source
nature of ImageJ makes it easy for researchers to
introduce new plugins tailored to the needs of
tissue clearing data. To be successful, these new
plugins should leverage machine learning. Due to
the unique requirements of 3D imaging data,
further research is needed to compare the various
machine learning approaches available. CNNs are
commonly used to analyze images and have been
applied to tissue clearing data.9 Future reviews
should evaluate the strength, weaknesses, and
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optimal implementations of this and other machine
learning approaches to the processing and analysis
of tissue clearing data. Synthesized review of
current machine learning options will provide the
necessary foundation for practical testing of these

options and future advances in computational
approaches to 3D imaging data in neuroscience
and beyond.
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