有
 KEEP
 CALM AND
 ROCK THE STAAR

ALGEBRA I EOC

REVIEW BOOK

Name: \qquad
Teacher's Name: \qquad

Test Date: Tuesday May 3, 2016

Table of Contents

Topic	Page Number
STAAR Chart	2
Problem Solving Strategy-QDPAC	3
Calculator Strategies	4
Solving Equations	5
Solving Inequalities	7
Function Notation	9
Domain \& Range	11
Slope/Rate of Change	13
Parallel \& Perpendicular Lines	14
Linear Transformations	15
Linear Functions Vocabulary	16
System of Linear Equations	17
Linear Inequality	19
Properties of Exponents	21
Radicals	23
Arithmetic Sequences	24
Factoring - Box Method	25
Adding \& Subtracting	27
Polynomials	29
Quadratic Functions Vocabulary	30
Domain \& Range of Quadratics	31
Attributes of Quadratic Functions	33
Quadratic Formula	35
Quadratic Transformations	36
Quadratic Real World Application	37
Exponential Functions	

1. Which of the following graphs represents exponential decay?
a.

b.

c.

d.
2. The amount of bacteria from the school water fountain is expected to double each week. Which equation can be used to represent this problem situation?
a. $y=2(.03)^{x}$
b. $y=4(2)^{x}$
c. $y=3\left(\frac{1}{2}\right)^{x}$
d. $y=2(5)^{x}$
3. Which y-intercept and asymptote describes the exponential function below?

$$
\begin{array}{ll}
y=40\left(\frac{1}{2}\right)^{x} & \\
& \begin{array}{r}
\text { b. } y \text {-intercept } 40 \\
\\
\text { asymptote: } y=\frac{1}{2}
\end{array} \\
& \begin{array}{r}
\text { d. } y \text {-intercept }: \\
\\
\\
\text { asymptote: } y=0
\end{array}
\end{array}
$$

a. y-intercept: 100
asymptote: $y=40$
c. y-intercept: 100
asymptote: $x=0$
4. What is the domain and range for the exponential function be low?

a. Domain: $y>-1$
Range: $-\infty<x<\infty$
c. Domain: $-\infty \leq x \leq \infty$
Range: $y>-1$
b. Domain: $-\infty<x<\infty$

Range: $y \geq-1$
d. Domain: $x>-1$

Range: $-\infty \leq y \leq \infty$

Exponential Growth and Decay

Factor
Exponential Growth vs. Exponential Decay:

- GROWTH: when $\mathrm{a}>0$ and $\mathrm{b}>1$
- DECAY: when $\mathrm{a}>0$ and b is between 0 and 1 .

KEY FEATURES:

- Every exponential graph has a horizontal asymptote $(y=)$ that the graph will never cross.

-Horizontal asymptote: $\mathrm{y}=-4$
-The graph will never touch or cross this line.
- Domain: $-\infty \leq x \leq \infty$ (all real numbers)
- Range: $y>-4$ **use the value from your asymptote**
- Since the graph never passes $y=-4$ you NEVER use \geq

STAAR ALGEBRA I REFERENCE MATERIALS

FACTORING	
Perfect square trinomials	$a^{2}+2 a b+b^{2}=(a+b)^{2}$ $a^{2}-2 a b+b^{2}=(a-b)^{2}$
Difference of squares	$a^{2}-b^{2}=(a-b)(a+b)$

PROPERTIES OF EXPONENIS

Product of powers	$d^{m} d^{n}=a^{(m+n)}$
Quotient of powers	$\frac{a^{m}}{d^{n}}=a^{(m-n)}$
Power of a power	$\left(a^{m}\right)^{n}=a^{m}$
Rational exponent	$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$
Negative exponent	$a^{-n}=\frac{1}{a^{n}}$

LINEAR EqUATIONS	$A x+B y=C$
Standard form	$y=m x+D$
Slope-intercept form	$y-y_{1}=m\left(x-x_{1}\right)$
Point-slope form	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Slope of a line	$f(x)=a x^{2}+b x+c$
Quadrantic Equatrons	$f(x)=a(x-h)^{2}+k$
Standard form	$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Vertex form	$x=\frac{-b}{2 a}$
Quadratic formula	
AxIs of symmetry	

Problem Solving Strategy

OUEStiOn - Underline the question.

Dat己 - Circle important words and numbers.

D ${ }^{\text {D }}$ - How should I answer this question?

AคSMEP- Follow the plan.

ค円CRK- Does your answer make sense?

Quadratic Real World Application

1. At what height did the diver begin?
2. When will the diver hit the water?
3. What is the maximum height the diver reached? When did she reach it?
4. Find the domain and range for this problem situation.

Quadratic Transformations

Calculator Strategies

Quadratic Parent function: $f(x)=x^{2}$
Types of Transformations

Compare each equation to the quadratic parent function. Circle all that apply.

1. $y=2(x+3)^{2}-4$
reflects
compress stretch
moves left moves right moves up moves down
2. $y=\frac{1}{2}(x-5)^{2}+3$
reflects
compress stretch
moves left moves right
moves up moves down
"Calculate" Scratchpad:

Calculator Steps	Use
$2^{\text {nd }}+712$ enter	Clear calculator
MATH enter enter	Convert to fraction
MATH 2 enter enter	Convert to decimal
ALPHA Y= enter	Create fraction
Up Up Enter	Copy previous work to make edits

"Graph" Scratchpad:

Calculator Steps	Use
$2^{\text {nd }}$ GRAPH	Table
TRACE	Trace a graph to find points
$2^{\text {nd }}$ TRACE 5 enter $\times 3$	Solution to a system
$2^{\text {nd }}$ TRACE 2 Shift left enter Shift right enter enter	x-intercepts
$2^{\text {nd }}$ TRACE 3 Shift left enter Shift right enter enter	Minimum of a quadratic
$2^{\text {nd }}$ TRACE 4 Shift left enter Shift right enter enter	Maximum of a quadratic

Solving Equations

(With 1 variable)
Example:

$\mathbf{3 x}+\mathbf{4}=\mathbf{2 x - 9}$	to remember:
$1.2 x+4=12$ $2 .-(4 c-8)=c+2(3 c-1)$ Check in calculator: $4 .-5(r-3)+4=0$ $3.4 y-2+y=y+6$ $6.0 .5(a-1)=a+3(a+3)$ $5 . \frac{-1}{2}(s-4)=7$	

Quadratic Formula (continued)

$$
x^{2}-7 x=-10 \quad a=\ldots \quad b=\ldots \quad c=
$$

$$
\begin{gathered}
x=\frac{ \pm \sqrt{()^{2}-4()(~)}}{2()} \\
x=\frac{+\sqrt{ }}{2}= \\
x=\left\{\quad x=\frac{-\sqrt{2}}{2}=\right. \\
x, \quad\}
\end{gathered}
$$

$$
10 x^{2}+19 x=15
$$

$a=$ \qquad $b=$ \qquad C= \qquad

$$
x=\frac{ \pm \sqrt{()^{2}-4()(~)}}{2()}
$$

$$
x=\frac{+\sqrt{ }}{2}=
$$

$$
x=\{, \quad, \quad\}
$$

Quadratic Formula

Solving Equations Practice

Given $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0 \quad * \mathrm{MUST}=0 \mathrm{OR}=\mathrm{Y}$!!!!*

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: $\quad 4 x^{2}+11 x-20=0$
\qquad
$b=$ C=
$x=\frac{ \pm \sqrt{()^{2}-4()()}}{2()}$
$x=\frac{+\sqrt{ }}{2}=$

$$
x=\{\quad, \quad\}
$$

1. $3 x-5=-8$
2. $10=24-7 x$
3. $\frac{m}{2}-8=12$
4. $\frac{5}{6} x-12=3$
5. $5 x+19=6 x+12$
6. $8 y-10=6 y-2$
7. $x-7=3 x+7$
8. $5 x-40=8-x$
9. Explain how to solve the following by hand:

$$
0.5(2 x-7)+x-1=14+3(2 x)
$$

Calculator Strategies:

- Use ALPHA $Y=$ to create a fraction.
- Use $2^{\text {nd }} x^{2}$ to get $\sqrt{ }$.

Solving Inequalities

Steps:

1. Draw line
2. Box variable
3. Start moving: undo operations

- Add \longleftrightarrow Subtract
- Multiply \longleftrightarrow Divide

Example:

$$
2(x-4) \leq x+3
$$

Practice: Solve the following \& graph them on a number line.
2) $6 x+2+6 x<14$

Attributes of Quadratic Functions (continued)

Calculator Strategy: Graph//TRACE

$y=-x^{2}+18 x-75$

Vertex:
Maximum or Minimum?
Axis of symmetry:
Root(s):
y-intercept:
$f(x)=x^{2}-2 x-3$

Vertex:
Maximum or Minimum?
Axis of symmetry:
Solution(s):
y-intercept:
$f(x)=\frac{3}{4}(x+4)^{2}+3$
Vertex:
Maximum or Minimum?
Axis of symmetry:
Zero(s):
y-intercept:
$y=-\frac{1}{4}(x-1)^{2}+4$
Vertex:
Maximum or Minimum?
Axis of symmetry:
x-intercept(s):
y-intercept:

Solving Inequalities Practice

Attributes of Quadratic Functions

Vertex:

Maximum or Minimum?
Axis of symmetry:
x-intercept(s):
y-intercept:

Vertex:
Maximum or Minimum?
Axis of symmetry:
x-intercept(s):
y-intercept:

Vertex:
Maximum or Minimum?
Axis of symmetry:
x-intercept(s):
y-intercept:

Solve following linear inequalities
1.
$2 x-2>5+6 x$
2.
$6 y-2 \leq 2 y$
3. $3 x \leq 2 x+5$
4.
$6 x+5 \geq 4-4 x$
5.
$6 x-2<3$
6.

$$
2 x-5>6 x+3
$$

Solve and graph the solution set of following
7.
$8 y \geq 5$
8.
$5 y-9 \leq 2 y+7$
9.
$5 y<8-7$
10.
$3 y \geq-8$

Challenge:

$$
-2(2-2 x)-4(x+5) \leq-24
$$

Intro to Functions: Function Notation

Important Facts:

- Relation is a \qquad that can be represented in 4 different ways.
- X's CANNOT repeat.

Function Notation: $f(x)=y$ - Output/ Range Input/ Domain

1. What is the range of the function $f(x)=2 x+7$ when the domain is $\{1,3,5\}$?
2. What is the range of the function $f(x)=\frac{3}{2}(x+2)$ when the domain is $\{-4,-2,2\}$?
3. What is the domain of the function $f(x)=3 x-1$ when the range is $\{-10,-1,5\}$?
4. What is the domain of the function $f(x)=x^{2}+4$ when the range is $\{5,8,13\}$?

1) $f(x)=3 x-8$ a. $f(1)=$ b. $f(-3)=$ c. $f(5)=$ d. $(-6)=$ e. $f(0)=$	2) $f(x)=2-4 x$ a. $(-5)=$ b. $(-2)=$ c. $f(0)=$ d. $f(4)=$ e. $f(6)=$	3) $g(x)=7-x$ a. $g(-6)=$ b. $g(-4)=$ c. $g(-2)=$ d. $g(4)=$ e. $g(5)=$
D:	D :	D:
R:	R :	R:

Domain \& Range of Quadratics

Domain:
Range:
$y=2 x^{2}-3 x-2$
Domain:

Range:
$y=(x+3)^{2}+1$

Domain:

Range:

Domain:
Range:
$f(x)=-x^{2}-7 x-6$
Domain:

Range:
$f(x)=-\frac{1}{2}(x-4)^{2}-2$
Domain:

Range:

Quadratic Functions Vocabulary

Axis of symmetry: vertical line through vertex; $x=$ \qquad
Maximum: highest point on a parabola
Minimum: lowest point on a parabola
Parabola: shape of a quadratic function; a "u"-shape
Quadratic parent function: $y=x^{2}$
Standard Form: $y=a x^{2}+b x+c$
Vertex Form: $y=a(x-h)^{2}+k$
Vertex: highest or lowest point of a parabola
Compression: parabola becomes wider
Stretch: parabola becomes narrower
Root/Zero/Solution: another name for x-intercept
Quadratic Formula: formula to find x-intercepts/solutions
X-intercept: point where graph crosses the x-axis ($\mathrm{x}, 0$)
Y-intercept: point where graph crosses the y-axis ($0, \mathrm{y}$)
Domain: x-values
Range: y-values

Intro to Functions: Function Notation Practice

Given this graph of the function $f(x)$:

Find:
a. $f(-2)=$
b. $f(0)=$
c. $f(3)=$
d. $f(-5)=$
e. x when $f(x)=2$
f. x when $f(x)=0$

Fill in the table for the function from the given domain. $f(x)=3-4 x$
$f(x)=2 x-1$
$f(x)=6+0.5 x$

x input	$f(x)$ output
-2	
-1	
0	
1	
2	

\boldsymbol{x} input	$f(x)$ output
-2	
-1	
0	
1	
2	

\boldsymbol{x} input	$f(x)$ output
-4	
-2	
0	
2	
4	

Domain \& Range

Arrows $=$ INFINITY

Adding \& Subtracting Polynomials (continued)

4. Simplify the following expression: $4 x(2 x+5)-(2 x+7)$
a. $8 x^{2}+20 x+2 x+35$
b. $8 x^{2}+18 x-7$
c. $6 x^{2}+18 x+12$
d. $-8 x^{2}-10 x+7$
5. Simplify the following expression: $3 w\left(\frac{1}{2} w+2\right)+4\left(\frac{5}{8} w-3\right)$
a. $\frac{3}{2} w+2+\frac{20}{8} w-3$
b. $\frac{3}{2} w^{2}+6+\frac{20}{8} w-3$
c. $\frac{3}{2} w^{2}+\frac{17}{2} w-12$
d. $\frac{1}{2} w^{2}+\frac{5}{8} w-12$
6. Simplify the following expression: $-2\left(\frac{5}{2} x-6\right)+3 x\left(\frac{1}{2} x+4\right)$
a. $5 x^{2}+\frac{3}{2} x-12$
b. $\frac{3}{2} x^{2}+7 x+12$
c. $-\frac{3}{2} x^{2}+17 x-2$
d. $-5 x^{2}+12 x+4$
7. Simplify the following expressions: $-2 f(f+3)-8(2 f+10)$
a. $-2 f^{2}-16 f$
b. $2 f^{2}-22 f-80$
c. $-2 \mathrm{f}^{2}-22 \mathrm{f}-80$
d. $-2 f^{2}+16 f+30$

CALCULATOR STRATEGIES:

- Graph the original expression followed by each answer choice (A, B, C, D) choose the answer that is the exact same as the original graph.

Adding \& Subtracting Polynomials

Adding Polynomials:

1. Remove the \qquad and rewrite each term.
2. Combine \qquad . Like terms have the same
\qquad and \qquad -.

Examples:

1. $\left(3 x^{2}+4 x-10\right)+\left(-6 x^{2}-2 x+4\right)$
2. $\left(2 m^{2}-m\right)+\left(4 m^{2}+8 m-1\right)$

Subtracting Polynomials:

1. Remove parenthesis from \qquad expression and rewrite each term.
2. Remove the parenthesis from second expression and change each term to its \qquad sign.
3. Combine like terms.

Examples:

1. $\left(4 w^{2}+2 w\right)-\left(6 w^{2}+8 w-6\right)$
2. $\left(3 e^{2}-5 e+2\right)-\left(-10 e^{2}+4 e+1\right)$

都

Domain \& Range Practice:

Find the domain and Range of coordinates and decide whether it is a function.

1. $(2,-3)(-5,8)(-5,6)(0,7)$
Domain \qquad Range \qquad Is it function? \qquad
2. $(0,-5)(-1,4.5)(-5,6.8)(0,7)$ Domain \qquad Range \qquad Is it function? \qquad

Find the Domain and Range for each graph.

Identify the domain and range of the function.

YOUR TURN!

1. $\left(2 e^{2}+3 e+10\right)+\left(-8 e^{2}+11\right) \quad$ 2. $\left(10 g^{3}+g^{2}-4 g\right)-\left(-2 g^{3}+g+12\right)$
2. | Input | Output |
| :---: | :---: |
| 7 | 4 |
| 2 | 2 |
| 5 | 1 |
| 3 | 5 |
3.

Input	Output
0.4	15
0.5	13
0.6	11
0.7	9

3. The area of rectangle ABCD is represented by the expression $3 x^{2}+4 x-15$. The area of rectangle WXYZ is represented by the expression $8 x^{2}-6 x+10$. Write an expression that represents the combined area of the rectangles.

Slope (Rate of Change)

Graph:	Table:	Ordered Pairs:
Slope Intercept Form:	Standard Form:	Point Slope Form:

Examples:

Calculator Strategies:

$y=$ graph $\quad f(x)=$ graph table of values $=2^{\text {nd }}$ GRAPH
Convert to fraction: MATH enter enter

Factoring-Box Method (continued)

3. $\left(x^{2}+2 x+3\right)(x-1)$
4. $\left(2 x^{2}+3 x+10\right)(x+2)$
5. The area of a rectangular pool is represented by the polynomial below:

$$
3 x^{2}-10 x+3
$$

What are the dimensions (length and width) of the rectangular pool?
a. $(3 x+9)(x-1)$
b. $(x-9)(x-1)$
c. $(3 x-1)(x-3)$
d. $(x+10)(x+3)$
6. Which function is equivalent to $f(x)=x^{2}-2 x-15$?
a. $f(x)=(x-3)(x+5)$
b. $f(x)=(x-5)(x+3)$
c. $f(x)=(3 x-1)(x+5)$
d. $f(x)=(x+1)(x-15)$

Fraction to Decimal: MATH 2 enter enter

Factoring-Box Method

- Label the edges of the box with the binomials
- **Write the negative and addition sign right next to the number**
- Multiply the edges to fill in the box
- Remember to use your exponent rules when MULTIPLYING only:
- $\mathrm{x} \cdot \mathrm{x}=\mathrm{x}^{2}$
- $x^{2} \cdot x=x^{3}$
- $x^{4} \cdot x^{2}=x^{6}$
- Combine the like terms
- Rewrite the terms from biggest exponent to smallest

Example: $(3 x-2)(-4 x+6)$

$f(x)=$ \qquad

Find the area of the following polynomials:

1. $(x+2)(3 x-5)$
2. $(-4 x+1)(3 x+1)$

Parallel and Perpendicular Lines

Parallel lines have the \qquad .
Perpendicular lines have \qquad .

Examples:

$y=6 x-3$	$y=3 x+2$	$y=3 x+9$
$y=-\frac{1}{6} x+7$	$2 y=6 x-6$	$y=\frac{1}{3} x-4$

Write the slope-intercept form of an equation of the line that passes through the given point and is parallel to the graph of each equation.

$$
\begin{array}{|l|l|}
\hline(-2,5), y=-4 x+2 & (-1,-4), 9 x+3 y=8
\end{array}
$$

Write the slope-intercept form of an equation of the line that passes through the given point and is parallel to the graph of each equation.

Linear Transformations

When the slope of the line is \qquad than 1, the line gets \qquad -.

When the slope of the line is \qquad than 1 , the line gets \qquad .

When the y-intercept is \qquad the line shifts/translates \qquad the parent function $y=x$.

When the y-intercept is \qquad the line shifts/translates \qquad the parent function $y=x$.

Examples:

Describe the change that occurs when the graph of $\mathrm{y}=\mathrm{x}$ is changed to $y=\frac{1}{6} x-2$.

Describe the change that occurs when the graph of $y=2 x+3$ is transformed to $y=\frac{-1}{2} x+3$.

If the slope of the function $y=-3.5 x+12.8$ is changed to 1.5 , which of the following would best describe the graph of the new function?
A. The graph of the new function intercepts the y-axis at the same point as the original function
B. The graph of the new function intercepts the x-axis at the same point as the original function
C. The graph of the new function has a negative slope.
D. The graph of the new function has a positive x-intercept.

Arithmetic Sequences

$\mathrm{a}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{d}(\mathrm{n}-1)$
$\mathrm{a}_{1}=$
$\mathrm{d}=$

Calculator Strategy: Graph// 2nd GRAPH

The expression below describes a pattern of numbers.

$$
0.20 m+4.50
$$

If m represents the number's position in the sequence, which pattern of numbers does the expression describe?
A $4.60,4.70,4.80,4.90,5.00 \ldots$
B $6.50,8.50,10.50,12.50,14.50$. .
C $4.70,4.90,5.10,5.30,5.50$. .
D $4.52,5.54,4.56,4.58,4.60$..

The following table describes an

 arithmetic sequence, where n represents a number's position in the sequence.| n | 1 | 5 |
| :---: | :---: | :---: |
| $2(n+3)$ | 8 | 16 |

What is the missing value in the

 table?A 17
B 22
C 24
D 32

The first five figures in a pattern are shown below. Each figure is made up of identical circles.

If the pattern continues, which expression can be used to find the number of circles that make up Figure n ?
A $n^{2}+2 n$
B $n^{2}+2$
C $2 n^{2}+1$
D $2 n^{2}+n$

$$
\begin{aligned}
& \text { A sequence is represented below. } \\
& \qquad\{-20,-5,10,25,40, \ldots\}
\end{aligned}
$$

Which representation is not a formula for the nth term of the sequence?
A $f(x)=-20+15(x-1)$
B $t_{n}=-20+(n-1) 15$
C $y=15 x-20$
D $y=15 x-35$

Radicals

Summarize each step:

$$
\begin{aligned}
& \text { Simplify } \sqrt{27} \\
& =\sqrt{3 \cdot 3 \cdot 3} \\
& =\sqrt{(3 \cdot 3) \cdot 3} \\
& =3 \sqrt{3}
\end{aligned}
$$

Practice: Simplify each radical expression.

$1 . \quad \sqrt{180}$	2.	$\sqrt{18}$	$3 . \sqrt{112}$
4. $2 \sqrt{72}$	5.	$6 \sqrt{75}$	$6 . \sqrt{52}$
7. $\sqrt{5} \cdot \sqrt{10}$	$8 . \sqrt{15} \cdot \sqrt{10}$	$9.3 \sqrt{12} \cdot \sqrt{6}$	

Linear Functions Vocabulary

A solution to a system of equations if where the
\qquad written as an

Examples:

Calculator Strategies:

To find the solution from a graph:
$2{ }^{\text {nd }}$ TRACE
5: intersect
Enter Enter Enter

Simplify the following expressions:

1. $\left(2 x^{2}\right)\left(4 x^{3} y^{2}\right)$
2. $\frac{21 d^{18} e^{5}}{7 d^{11} e^{3}}$
3. $\left(x^{2}\right)^{3}$
4. $x^{2 / 3}$
5. x^{-4}
6. $\left(14 a^{4} b^{6}\right)^{2}\left(a^{6} c^{3}\right)^{7}$
7. $\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}$
8. $\left(2 x^{4} y^{-3}\right)^{-4}$
9. $\frac{\left(2 x^{3} z^{2}\right)^{3}}{x^{3} y^{4} z^{2} \cdot x^{-4} z^{3}}$

Properties of Exponents

These properties are on your STAAR Chart:

PROPERTIES OF EXPONENTS

Product of powers	$a^{m} a^{n}=a^{(m+n)}$
Quotient of powers	$\frac{a^{m}}{a^{n}}=a^{(m-n)}$
Power of a power	$\left(a^{m}\right)^{n}=a^{m n}$
Rational exponent	$a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$
Negative exponent	$a^{-n}=\frac{1}{a^{n}}$

Examples: Name the property that needs to be used for each problem. (There can be more than one!)

1. $\left(2 x^{2}\right)\left(4 x^{3} y^{2}\right)$
2. $\frac{21 d^{18} e^{5}}{7 d^{11} e^{3}}$
3. $\left(x^{2}\right)^{3}$
4. $x^{2 / 3}$
5. x^{-4}
6. $\left(14 a^{4} b^{6}\right)^{2}\left(a^{6} c^{3}\right)^{7}$
7. $\frac{2 y^{3} \cdot 3 x y^{3}}{3 x^{2} y^{4}}$ 8. $\left(2 x^{4} y^{-3}\right)^{-4} \quad$ 9. $\frac{\left(2 x^{3} z^{2}\right)^{3}}{x^{3} y^{4} z^{2} \cdot x^{-4} z^{3}}$

System Word Problems

A television weighs 50 pounds and a microwave weighs 30 pounds. A TV occupies 4 cubic feet and microwave occupies 3 cubic feet. A truck is carrying 1500 pounds of cargo that occupies 138 cubic feet of space. Which system of equations can be used to find the total number of televisions, t , and microwaves, m , that are in the truck?
A) $50 t+30 \mathrm{~m}=138$
B) $50 \mathrm{t}+4 \mathrm{~m}=1500$
$4 t+3 m=1500$
$30 t+3 m=138$
C) $50+4 t=1500$
$30+3 m=138$
D) $50 t+30 m=1500$
$4 t+3 m=138$
E) None of the above

Tickets for a movie cost $\$ 5$ for adults and $\$ 2$ for students. One afternoon 21 tickets were sold and the receipts totaled $\$ 72$. How many children tickets were bought?

The perimeter of a rectangle is 89 cm . The length is 8 cm more than the width. What is the length of the rectangle?

You and your cousin go to Wendy's for a "big" lunch. You buy 3 burgers and 2 orders of fries for $\$ 6.50$. You cousin buys 2 burgers and 5 orders of fries for $\$ 8.00$. How much did each item cost?

Linear Inequality

A solution is an \qquad inside the _ or on a \qquad .

Linear Inequality Practice

