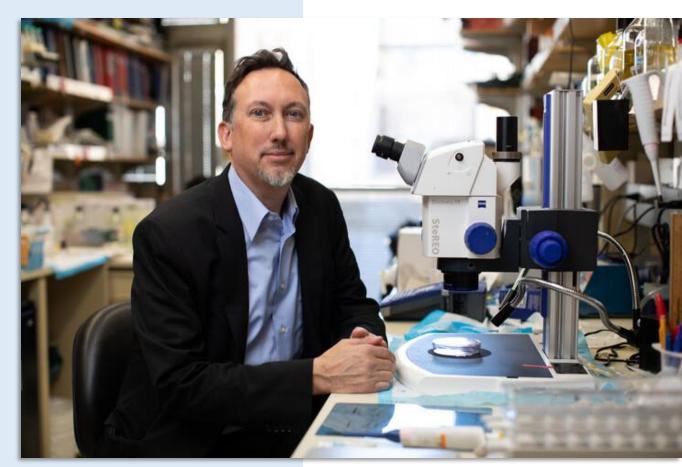


Professor, Molecular and Cell Biology Laboratory Director, Salk Cancer Center


Discovered the **AMPK pathway**, which connects the benefits of diet, exercise, and metformin to the suppression of cancer and diabetes.

Select Awards

- Mark Foundation Endeavor Award, 2022
- NCI Outstanding Investigator Award, 2017
- HHMI Early Career Scientist, 2009
- American Cancer Society Scholar, 2007

Education

- Postdoctoral Fellow, Harvard Medical School
- PhD, MIT Cancer Center
- BS, Cornell University

Scientific Excellence, Past and Present

roque DNA

salk

50 Years Later, 50 World-Renowned Scientists

Tony Hunter NAS, NAM, AAAS 2022 AACR Lifetime Achievement

Ronald Evans NAS, NAM, AAAS 2022 AACR Clowes Award 2024 Japan Prize

Reuben Shaw 2009 HHMI Early Career **2017 NCI OIA**

Susan Kaech NAS, AAAS **2009** HHMI Early Career

Dannielle Engle 2021 Mark Foundation 2021 Lustgarten-AACR Ruth Bader Ginsberg

Daniel Hollern 2021 METAvivor Early Career 2022 Komen Career

Rusty Gage NAS, NAM, AAAS 2024 Taylor International Prize

Gerald Joyce NAS, NAM, AAAS 2019 Royal Swedish Academy

Janelle Ayres HHMI 2018 NIH Pioneer Award

Alan Saghatelian 2020 AAAS Fellow 2022 Cancer Research **Endeavor Award**

Christina Towers 2023 Chan-Zuckerberg 2023 Pew-Stewart 2023 V Scholar

Jesse Dixon 2016 NIH Early Independence 2024 Pew Scholar

Joseph Ecker NAS, AAAS, HHMI 2024 Ilchun Molecular 2015 NCI OIA Medicine Award

Geoffrey Wahl AAAS 2022 Komen Brinker

Christian Metallo 2020 Dreyfus Teacher-Scholar

Diana Hargreaves 2016 V Scholar 2019 Pew-Stewart 2021 AIMBE Fellow 2020 ACS Scholar

Dmitry Lyumkis 2015 NIH Early Independence 2020 NSF Early Career

Deepshika Ramanan 2020 STAT Wunderkind 2021 Damon-Runyan Dale Frey Breakthrough

A New Generation of Change-Makers

Dannielle Engle **Asst Professor** Jan 2019

Cold Spring Harbor

Daniel Hollern Asst Professor Jan 2021

UNC Chapel Hill

Pallay Kosuri Christina Towers Christian Metallo Talmo Pereira **Asst Professor** Jan 2021

Harvard

Asst Professor Jun 2021

Professor Jul 2021

UCSD Princeton

Shika Ramanan **Asst Professor** Salk Fellow Dec 2021 Mar 2023

Harvard

Aga Kendrick Adam Bowman **Asst Professor Sept 2023**

Salk Fellow Nov 2023

UCSD

Stanford

Pancreatic cancer and organoids

Breast cancer immunotherapy

DNA origami, topography and transcriptomics

Autophagy; optogenetics **CRISPR** screens

U Colorado

Diet and metabolic flux in cancer

Machine learning, Al tools

Breast milk immunology; microbiome

Time-resolved Cryo-EM; Cancer

Time-domain imaging in cell signaling

Salk's Cancer Center

salk

Established in 1970, we are the longest continuously running NCI-Designated Cancer Center in California.

An engine of foundational discoveries essential for advancing clinical treatment.

Our unique design enables collaboration, innovation, evolution, and nimbleness.

We develop **custom and cutting-edge technologies** you can't find elsewhere.

salk

Salk is taking a holistic approach to conquering cancer.

We don't work in siloes—

We collaborate and combine expertise to investigate the unexplored spaces between fields, where the real innovation happens.

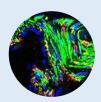
We don't just study tumors—

We study their **environment**, the **immune system**, the role of **metabolism**, the **microbiome**, and how each person's **genetics** and **lifestyle** influence their risk and treatment response.

Taking on the "Big Six" Deadliest Cancers

PANCREATIC CANCER

Approximately 12% of pancreatic patients survive more than five years. Part of the problem is late diagnosis. Pancreatic cancer presents indistinct symptoms, such as abdominal pain, jaundice, and weight loss. But the biggest issue is that pancreatic tumors build


a shell to protect themselves. Similar to scar tissue, this shell thwarts the immune system, and unfortunately also prevents chemotherapy and other treatments from accessing the tumor. Salk scientists have been attacking pancreatic cancer from different angles, including new therapies in clinical trials that break the tumor's shell to allow for much more effective treatments across the board.

LUNG CANCER

Lung cancer is the #1 cause of all cancer deaths in the US annually, killing more patients than breast, prostate, and colon cancer combined. Its overall 5-year survival rate is less than 20%. On the plus side, lung cancer stands as a testament to the power

of research in driving the development of new powerful therapies, as around 25% of lung cancer patients can now be treated with personalized therapies against the specific genes mutated in their cancers. Salk scientists are contributing to the development of these novel approaches to fighting lung cancer.

OVARIAN CANCER

Like pancreatic cancer, ovarian cancer is often diagnosed late. Early-stage ovarian cancer clinically looks a lot like irritable bowel syndrome. By the time many patients are diagnosed, the cancer has usually already spread. The 5 year survival rate is less than

50%, but Salk scientists are working on new therapeutic targets for specific subsets of ovarian cancer patients.

TRIPLE-NEGATIVE BREAST CANCER

While many forms of breast cancer are quite treatable, triple-negative breast cancer remains a huge challenge. These tumor cells lack estrogen, progesterone, and HER2 receptors, which are often targeted in standard breast cancer therapies. Without

these targets, patients have fewer therapeutic options. In addition to being more difficult to treat, triple-negative breast cancer can be more aggressive, rapidly spreading to other tissues. Salk scientists are developing new therapies based on distinct aspects of how breast cancer cells engage with the immune system.

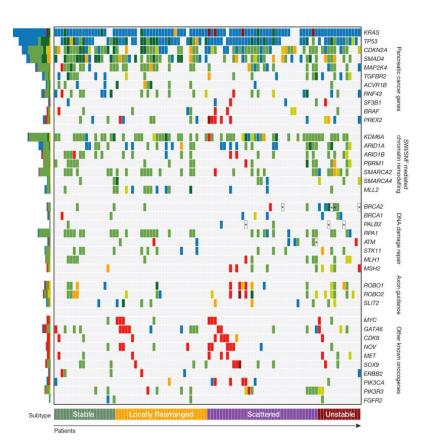
COLORECTAL CANCER

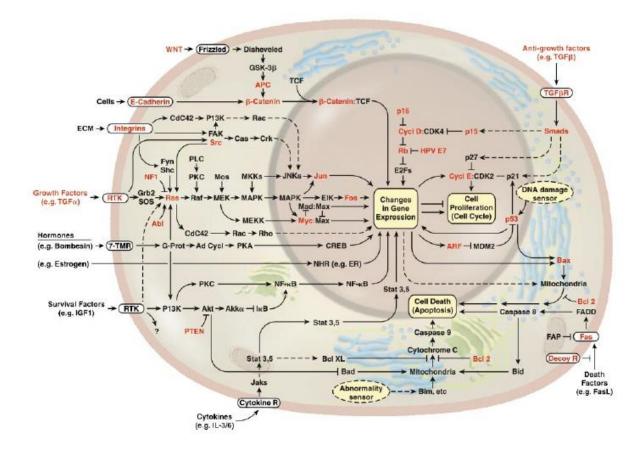
Like lung cancer, colorectal cancer is a very common cause of cancer deaths per year, and the incidence of colorectal cancer in young adults has been on the rise in the last decade for unknown reasons. Late diagnoses are giving colorectal cancer a reputation as

"the silent killer." Colon and rectal cancers have been associated with diabetes, inflammatory bowel diseases, alcohol consumption, and the typical Western diet. Salk scientists are studying multiple aspects of colorectal cancer to inform new treatment plans.

GLIOBI ASTOMA

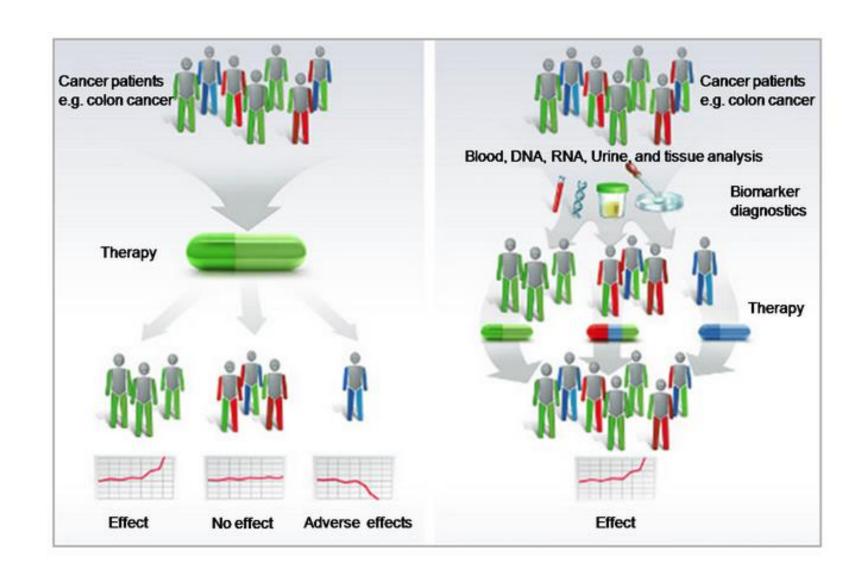
The deadly brain cancer glioblastoma has an abysmal 5-year survival rate of less than 10%. Brain surgery for glioblastoma multiforme has been likened to lifting a spider web off wet leaves—small pieces stay behind. New metabolism-based


therapeutics have been shown to help some patients with specific genetic mutations, an approach Salk scientists hope to expand and combine with new immunotherapies.


Enabling Personalized Medicine

With new DNA sequencing technology, cancer researchers have identified **hundreds of gene mutations** that can drive tumor formation.

These genes represent a complex web of molecular signaling pathways that each contribute to tumor formation in different ways.



Enabling Personalized Medicine

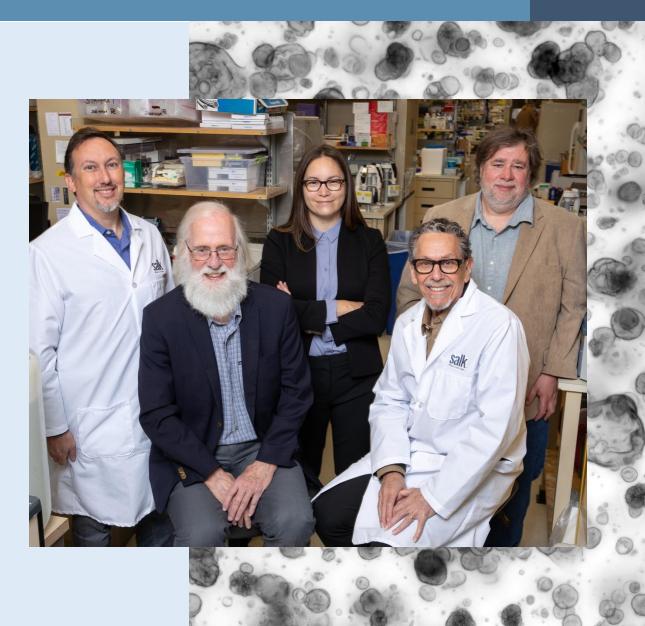
In the future, we will have an **arsenal of drugs** to block every signaling pathway activated during tumor formation.

Patients will take a unique combination of drugs that block the specific pathways altered in **THEIR tumor**.

The future of cancer treatment:

Combinations of drugs that target distinct drivers of cancer.

Targeted therapies
CRISPR gene editing
Metabolic therapies
Immunotherapies
Oncolytic viruses
Chemotherapy

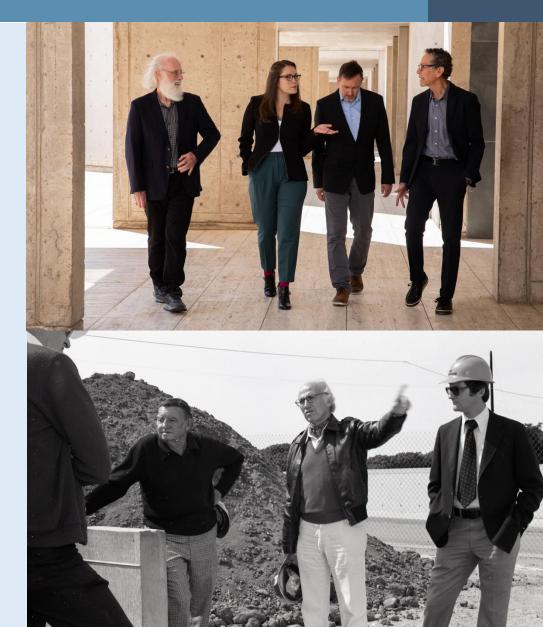

Patient-Derived Organoids to Treat Pancreatic Cancer

salk

Pancreatic cancer: Highest mortality rate, projected to be #2 cause of cancer-related deaths in the US by 2030.

Especially difficult to treat. Pancreatic tumors grow quickly and are constantly evolving, making them prone to drug resistance.

Patient-derived organoids offer a reliable predictive model for clinicians, who can test a tumor's response to a variety of drugs and choose a personalized treatment plan most likely to succeed in that patient.



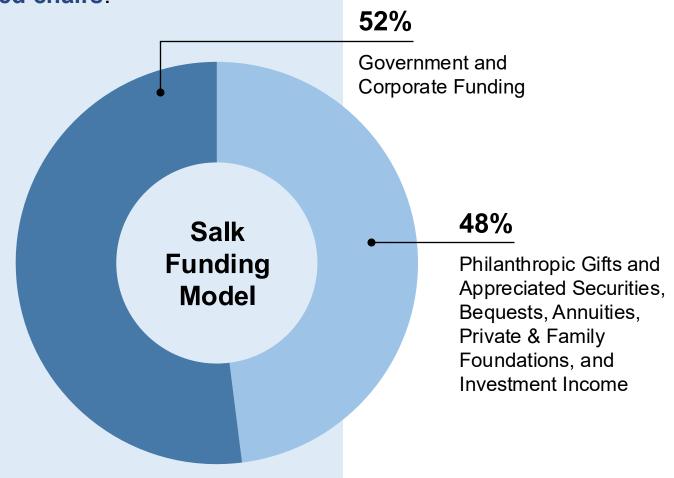
Salk science is shaped by its unique setting.

Jonas Salk dreamed of creating a place where scientists could come together to explore the basic principles of life and use their discoveries to benefit the world for generations to come.

Salk teamed up with Louis Kahn to build one of the world's most renowned architectural sites.

The Salk Institute is meticulously designed to facilitate collaboration, innovation, and evolution.

A Space Designed for History-Making Science


- Honors both science and art to inspire creativity.
- Combines natural and man-made materials, blending monumental structures with domestic spaces to highlight Salk's philosophy of humanized science.
- Faculty studies provide space for focused contemplation.
- One center courtyard facilitates community interaction.
- No walls between labs to help scientists share ideas.
- Core tech facilities support resource-sharing.
- Flexible infrastructure promotes lab evolution.

Building the Future of Salk

Attract world-class faculty through endowed chairs.

- Fund postdoctoral fellowships, essential team members who drive innovation.
- Provide funding for collaborative projects, the type of research that is too complex for individual labs to carry out.
- Support lab infrastructure, including our core facilities and support staff.
- Develop new tools and technologies, including in AI, high-resolution imaging, disease modeling, genome mapping and manipulation, and metabolism tracing.
- Collaborate with industry partners to advance and translate our findings.

