

Bay Area students learn robotics, teamwork, and more to prepare for real-world careers. By Julie Vallone

IN HER FRESHMAN YEAR OF HIGH SCHOOL, Yashna Bansal fell in love-not with a person, but with a robot, or more specifically, with a robotics club. It happened at her first school robotics competition. g"The moment I saw the robot on the field, along with people interacting with each other and having so much fun, I wanted to be a part of that process, and be a part of the team that made that robot possible," she recalls. IBansal, now a senior at Notre Dame, an all-girls private high school in San Jose, admits that she had no real interest in robotics when she joined her school's club that year. She tried it out mainly at the urging of her parents and in support of a friend who didn't want to join alone. But once she got there and experienced what it was like to build robots as part of a competitive team, she was hooked. Today, she's the team captain.

Bansal is one of thousands of Bay Area students-including a growing number of girls and young women- who are learning about technology and teamwork, alo
skills, through robotics. As a way to strengthen science, technology, engineering and math (STEM) education, now a top priority, schools and teachers throughout the area have homed in on robotics programs. The classes and clubs are designed to help kids apply what they learn, develop new skills, and prepare them for the highly competitive job market that waits them on graduation.
Bansal says her participation has helped her to understand the value of many math and science subjects covered in her earlier classes, bringing those concepts to life
"In middle school, it was just about learning the facts, and applying them to tests," she recalls. "But going to a robotics competitions and seeing our robot competing on the field-life-size robots that were bigger and taller than me-was a totally different experience."

At the same time, coed schools are also doing their part to inspire young women o get involved in robotics, develop confidence, and ultimately go on to pursue higher education and even a career in a STEM fields.

信 or at coed Valley Christian High Schoo

San Jose, says she started the schools program 14 years ago beause she wanted to show students why it was important to learn math and science. "I realized that students might feel like I used . They liked math, but also wondered where the applications . I ralized that robotics offered them a great opportanity see how math, science and engineering could come to life.

At Notre Dame, the team started out with just about 20 stu dents, but grew to 60 through recruitment through class visits and exhibitions.
Some girls had been hesitating to join because they hadn't yet taken STEM courses like engineering. So the Notre Dam team created a four-day summer boot camp where they gave participants simple projects to teach them skills like computer-aided esign, programming and basic power tools usage. For many, licked. Program director Marta Carillo says 70 percent of the girl he hericiped in "It fun environment where girls can be successful" she explains.
Un enna B
gils to be more sure of their own technical skills and decision hen working with other girls. "STEM ${ }^{\circ}$ with other girl.
"it a company all you see is gunted field. Sometimes when you know that the first time I wuys who are doing robotics. And know that the first time I went to the robotics competitions, count the number of girls on one hand."
Why is that? Bansal has noticed that "sometimes when you're working next to a guy and you've never done something, you take a step back," he explains. "It's because they may seem overly confident, and you're unsure he ther you're able to step up to the plate whether,"
She adds that having a robotics team at an all-girls school fosters confidence, and creates an environment where girls can explore STEM without worrying about messing up in front of their peers. "You're surrounded by girls who have the same past experience as you, and are learning at the same rate as you are. So you are confident in making mistakes and learning from them."

Lane explains that her own daughter participatd in STEM and robotics programs at the school from elementary to high school years. She is now at Mir getting a masters in artificial intelligence, internchip with Amazon, where she was workin internship
on drones.
Still,
, males dominate the Valley Christian rosics program, at least as measured by percentparticipants (varying with the age group and year). Lane's goal is to drive the ratio up to somewhere between 30 and 50 percent. "We 50 and 50 percen
We do programs and exhibitions throughout the year so girls can see what we are doing. Being an engineer my self, I can talk about it, and bring other women from the industry to promote it. But right now, (girls' participation is) not as high as I want it to be."
Carrillo's daugh (before Carillo was its coach) and is now majoring in a very chalcent of computing jobs after graduation. In the corporate world, they hold just 5 percent of leadership positions in the echnology industry.
Educational venues appear to play a significant role in defining levels of interest. In coed schools, relatively few girls show up to involvement. Angi Chau, director of the Bourn Idea Lab at Castilleja School in Palo Alto, says her robotics team is often surprised to realize that so many of the teams they compete against are made up of only boys. They're also surprised at comments they get along the way, especially when travelling for competitions.
"They're asked questions like 'Where are the boys?' and 'Ho do you get anything done?" says Chau.
She recalls one incident in particular, when the team stopped at they told her they were a robotics team, the waitress asked, "Are you the cheerleaders?"

lenging engineering program at college. Carillo says the robotic team experience helped, because it was also difficult at times. Still, she remembers the fun and rewards that came with overcoming each problem. Like Bansal and Lane, Carillo believes it's all about showing girls what women can do in STEM, and building their confidence. "It goes a long way," she says.

Robotics is projected to be a $\$ 135$ billion market by 2019, nearly double what it was in 2014 .

RO
BO
h1
DS
EARLY STEM AND ROBOTICS LEARNING The participation of girls and young women constitutes an important chapter in the story of STEM, and robotics training. But that by itself is not a
reliable gauge of the importance of the training in many Bay Area private schools, where programs like FIRST (For Inspiration and Recognition of like FIRST (For Inspiration and Recognition of Science and rechnology) find wide popularity. who created the Segway, a two-wheeled motorized who created the Segway, a two-wheeled motorized
personal vehicle, among many other inventions personission: to help young people get excited
His mind His mission: to help young people get excited
about science and technology, and experience the rewards that come from working and innovating in these fields. FIRST programs range from Lego Leagues (using in these fields. FIRST programs range from Lego Leagues (using Lego Mindstorms kits) for grades 4 to 8, to the FIRST Robot-
ics Competition (FRC), a full-on high school robotics challenge where students build life-size (or even larger-than-life-size) robots that can compete in regional and national events. FIRST events are designed to be fun as well as competitive and educational. You're apt to see students climbing over ramps, hanging from and Youre apt to see students climbing over ramps, hanging from and limbo-ing under bars, or scaling a makeshift castle.
Eric Nelson, upper school robotics program director at The Harker School in San Jose explains that the FRC "is a fast-burn design to implementation and testing, then ship the robot to the competition, all in a six-week time frame,"
Erik Mitchell, a sophomore at Valley Christian School, started working with robotics in the fifth grade, and likes the problemsolving nature of the competitions.
"The league presents a problem, and so we'll design arms and fabricate other things so the robot can get around these obstacles. I've learned how to look at these obstacles we have to traverse and fix these problems," he says.
Many teachers start laying the foundations for a STEM educaion at an early age. For example, Stratford School in Saratoga uses Bee-Bots, a small, toy-like programmable floor robot, to

introduce basic coding concepts to preschoolers. Valley Christian School in San Jose starts teaching kids design, electrical and even coding concepts in the second grade (using software
Michelle Grau, an engineering teacher at Nueva School in Hillsborough, begins preparing young students for STEM programs by engaging them in projects that teach them a problem-solving meth odology, Design Thinking, a system developed by Stanford's Institute of Design. That methodology focuses on solutions that meet the real needs of clients who will be using what the designers create.
Grau believes this kind of prob lem-solving starts with empathy. "It's not always the obvious thing on the surface that you think is the problem. There are a lot of developers out there who create projects that no one actually needs or wants, because they didn't actually pause to think about why a person would want what they made," she explains.
Another piece focuses on creative confidence and brainstorming "When you talk to a kindergartener,

Women hold only 18 percent of college undergraduate computer science degrees and 26 percent of computing jobs.
they usually have no problem spewing out ideas, but by the tim they get to middle school, they tend to lose that confidence," says Grau. "They'll say 'My teacher asked me to brainstorm 10 ideas; don't have those ideas, so clearly I'm not a creative person.' We try to combat that by explaining that everyone is creative; it just may take people different amounts of time to come up with ideas."
A third part of the Design Thinking mindset involves attitude toward failure. "When that thing doesn't work, now what? Instead
of just giving up on it, we ask, 'What would you do differently?'
of just giving up on it, we ask, What would you do
and keep pushing forward on the idea," Grau says.
and keep pushing forward on the idea, Grau says.
Nueva, and other schools like Harker, Valley Christian, Stratford, Notre Dame and Castillja, invite kids in grades 4 to 8 to ford, Notre Dame and Castillja, invite kids in grades 4 to 8 to
participate in the FIRST Lego Leagues, where they create robots using Lego Mindstorms kits. Last year's theme, Animal Allies, challenged kids to design robots that would do things like feed an animal, and fit a prosthesis to a pet.
At Bellarmine College Preparatory At Bellarmine Coslege Preparatory
School in San Jose, middle school students participate in other competition programs run by VEX robotics. It centers its challenges around accessible and affordable robotics for kids, and invites them to compete regionally, nationally and even globally. Once kids hit the ninth grade, they are eligible for the FIRST Robotics Competition. In these district to global events, high school teams create robots that are often big and heavy and can handle a variety of tasks, such as stacking bins and recycling litter, throwing a ball into a hoop, and scaling a "castle."

NOT JUST FOR TECHIES
Most robotics teams do a lot more than design and build robots. Usually
 some of the team members also like
taking charge of the websites and social media, doing outreach to businesses for sponsorships and mentors, grant-writing and even handling administration.
At The Harker School, Nelson designed the program to work like a Silicon Valley startup.
"I act as the board of directors along with the other faculty," he explains. "The students elect key officers." That includes the CEO, chief technology and operations officers. Other students in the club decide which area they want to be a part of, such as o sofware design, outreach, or promotion.
"They can go to the same cycle as a startup will go through,"
says Nelson. Sometimes they "go public" and enter competitions "And sometimes we go 'Chapter 11,' and our robot goes down in flames in front of the students' peers. It's a very public failur when it happens, but just as they are responsible for the failures they can take credit for the successes."
Daniela Obringer, a sophomore at Valley Christian School in San Jose, chose to get involved in the business side of the team's activities.
"You definitely get a lot of experience that you wouldn't get," she said. "It connects you with different businesses, giving you hands-on experience in the field. You learn how to negotiate and pitch ideas."

Pav, who leads the robotics program at Bellarmine, says his program fills a particular niche for Bellarmine students who
aren't athletes and aren't in the school's Speech and Debate club "It gives them the opportunities to collaborate with peers who have similar interests," he says.

MENTORS HELP PREPARE STUDENTS FOR REAL-WORLD CHALLENGES
A key part of many middle and high school programs is the prac tice of inviting mentors to help kids with not just building thei robots, but also with other aspects the project, such budgeting and marketing.
"They get exposed to the working world, (continued on pg 104)

ROBO KIDS

(continued from $p g$. 67)
and that gives them a feel for what it's like outside of school," says Yav
Some programs also have developed relationships with well-known sponsors that provide students with other opporunities. Bellarmine, for instance, counts NASA among its sponsors. The agency provides money for equipment, along with assistance for shipping and transporting their robots. Yav says NASA is not involved in designing or building the robots, but they do give the school's students access to a lab with special machine tools. Valley Christian School relies on sponsors like Google and NVIDIA who give them donations and other support. To approach them, students need to learn how to write a grant, showing their budgets to the companies and explaining how they plan to use it. Many other schools also need to get sponsorships, and these are important
as this activity can get pretty pricey. The as this activity can get pretty pricey. The costs are usually somewhere in the neigh-
borhood of $\$ 35,000$ to $\$ 40,000$, once borhood of $\$ 35,000$ to $\$ 40,000$, once
you factor in running the club, equipyou factor in running the club, equip-
ment, building the robot, competition fees, travel and other expenses.
In addition to supporting STEM education, sponsors have other motives for donating.

Why would a company like NVIDIA or Google donate $\$ 3,000$ to a team? Because they are the ones who are going to be hiring those students four or five years from now," says Lane.
The timing of this focused effort to create tomorrow's leaders in the field is especially critical, Lane adds, and as a former engineer at IBM, she's in a position to know. The United States has been having trouble finding people for STEM jobs, she says. Companies have had to look to other countries for people to fill these jobs. She and other coaches hope that robotics programs will inspire their students to pursue TEM careers, and meet the industry needs. According to International Data $\$ 135$ billion market by 2019, nearly double what it was in 2014, and it is set to grow at a rate of 17 percent a year
Whether male or female, the partic pants in these robotics training program will have a marked advantage in pursuing SEM opportunities in an evolving tech nological era where their skills and training will be recognized and rewarded.

