
Build an Android App with Flutter: A

Beginner’s Guide for Windows Users

By Dora Cheng

Google launched Flutter, an open-source UI SDK, in 2017 and Flutter has been growing in popularity ever

since. According to the 2020 Stack Overflow survey, Dart, the object-oriented language used to develop

apps in Flutter, is ranked 7th in ‘the most loved programming language by developers’ category, just

above C#, Swift, and JavaScript. You can check out Quincy Larson’s analysis on the Stack Overflow

survey here.

The winning trait of Flutter is of course it’s capability in both Android and IOS development using one

codebase, but the emphasis on simplicity is much to be applauded as well. And what I mean by that is the

concept of wrapping widgets within widgets to piece together an App that is both beautiful to look at and

friendly to use.

Follow along if you want to get started with Flutter and Dart.

Installation

1. Install Flutter here. Remember where in the PC you installed it.

2. Run Flutter doctor in the flutter console with the command flutter doctor. This will

complete your download and tell you there are issues with set up which has to do with

Android Studio not being installed.

3. Install Android Studio here.

4. Run Android Studio. Go to File> Settings> Plugins and search for Flutter. Install Flutter plugin, which

includes Dart, making it very convenient for users since there is no need to install Dart as a separate SDK.

https://www.freecodecamp.org/news/stack-overflow-developer-survey-2020-programming-language-framework-salary-data/
https://flutter.dev/docs/get-started/install
https://developer.android.com/studio

5. Start a new Flutter project. Go to File>New>New Flutter Project.

Select Flutter Application when prompted. Next, name your project. If the Flutter SDK path is empty, you

will have to input it by locating where you installed Flutter in Step 1.

Then, set your package name or leave it as com.example.flutterapp.

6. Ready your Android emulator, which will allow you to see what your app looks like when rendered on a

mobile device. Click AVD Manager icon (the 4th icon counting from the right) inside Android Studio:

You can choose which device and OS you want to emulate. Alternatively, you could also use your real

phone as the emulator. Connect your device with a USB cord to your computer. Find ‘Build number’ in

your device and tap it several times until a prompt tells you that you have unlocked ‘Developer options’.

For Samsung, go to Settings>About phone>Software information>Build number. When ‘Developer

options’ has unlocked, it will show up in Settings.

If prompted whether to allow Computer access, click ‘OK’. After you should be able to see your mobile

device as one of the choices to render in on the top of Android Studio.

Set up is done!

Building an App

We need to understand what MaterialApp and widgets are.

MaterialApp is a component that gives us access to elements that beautifies our app such as color palettes.

Implementing the MaterialApp class allows us to use Material Design, a Google UI design system.

Widgets are the pieces that form the backbone of our app and have properties that further alternates their

functionality or appearance. In the end you will have something called a widget tree, which is just a

diagram that describes the network of widgets.

Let’s get started on making a page of an app.

1. New Flutter projects always come with a boilerplate code inside the main.dart file for you to

use. Replace the code with:
import 'package:flutter/material.dart';

void main() {

 runApp(MaterialApp());

}

https://material.io/design

We import material.dart to use the MaterialApp class. Void main indicates where the computer

should start running the program.

2. Add a Scaffold() widget within the home location of the app. The Scaffold widget helps us form a

layout structure.

3. To add an app bar (the header of an app) with text, we first add the property appbar with the

widget Appbar(). Then add the property title with the widget Text(). Input any string you want

within the Text widget. In this case, I added ‘Our App’.

import 'package:flutter/material.dart';

void main() {

 runApp(

 MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text('Our App'),),),),

);

}

Our code looks very confusing. Flutter has a function to help reformat our code. Put a comma after each

backward parentheses and right click to select ‘Reformat Code with dartfmt’.

After reformatting:

import 'package:flutter/material.dart';

void main() {

 runApp(

 MaterialApp(

 home: Scaffold(

 appBar: AppBar(

 title: Text('Our App'),

),

),

),

);

}

4. Let’s add color to our app bar. After the comma that follows the Text widget, use the

property backgroundColor with the value Colors. with the period. This period will open a color

palette in which you can choose a color. Hover over the chosen color, and different shades of the selected

color will appear for further customization.

Type the number within the square brackets beside your color. For example, Colors.orange[300].

5. Add an image to the body of the app. First collapse the appbar row. You can do that by pressing the

minus sign beside the line. Then, add a body property and an Image() widget.

Images can be from a local file or from the internet. Use the property image and:

• From internet: the value NetworkImage(). Inside the brackets, input a string with the

source url

• From local file: the value Image.asset(). Make a directory under your project directory

named images. Add your image file into the image directory. Go to the pubspec.yaml file

and input your image path underneath ‘assets’. Ensure 2 spaces before the word ‘assets’ and

two spaces before the dash before the image path. Inside the brackets of Image.asset(),

input a string with the image path.

6. Let’s center the image. The quick way to do this is to move your insertion point, a.k.a. typing cursor, to

the middle of the Image() widget.

Press ALT + Enter. A list of intentions should show up. Select ‘Wrap with Widget’ then type Center to

use the Center() widget.

7. Our final code should look something like this depending on the customization:

8. Run this on the emulator to see how it looks! If you want to run this in your physical device then make

sure to pick your mobile device in the drop down at the top of your window. Click the green triangle icon

to run.

Congratulations! Your first page is done!

