
1

The purpose of my application ‘Show Up’ is to fulfill requirements of my client so that he can

create his best portfolio for his photography, on his mobile. Further, dart-Flutter language is

used to build this application which contains a total number of 11 classes that extends a custom

widget (either stateful or stateless) pre-built in flutter. These widgets help programmer to

maintain the state of classes when they are updated. Hence, every class for each screen

extends this widget and are separately build in different dart file.

[ADD WHAT LANGUAGE YOU HAVE USED, IS IT CLASS BASED HOW MANY CLASSES

WERE THERE ETC, SOME INTRO OF LANGUAGE COMBINATION]

The welcome screen of my app shows a logo (fig.1.1.1) with three main objectives i.e. innovate,

create and captivate to help user understand the objectives of the application. The shades of

blue are only used as per the demand of our client.

Fig.1.1.1. welcome screen

The coding in (fig.1.1.2 and fig1.1.3) shows how welcome screen is given a stateful widget so that

the state of application can be updated for new changes (e.g. While navigating to a different

screen when the user clicks the buttons). The application is wrapped in a scaffold to display the

screen on the entire device. Here, one of scaffold properties is used to give a consistent

background color on the entire screen. Then the body of the widget scaffold is given a column

widget to show every widget in a horizontal direction. The image and button widgets are wrapped

inside the container to give a balance padding. Inside the image widget container, Asset image is

used to show images that are imported in the flutter images package.

2

Registration Screen:

This screen presents two buttons for users to join the application (Fig1.1.4 and 1.1.5). The sign

in button will lead them to a different screen for joining in again if they have already joined the

app. whereas, the sign up button will navigate users to a different screen to register themselves

in the application.

3

Fig.1.1.6 coding for Sign-in and Sign up buttons; navigating it to their screens.

 F.g.1.1.6 shows the code view of designing for both buttons. A custom button widget is made so

that it can be followed throughout the application. Below fig.1.1.7 shows the coding of button

widget that is created with balanced width, height and elevation. The button is wrapped in a

gesture detector to detect user actions on button quickly. [thora sa explain the codde like name

is set and dimension etc]

4

Fig.1.1.7 Button Widget

The sign-in screen shows two text fields with the consistent logo on the top and same color in the

background (fig.1.1.8). Fig.1.1.9 shows the coding of this screen. All the text fields are wrapped

inside a form widget so that they can be validated and grouped using a single key. The body is

also wrapped in a modal progress Hud package to show a circular icon while loading a class or a

widget. Gesture detectors are used to detect user gestures in the text field widgets and buttons.

Moreover, the screen is wrapped up with a child scroll view to create an ease for the user to scroll

up to another text field while having their keyboard opened.

Fig.1.1.8 Sign-in Screen view

5

Fig.1.1.9 code(summarized) of Sign- in Screen

In Addition, to maintain the same background color in every screen without having its repetitive

coding; in the main.dart (fig.1.2.0) of application theme data is used, a custom class in material

app widget provided by flutter that helps the user to set the background color which will be used

throughout the application on every screen.

Fig.1.2.0 main.dart

6

For the design of the text field, it is given a rounded corner with a balance radius and also has an

email icon to make it look more structured and at the same time deliver the message towards the

user to enter their email. The field is given a hint text for the user to enter the valid address they

previously entered while signing up(fig1.2.1).Furthermore, while the user enters the data on the

text field, the user’s keyboard will change to show ‘@’ to help them easily write their

address.(fig1.2.2)

Fig.1.2.1 Email Text Field

Fig.1.2.2 Showing ‘@’ in the keyboard for only email text field

7

Fig. (1.2.3 and 1.2.4) shows how the user input value is saved in the text field.

Fig.1.2.3 coding for email Text Field

Fig.1.2.4. Coding for email text field

Below the email text field, there is another text field for users to enter their password(fig1.2.5).

The hint text is written again to help users understand what they have to enter in this field. Then,

the icon in the right end of the field shows an eye and while clicking on that icon it changes to

another icon with ‘/ ’on the eye. This icon is created to help users either to show or hide their

password. Moreover, (fig1.2.7) shows that clicking on this icon hides their password and the text

field will also be converted into showing each alphabet with a dot. Furthermore, the text field is

functionalized with the error text for the user to enter a valid password provided previously by the

user. Also, (fig.1.2.6) shows how these fields contain an ‘on saved’ functionality so that the

entered data by the user will be saved in the one field when they switch to another text field. Also,

the on Changed functionality of the text field is used to handle changes in text fields.

8

Fig.1.2.5 Password Text field

Fig.1.2.6 coding for Password Text Field

Fig.1.2.7 coding for Password Text Field

9

Afterwards, below the text fields in the right corner of the screen, marginalized with the text

fields, a text is written ‘forgot password?’. The user will click on the text if they didn't remember

the password they entered lastly and this text will navigate them to another screen. The screen

will again open up with the logo and same background color (fig.1.2.8). Moreover, in the forgot

button screen there is a text field with a hint text to enter the sign-in email address. The text

above the field enables the user to check their inbox; after pressing the reset password button.

The below fig. (1.2.9) shows the no-reply email user will receive. It will ask the user to click on

the provided link to reset their password. The fig. (1.3.0) shows the screen that will appear when

the user clicks on the link.

Fig.1.2.8 Forgot Password Screen

Fig.1.2.9 Email to reset Password Fig.1.3.0 Reset- Screen when user clicks on link

10

Fig.1.3.1 Coding for forgot Password button

Fig.1.3.2 Coding for forgot Password Button

11

Fig.1.3.3 Coding for forgot Password Button

Fig.1.3.4 Coding for forgot Password Button

Fig.1.3.1 ,1.3.2 and 1.3.3 shows how the forgot screen is designed with a logo, a text and a text

field. Fig 1.3.4 shows how the button is linked with firebase authentication which authorizes the

user’s email address and then sends the email.

Lastly, the user will click on the sign-in button (Fig.1.3.5). This button will not only navigate the

user to the home screen but it will also authenticate the entered data in the firebase console

(firebase is used as a database storage for this flutter app) of the application.

12

Fig.1.3.5 Sign In Button

In Fig.1.3.6, shows Sign In button coding when a user has entered required text in the fields and

is ready to authenticate its data and join the application. Fig.1.3.7 shows when firebase

authenticates user data by saving their email address.

Fig.1.3.6 Sign In Button coding

Fig.1.3.7 User- Signing Authentication stored in Firebase database authentication

13

Fig.1.3.8 shows the process of thinking recursively i.e. password is validated by checking the

current state of the text field where password is entered correctly for that specific email or not.

fig.1.3.9 shows an alert box if the user entered the wrong password for the provided email.

Fig.1.3.8 coding for password Validation function

Fig.1.3.9 The error on screen

Fig.1.4.0 shows the function written in fig.1.4.1 coding where the user entered email is verified

to show an error if it's correct or not.

Fig.1.4.0 user email verification

14

Fig.1.4.1 shows on screen error

Fig.1.4.2 Sign Up Button

On the other hand, the user clicking on the sign-up button(fig.1.4.2) will navigate them to

another screen with persistent design of logo, background color and text fields(Fig.1.4.3).

Fig.1.4.3 Sign Up Screen

Here, the difference in the text fields is only with the hint text for the password to ask the user to

enter the correct password (maximumly containing 6 or more characters). After entering the

required data in the fields the user will click on the sign up button which will navigate them to the

home screen of the application.

When the user clicks on the signup button, the data will be saved in firebase authentication

(Fig.1.4.4,1.4.5,1.4.6). But in order to generate user.id and other user information it will be

saved in a firebase collection (Fig 1.4.7) so that user details can be accessed in other classes

while generating their separate portfolios.

15

Fig.1.4.4 Sign up button coding

Fig.1.4.5 Sign up button coding

16

Fig.1.4.6 Sign up button coding

Fig.1.4.7 User information saved in collection

17

Home/Main Screen:

Fig (1.4.8) screen is designed with a dark-blue colored app bar with app name, a text in the front

page and a side drawer.

Fig.1.4.8 Home screen Fig.1.4.9. Home screen Drawer

(Fig. 1.4.9) shows a drawer inside the sidebar option.

Fig.1.5.0. Home screen Drawer coding

18

(Fig.1.5.0) This side drawer widget shows an icon on the appbar, and by clicking on the icon it

opens up. This drawer contains a drawer header showing a gradient medium size font text i.e.

‘start building your portfolio’ for the user. Then, right below the header it contains a List Tile (a

flutter custom widget to present the clickable text) of three different screens in the form of text

Create and log out. These list Tiles are followed by design to be in a list hence they are

wrapped in a list view widget inside the drawer.

(Fig.1.5.1, 1.5.2, 1.5.3) The home screen is designed in the stream builder of the portfolio which

is designed with an exception that if the document in the database doesn’t exist for the given

user. Hence, if that user does not yet started to make his portfolio or has just joined the

application will see this screen as no data is yet entered in the portfolio.

Fig.1.5.1. Home screen coding

19

Fig.1.5.2. Home screen coding

Fig.1.5.3. Home screen coding

In the drawer, the users click on the ‘Create’ list tile will navigate them to a screen with

persistent light blue background color and an app bar showing text ‘innovate your portfolio’. On

the left the app bar also contains a back icon button which will send the user back to the drawer

screen. (Fig.1.5.4 and 1.5.5)

20

Create Screen:

Fig.1.5.4. Create screen Fig.1.5.5 Create screen

(Fig.1.5.6 and 1.5.7) This screen starts with showing a circle Avatar (a custom flutter class that

enables to show images in a circle shape on screen). This widget provides functionality for the

users to upload their profile picture. Image picker package is used to make users pick images

from camera or gallery. While clicking on the camera button, the user picked image from either

camera or gallery will be stored in firebase collection and displayed in the circle avatar widget.

The user then fills out the above shown details.

21

Fig.1.5.6 Create screen coding

Fig.1.5.7 Create screen coding

22

(Fig.1.5.8, Fig.1.5.9, Fig.1.6.0, Fig.1.6.1, Fig.1.6.2) shows the designing of all the text fields and

headings created in the screen. The screen is wrapped in a single child scroll view so that the

user can scroll on the screen. The text fields values are set as string so that it can be saved in

firestore collection as a string. Some of the text fields of experience and education (fig.1.6.0 and

1.6.1) with detail description were set as maximum lines so that user can enter text in given

limits.

Fig.1.5.8 Create screen coding

23

Fig.1.5.9 Create screen coding

Fig.1.6.0 Create screen coding

24

Fig.1.6.1 Create screen coding

Fig.1.6.2 Create screen coding

25

When clicking on the upload image file button (fig.1.5.5) will lead the user to select an image

from the gallery. (Fig.1.6.4 and 1.6.5) shows the same image picker is used here to select

image from gallery. The coding also shows that how the image is stored as image url firebase

collection under its specific user id. After selecting an image, the user will receive an alert box

showing that their image is successfully uploaded (Fig.1.6.3).

Fig.1.6.3 Create screen (upload ImageFile button)

Fig.1.6.4 Create screen (upload ImageFile button coding)

26

Fig.1.6.5 Create screen (upload ImageFile button coding)

(Fig.1.6.6) The image selected will be saved as image url under firebase collection with that

user specific id.

Fig.1.6.6 Image saved in firebase collection

Then the save button in (Fig.1.5.5) will save all the portfolio details in the firebase collection with

user specific id so that the portfolio will only be shown to the user who has created it. Fig.1.6.7

27

shows how when the user presses the button it will save the entered data in the firebase

collection (fig.1.7.0) along with its user id. Then the function uploadDisplayFile (fig.1.6.8) shows

that the how the user display picture will be stored as image url in a separate collection (fig

1.6.9) with same user id.

Fig.1.6.7 Save button coding

28

Fig.1.6.8 Save button (user profile picture coding)

Fig.1.6.9 In Save button user profile picture save as url in firebase collection

Fig.1.7.0 In Save button user portfolio details stored as string in firebase collection with user id.

29

After clicking on the save button the user can see an alert dialogue box (Fig.1.7.1) which will

show that their portfolio has been saved.

Fig.1.7.1 alert box for save button

The saved portfolio will be shown in the home screen of the application. (Fig.1.7.2, 1.7.3)

Home Screen (showing Saved Portfolio):

Fig.1.7.2 Home screen coding Fig.1.7.3 Home screen coding

30

The below coding (Fig.1.7.4, 1.7.5, 1.7.6, 1.7.8, 1.7.9, 1.8.0) shows how the details entered by

the user in the text fields is retrieved from the firebase collection and are displayed in the home

screen. In order to retrieve this data stream builder is used which is a pre-built class in flutter

used to interact with other stream of data and display that data in a widget. Here in the stream

builder, the stream is set to get the document snapshots (stream data) from the specified

firebase collection. This data will be presented in a widget through a builder which is a widget

inside the stream builder. This builder is set with thinking logically i.e. if the snapshots or data

exists in firebase then it will create this column widget. Otherwise, it will return the home screen

where the text is written (Fig.1.4.8) shown above.

Fig.1.7.4 Home screen coding

31

Fig.1.7.5 Home screen coding

Fig.1.7.6 Home screen coding

32

Fig.1.7.7 Home screen coding

Fig.1.7.8 Home screen coding

33

Fig.1.7.9 Home screen coding

34

Fig.1.8.0 Home screen coding

In the below corner of the home screen the edit icon (Fig.1.8.1) is provided for the user that will

navigate them to create a screen where they can make changes to the field they want to edit in

their portfolio. By clicking on save the update changes will be seen in the same portfolio

uploaded in the home screen.

Fig.1.8.1 Edit icon on home screen

35

Log Out:

The logout list tile in the drawer will make the user exit the app. When the user clicks on the log

out button it will show them an alert box if they surely want to exit the application or not

(Fig.1.8.2). If the user clicks on yes, the application will be finished and if the user clicks on no

then the drawer will be closed and it will only show the home screen (Fig.1.8.3 and 1.8.4).

Fig.1.8.2 Logout alert box Fig.1.8.3 Logout button coding

Fig.1.8.4 Logout alert box coding

