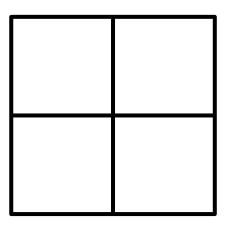
Blood Types & Codominance


Warm-up: Punnett Practice

In dogs, tooth size is controlled by a dominant-recessive gene. Large teeth (T) is dominant to small teeth (t). If a homozygous recessive dog breeds with a heterozygous dog, what are the possible genotypes and phenotypes of their offspring? Use a punnett square to show your work.

In dogs, tooth size is controlled by a dominant-recessive gene. Large teeth (T) is dominant to small teeth (t). If a homozygous recessive dog breeds with a heterozygous dog, what are the possible genotypes and phenotypes of their offspring? In dogs, tooth size is controlled by a dominant-recessive gene. Large teeth (T) is dominant to small teeth (t). If a homozygous recessive dog breeds with a heterozygous dog, what are the possible genotypes and phenotypes of their offspring?

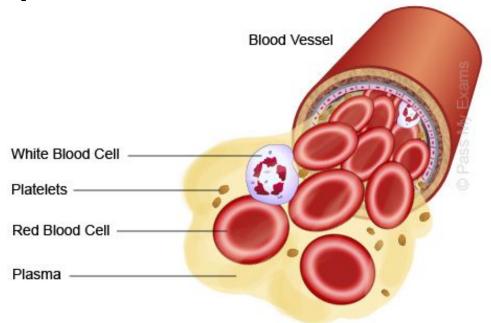
Possible genotypes:

Possible phenotypes:

Today's Agenda

- 1. Warm-up
- 2. About blood types
- 3. Notes: Codominance
- 4. Exit Slip

Discussion:


What do you know about blood/blood type?

What is Blood?

What is in "Blood"?

Blood Types

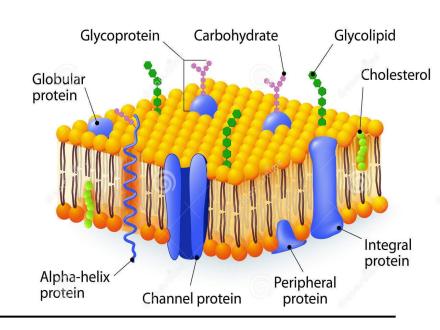
There are 8 different blood types, and a person's blood type is determined by inheritance from parents.

We will NOT focus on + and -

Percentage of Blood Types in the Human Population

- O-positive: 38 percent
- O-negative: 7 percent
- A-positive: 34 percent
- A-negative: 6 percent

- B-positive: 9 percent
- B-negative: 2 percent
- AB-positive: 3 percent
- AB-negative: 1 percent


Why Are There Different Blood Types?

Red blood cells can have a carbohydrate chain (glycoprotein) attached to its cell membrane that is called an **antigen**.

Antigens help the body know whether or not something is a foreign substance.

If our immune system encounters an antigen it has not seen before, it will attack that foreign substance.

CELL MEMBRANE

The ABO Blood System

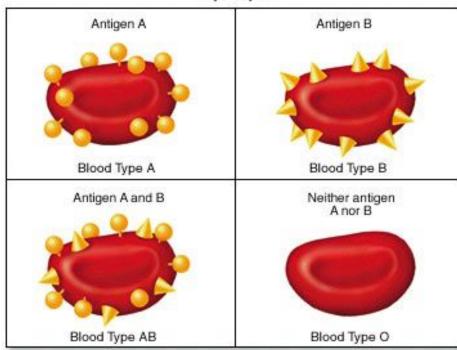
Blood Type	Type A	Type B	Type AB	Type 0
(genotype)	(AA, AO)	(BB, BO)	(AB)	(00)
Red Blood Cell Surface Proteins (phenotype)	A A A A	BBBB B	A B P	

GLYCOPROTEINS ON SURFACE OF CELLS DETERMINE BLOOD TYPE

willy Ale There billerent blood Types.

There are two types of antigens that can be on red blood cells: type A and type B.

Blood Types:


Type $A \rightarrow has A$ antigens

Type $B \rightarrow has\ B$ antigens

Type $AB \rightarrow has A \underline{and} B antigens$

Type $O \rightarrow$ has no antigens

Erythrocytes

Why is this important?

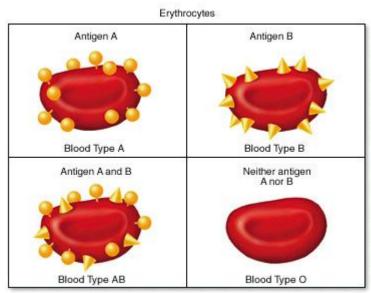
This determines whether you can receive blood donations from another person.

The immune system will attack any red blood cell with an antigen it does not recognize.

If have blood type A, your immune system will attack donated red blood cells with B antigens, but not donated red blood cells with A antigens.

Erythrocytes Antigen A Antigen B Blood Type B Blood Type A Antigen A and B Neither antigen Blood Type AB Blood Type O

Group Activity


Blood Donation

Because of the antigens we just learned about, only certain blood types can receive donations from certain other blood types.

Your group's goal is to correctly draw arrows from the donors to all

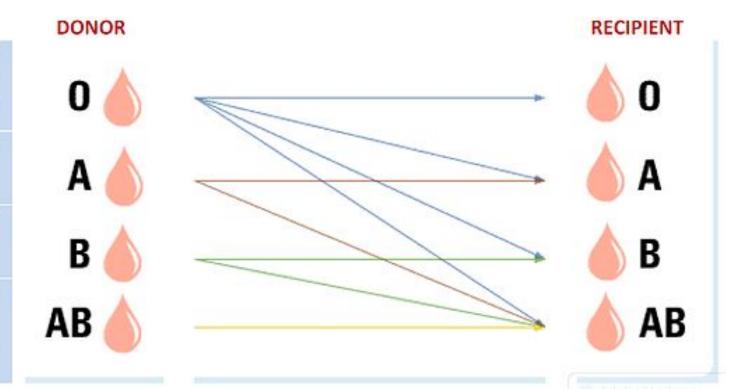
recipients on the next slide..

HINT: Some blood types can donate to more than one blood type.

DONOR

0

RECIPIENT



Group O can donate red blood cells to anybody. It's the universal donor.

Group A can donate red blood cells to A's and AB's.

Group B can donate red blood cells to B's and AB's.

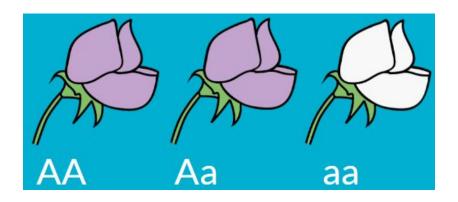
Group AB can donate to other AB's, but can receive from all others.

TERMINOLOGY

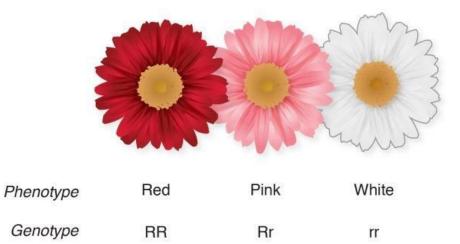
UNIVERSAL DONOR: Which blood type was able to donate blood to every other group?

UNIVERSAL RECEIVER:

Which blood type was able to receive blood from every other group?

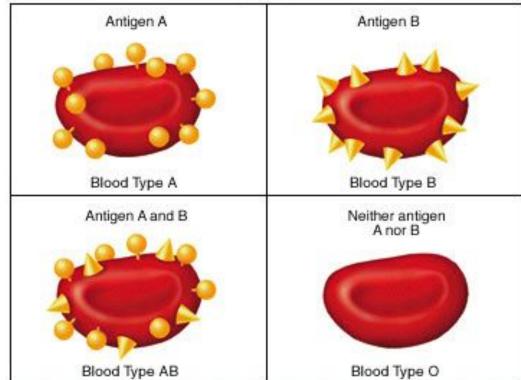

Codominance

The three types of inheritance


- 1. Simple dominant-recessive
- 2. Incomplete dominance
- 3. Codominance (we will learn about this later)

Remember this?

Simple Dominant-Recessive



Incomplete Dominance

*Notice that in **AB** Blood, **BOTH** dominant traits are expressed! (The blood cells have **both antigens.**)
*This is why blood type in humans is considered a

codominant trait. Erythrocytes

Codominance AND Multiple Alleles

The antigen genes for blood type are codominant.

This means that there are **TWO dominant alleles** that are **BOTH expressed**

$$A \rightarrow dominant (I^A) AND B \rightarrow dominant (I^B)$$

But there is also an allele for not having an antigen, which is recessive.

$$O \rightarrow recessive (i)$$

This means that there are a total of **THREE** alleles!

The alleles:

 $A \rightarrow dominant (I^A)$

 $B \rightarrow dominant (I^B)$

O → recessive (i)

*What is the genotype for someone who is homozygous for type A blood?

*What is the genotype for someone who is heterozygous for type B blood? Allele I produces antigen A

Allele I produces antigen B

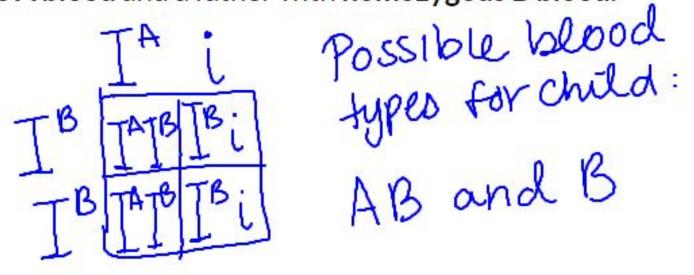
Allele i produces no antigen.

Genotypes	Phenotypes (blood types)	
IA IA	A	
I ^A I ^B	AB	
I ^A i	Α	
IB IB	В	
l ^B i	В	
ii	0	

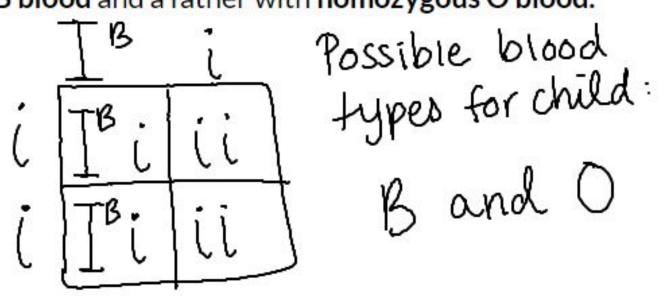
Punnett Squares & Blood Type

We can use punnett squares to find possible blood types that an offspring will have

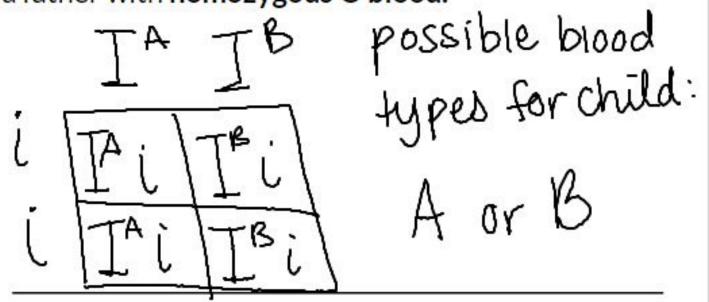
*What is the mother's blood type?


*What is the father's blood type?

*What blood types can their children have?


Draw a punnett square to show the cross between a mother with **heterozygous A blood** and a father with **homozygous B blood**.

Draw a punnett square to show the cross between a mother with heterozygous A blood and a father with homozygous B blood.


Draw a punnett square to show the cross between a mother with **heterozygous B blood** and a father with **homozygous O blood**.

Draw a punnett square to show the cross between a mother with **heterozygous B blood** and a father with **homozygous O blood**.

Draw a punnett square to show the cross between a mother with **AB blood** and a father with **O blood**.

Draw a punnett square to show the cross between a mother with AB blood and a father with homozygous O blood.

Exit Question:

A child has a blood type of O. You know that the mother's blood type is O. The person that believes he is the father of this child has a blood type of B.

Could this person be the child's father? Can you be absolutely sure? Show punnett squares (more than one if needed) to explain your answer.