
Security

Practical AppSec, Part
II: The Limitations of
“Shift Left” (and Why
Runtime Is the Right Time)

Jeanette Sherman
June 24, 2024

In the first part of our Practical AppSec series, we talked about the reasons developers don’t trust

AppSec – and how that distrust is rooted in tools that focus on theoretical vulnerabilities rather than

real, provably exploitable ones.

Even when security alerts frustrate engineering and security teams, they’re still plugging away at

those dashboards full of CVEs, trying to make them all turn green. Why? Well…because of shift left, of

course.

We all know it’s the right way to do application security, because it saves money. If you read security

blogs, you’ll have seen a specific number over and over: Fixing vulnerabilities earlier in the

development life cycle saves you up to 100x versus fixing them later, according to pretty much every

security vendor out there. Except…does it?

“Shift Left” Rests on Shaky Foundations

OWASP founder Mark Curphey earlier this year produced compelling evidence that the much-

vaunted 100x statistic was just an “urban myth,” sourced from an internal IBM training manual based

on data gathered, at absolute latest, in 1981. A lot of things have changed in software development in

that time (I can certainly think of a few), but the statistic lingers on stubbornly – probably because it

made sense for a lot of vendors selling shift-left products to use it in their ROI calculators.

According to recent research, shifting left may not really save any money or effort at all. In a paper

from 2016, three researchers tried to find evidence for the “delayed issue effect,” in which an issue

requires more effort to resolve when it is found later in the development cycle.

The team “found no evidence for the delayed issue effect,” and concluded that it was a “historical

relic that occurs intermittently only in certain kinds of projects.”

What if we rethought application security without the truisms and urban myths? What if we thought

about what would actually work best for the problems and situations today’s organizations find

themselves in?

Let’s take a moment for a thought experiment that takes us outside the realm of development – and

into the kitchen.

The Peanut Butter Jar: A Thought Experiment

You’re cooking for a friend, and you know he has a peanut allergy. You’re a considerate friend (and

certainly don’t want to end the night with anaphylaxis), so you don’t use any peanuts in the food. You

even check the labels of everything you use, just to be sure.

When your friend comes over, he says he’s got something new – a detector that can determine if it’s

safe for him to eat the meal you’ve cooked. He turns on the detector, and it flashes red. “It’s ok,” he

says. “I’ll grab something on my way back.”

“Hold on a minute,” you tell him. “I was so careful to make sure there were no peanuts anywhere in

our meals. You can search my whole kitchen.”

So the two of you do just that, and after an hour of searching, you find it: a small, unopened jar of

peanut butter on the back of a shelf. “I didn’t use this! It’s still sealed!” you say.

Your friend says: “It’s built to detect the presence of peanut-containing products in the building,

rather than whether they’re being used. It won’t stop flashing until you take the peanut butter out of

the house.”

When you return from disposing of the jar outside, you can barely hide your annoyance. Your friend

confesses that he’s not so sure about the scanner. “I haven’t actually found a house where it says I’m

safe to eat yet,” he says, miserably. “And apartments? Forget it.”

And it gets worse: everywhere he goes, he’s spending time looking through the cupboards and trying

to figure out when he should really avoid the food, and when it’s fine. There’s no chance of eating a

hot meal, and he says some of his friends seem to be avoiding his visits altogether, because it’s a big

pain every time.

It’s obvious what doesn’t make sense about the peanut scanner, isn’t it? 

There’s no need to scan the entire building when what really matters is what actually makes its way

to the plate to be eaten. We’d be better off just analyzing the plates when they’re ready to be

served, and limiting our scan to real risks, not theoretical ones.

When we move from the kitchen to the scrum, the lesson holds. If you scan for every hypothetical

vulnerability from your manifest file – with little regard for whether the vulnerable library is actually

loaded or running, or whether a vulnerable function is called – you’re going to cause a lot of wasted

time and frustration.

Real Risks Come from Running Applications

The truth of the matter is: scanning based on manifest files was always going to be like the peanut

scanner. But if “shift left” isn’t saving money or effort, and over-broad scanning tools are sowing

distrust between teams, what’s the alternative?

In the kitchen, what matters is what’s served. In software, what matters is what’s loaded, running,

and accessed when the application runs.

Application security vendors have been selling “shift left” with the 100x statistic for decades. In that

time, open source use (and CVE numbers) exploded, and just about every organization adopted

some kind of tooling to detect vulnerabilities early in the development process.

But as Valery Legasov said in the TV miniseries Chernobyl: “Every lie we tell incurs a debt to the truth.

Sooner or later, that debt is paid.”

What’s true about lies is also true of an industry’s foundational myths.

Even if no one intentionally lied about the benefits of pushing security earlier into the SDLC, the

frustrations, wasted effort, and wasted time of today’s AppSec programs are all a debt being paid

to the foundational myth of “shift left.” 

But a new era is coming – as organizations search for lean, practical AppSec solutions, they’re

learning that the only way to really see what’s exploitable is to check on an application while it’s

running.

If scanning a running application is more focused and efficient than scanning the content of a

manifest file, why isn’t everyone already doing it – and what else could a solution with that kind of

visibility do for an AppSec program?

Stay tuned: we’ll talk about the answers to these questions in the final part of this blog series –

Practical AppSec, Part III: How Oligo Keeps Focused on Real Risks.

Related Posts

Security

Recent CrowdStrike Outage
Emphasizes the Need for eBPF-
Based Sensors

Guy Kaplan
July 19, 2024

Security

App-Level eBPF Applications -
User vs. Kernel Probes

Avi Lumelsky
July 1, 2024

Security

Critical RCE Vulnerabilities in
OpenSSH (CVE-2024-6387, CVE-
2024-6409) - How to Detect
and Mitigate

Guy Kaplan
July 1, 2024

Subscribe and get the latest security updates Subscribe

C O M P A N Y

Home

About

Contact

Customers

Careers

P R O D U C T

Oligo Focus

Oligo ADR

S O L U T I O N S

Vulnerability Scanning

Real-Time BOM/VEX

Supply Chain Security

Application Security
Posture

Detection & IR

R E S O U R C E S

Blog

Webinars & Videos

News

Podcasts

Events

Whitepapers

Application Detection &
Response

0.0.0.0 Day

Copyright © Oligo Security| All Rights Reserved 2024 Terms of use Privacy Policy Cookie Policy

The IBM chart that launched a thousand “shift left” initiatives
– but it came from 1981 and wasn’t based on real data.

Enter your email*

Zero in on what's exploitable
Oligo helps organizations focus on true exploitability, streamlining security

processes without hindering developer productivity.

Book a Demo

Product Solutions Resources Company Customers Book a Demo

Show details

Allow all

This website uses cookies

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site
with our social media, advertising and analytics partners who may combine it with other information that you’ve provided to them or that they’ve collected from
your use of their services.

https://www.oligo.security/resources/blog
https://www.oligo.security/blog/why-devs-dont-trust-appsec-findings
https://crashoverride.com/blog/on-the-left-on-the-right-and-wiggle-in-the-middle
https://arxiv.org/pdf/1609.04886.pdf
https://www.oligo.security/blog/recent-crowdstrike-outage-emphasizes-the-need-for-ebpf-based-sensors
https://www.oligo.security/blog/app-level-ebpf-applications
https://www.oligo.security/blog/critical-openssh-vulnerability-cve-2024-6387-regresshion
https://www.oligo.security/
https://www.oligo.security/
https://www.oligo.security/company/about
https://www.oligo.security/contact
https://www.oligo.security/resources/case-studies
https://www.oligo.security/company/careers
https://www.oligo.security/product/oligo-focus
https://www.oligo.security/product/oligo-adr
https://www.oligo.security/solution/vulnerability-scanning
https://www.oligo.security/solution/real-time-bom
https://www.oligo.security/solution/supply-chain-security
https://www.oligo.security/solution/application-security-posture
https://www.oligo.security/solution/detection-and-incident-response
https://www.oligo.security/resources/blog
https://www.oligo.security/resources/webinars-and-videos
https://www.oligo.security/resources/news
https://www.oligo.security/resources/podcasts
https://www.oligo.security/resources/events
https://www.oligo.security/resources/whitepapers
https://www.oligo.security/blog/what-is-adr-application-detection-and-response
https://www.oligo.security/blog/0-0-0-0-day-exploiting-localhost-apis-from-the-browser
https://www.youtube.com/@oligosec
https://twitter.com/OligoSecurity
https://www.linkedin.com/company/oligo-security/
https://www.oligo.security/legal/terms
https://www.oligo.security/legal/privacy-policy
https://www.oligo.security/legal/cookie-policy
https://www.oligo.security/demo
https://www.oligo.security/
https://www.oligo.security/resources/case-studies
https://www.oligo.security/demo
https://www.cookiebot.com/en/what-is-behind-powered-by-cookiebot/

