
© Junade Ali
mjsa@junade.com

 IcyApril
 IcyApril

Junade Ali is a British computer scientist with
specialist knowledge of computer security,
distributed systems and software design. (more)

Object Oriented Go - The Basics
Dec 17, 2017 • @IcyApril

I have evangelised Object-Oriented Programming for the bulk of my programming life; when I left
school as a teenager I was accepted into an apprenticeship where the primary language was Java,
more recently I have written books on Object Oriented Programming in PHP and PHP Design Patterns -
largely focusing on refactoring legacy code to a more Object-Oriented design. From this information
alone, you’d not be mistaken for thinking of me as a “traditional” OOP programmer.

A few years ago I was given a commercial project to create the first solution to a problem surrounding
sensor placement on vehicles; the solution to this problem would later become my masters thesis. With
the mathematics squared away, I was tasked with creating an implementation of my proposed solution;
due to large processing times and the need for concurrent processing, I chose to do so in the Go
(formerly, Golang) Programming Language.

As I started to build in Go, the language looked completely different than any other Object-Oriented
language I’d seen before, certainly from the perspective of someone building with Java. Where were the
classes? How can interfaces be “implicit”? Despite my initial confusion, I soon came to learn that Go is
indeed an Object-Oriented language, and a fine one at that. This blog post explains the basics of
writing Object-Oriented code in Go.

Object Oriented Programming typically refers to software where the responsibilities are split into
objects; these objects are created from predetermined structures which define how objects are created
and what they can do, in Java we refer to these scaffolds as “classes”. For example; in a Java
application, we can have an object called Bob created from a class called Users . These objects
contain a set of methods (e.g. a user class could outline that a method that defined how a user can
send a message to another user). The object exposes methods that allow the object to perform various
action, but also allow the object to hide its internal organs.

Objects act as building blocks which allow for applications to be built in a scalable and reusable way.
Objects can be put together to build other objects; Design Patterns can provide reusable patterns
which allow for how objects can be created, be structured or how they can interact with each other.

Types
Go contains a few different primitive types such as string and float64 . We can use them for type
hinting - to define parameters which methods can accept, and indeed return types too. Let’s define a
fairly simple method:

package main

import (

 "fmt"

)

func sum(a int, b int) int {

 return a + b

}

At the bottom of this program, if we add the following main() method:

package main

import (

 "fmt"

)

func sum(a int, b int) int {

 return a + b

}

func main() {

 fmt.Println(sum(1, 2))

}

We get the output:

3

However, if we instead try running this without valid integer values - such that the main method looks
like this:

func main() {

 fmt.Println(sum("hello", "test"))

}

We will see an error message like the one below:

main.go:12:18: cannot use "hello" (type string) as type int in argument to sum

main.go:12:27: cannot use "test" (type string) as type int in argument to sum

Whilst this adds some useful type safety; in order to simplify our code we are also able to create our
own types, which are more complex than the scalar types we are using here.

Structs
For those familiar with Object-Oriented programming in other languages, Structs are somewhat like
classes. They are a type which defines variables and functions (methods). A struct is a type which
contains named values.

type user struct {

 name string

 admin bool

}

We can initialise a struct as follows, and use fmt.Println to dump out values:

package main

import (

 "fmt"

)

type user struct {

 name string

 admin bool

}

func main() {

 paul := user{name: "Paul Smithson", admin: false}

 fmt.Println(paul)

}

This provides a rather crude dump of data:

{Paul Smithson false}

If we want to access named fields from the main methods we can simply use:

func main() {

 paul := user{name: "Paul Smithson", admin: false}

 fmt.Println(paul.name)

}

This will output the specific value from the named field we asked for by resolving paul.name , the
output is now like this:

Paul Smithson

Adding Methods to Structs

We can also add methods to a struct, for example, here I’ve added an isAdmin method to the struct
which returns true or false depending on a users admin status:

type user struct {

 name string

 admin bool

}

func (u user) IsAdmin() bool {

 return u.admin

}

I can also define a method which will return the first name of a user from a struct:

func (u user) FirstName() string {

 names := strings.Fields(u.name)

 if len(names) > 0 {

 return names[0]

 }

 return "Unnamed"

}

Putting this all together, our program now looks like this:

package main

import (

 "fmt"

 "strings"

)

type user struct {

 name string

 admin bool

}

func (u user) IsAdmin() bool {

 return u.admin

}

func (u user) FirstName() string {

 names := strings.Fields(u.name)

 if len(names) > 0 {

 return names[0]

 }

 return "Unnamed"

}

func main() {

 paul := user{name: "Paul Smithson", admin: false}

 fmt.Printf("First Name: %s\n", paul.FirstName())

 fmt.Printf("Admin? %t\n", paul.IsAdmin())

}

This now returns the following output, false from the IsAdmin method and Paul from the
FirstName method:

First Name: Paul

Admin? false

We can also accept inputs into the functions we’re attaching to our structs, for example, suppose we
wanted to generate a dynamic greeting based on whether it was (or wasn’t) the morning, we could use
the following implementation:

func (u user) Greeting(morning bool) string {

 if morning == true {

 return "Good Morning, " + u.FirstName()

 }

 return "Hello, " + u.FirstName()

}

As with our other methods, we can run this quite easily - we just parse the arguments in:

func main() {

 paul := user{name: "Paul Smithson", admin: false}

 fmt.Println(paul.Greeting(true))

}

This returns:

Good Morning, Paul

You can find a complete demo of this code on The Go Playground; be sure to try changing things
around before moving forward.

Interfaces and Polymorphism
Sometimes when building applications, we want to implement the same feature multiple ways. For
example; we might want to have a storage layer, but want to implement it both as a JSON file, and an
XML file.

Polymorphism allows us to build classes that expose identical public interfaces, but perform differently
under the hood. We might have a user Struct and a bot struct, but for both we want to expose an
identical interface for both, such that they can be used interchangeably. For this to happen; we need to
use interfaces.

Let’s define an interface called client , this will eventually be used by the user and bot structs:

type client interface {

 FirstName() string

 IsAdmin() bool

}

Like, in the previous section, I’ve created two structs and defined FirstName and IsAdmin
methods to structs. Note that when we define these structs, we do not have to explicitly mention which
interfaces we’re implementing. As soon as Go notices a structs with the correct methods, it will detect
the interface has been implemented at a compiler level.

type user struct {

 name string

 admin bool

}

func (u user) IsAdmin() bool {

 return u.admin

}

func (u user) FirstName() string {

 names := strings.Fields(u.name)

 if len(names) > 0 {

 return names[0]

 }

 return "Unnamed"

}

type bot struct {

 admin bool

}

func (b bot) IsAdmin() bool {

 return b.admin

}

func (b bot) FirstName() string {

 return "Bot"

}

Now, having defined two structs which implement the client interface, we can now use type hinting
to define methods which can be used by structs which implement that interface; for example:

Using all the structs and methods above, we can define a main() method which uses the Hello
method:

func main() {

 paul := user{name: "Paul Smithson", admin: false}

 fmt.Println(Hello(paul))

 automationBot := bot{admin: true}

 fmt.Println(Hello(automationBot))

}

This then has the following output:

Hello, I am Paul and I am a normal user.

Hello, I am Bot and I am an admin.

Suppose we now deleted the FirstName method on the bot struct, the Go compiler would
dynamically detect that we are not implementing the client interface and will display an error for us:

cannot use automationBot (type bot) as type client in argument to Hello:

bot does not implement client (missing FirstName method)

As interfaces are defined implicitly in Go, we are able to define interfaces around structs we don’t
ordinarily have access to alter (for example, if we pull one in as a third party interface). This also means,
we are able to easily mock structs which we don’t have access to change.

You can play around with the entire code for this section on The Go Playground.

Composition, and the Lack of Inheritance
When building Object-Oriented applications, a key consideration is how classes interact with each
other. We’ll need to build objects from other objects, we might need to extend the behaviour of a class.
Inheritance and Composition are two ways of achieving this behaviour, Go exclusively uses
Composition, but it is still worth understanding the story behind why this decision is important.

Inheritance
Java contains a keyword known as extends , this allows for hierarchy to be inserted between
between classes. You might have a HeadTeacher class, which inherits properties from a Teacher .
Whilst HeadTeacher has all the methods from the Teacher class, we can also add in extra methods
for managing other teachers (i.e. fireTeacher()).

Another example of Inheritance can be vehicles; we can define a Vehicle class which acts as an
abstract representation of a vehicle, it contains the boilerplate code for starting the ignition,
acceleration, etc. The concrete implementations of this abstract Vehicle class can exist in other
classes; such as Car , Lorry , Bus or Motorcycle . These concrete classes will add and override
methods and variables in the boilerplate Vehicle class depending on the specifics of the
implementation. This hierarchy can go even deeper, we can, for example; extend the Car class to
have a LuxuryCar class.

Inheritance defines a “is-a” relationship between classes. A LuxuryCar is a Car , and a Car is a
Vehicle . This causes a number of architectural difficulties; firstly a change to one method at the top

of the hierarchy can have a cascading change down the entire tree, this can lead to unintended side-
effects in child classes. The quirks of a parent can cause problems later down the tree.

Secondly, at an engineering level, we rarely consider things to have a “is-a” relationship - we instead
tend to consider them having a “has-a” relationship. For example; a Car has an Engine and 4
Wheels .

In the famous Design Patterns book, even recommended “favouring Composition over Inheritance”.
The founder of the Java language (James Gosling) went even further in condemning Inheritance:

I
once
attended
a
Java
user
group
meeting
where
James
Gosling
(Java’s
inventor)
was
the
featured
speaker.
During
the
memorable
Q&A
session,
someone
asked
him:
“If
you
could
do
Java
over
again,
what
would
you
change?”
“I’d
leave
out
classes,”
he
replied.
After
the
laughter
died
down,
he
explained
that
the
real
problem
wasn’t
classes
per
se,
but
rather
implementation
inheritance
(the
extends
relationship).
Interface
inheritance
(the
implements
relationship)
is
preferable.
You
should
avoid
implementation
inheritance
whenever
possible.

– Java
Toolbox by Allen Holub, JavaWorld

Composition & Dependency Injection
Instead of using Inheritance, Go omitted it and chose to purely use Composition. Composition is how
we can build class relationships using a “has-a” relationship. Suppose we are building a Users
object, it can be composed of a Permissions object and a Person object.

This is where Composition comes into play, instead of building our objects on a hierarchy, we build
objects what functionality they can do (using Dependency Injection).

Here’s an example of two structs, you’ll notice that the user struct embeds an instance of
permissions into itself. In essence, we’re abled to build a struct which contains another:

type permissions struct {

 admin bool

 suspended bool

}

type user struct {

 name string

 access permissions

}

When we create an instance of user , we’re able to define methods which access the fields and
methods from the permissions object within it:

package main

import (

 "fmt"

 "strings"

)

type permissions struct {

 admin bool

 suspended bool

}

type user struct {

 name string

 access permissions

}

func (u user) FirstName() string {

 names := strings.Fields(u.name)

 if len(names) > 0 {

 return names[0]

 }

 return "Unnamed"

}

func (u user) IsAdmin() bool {

 return u.access.admin

}

func (u user) IsSuspended() bool {

 return u.access.suspended

}

func main() {

 newAdminStatus := permissions{admin: true, suspended: false}

 paul := user{name: "Paul Smithson", access: newAdminStatus}

 fmt.Printf("First Name: %s\n", paul.FirstName())

 fmt.Printf("Admin? %t\n", paul.IsAdmin())

 fmt.Printf("Suspended? %t\n", paul.IsSuspended())

}

The above program yields the following output:

First Name: Paul

Admin? true

Suspended? false

As before, you can modify and play with this code on The Go Platground.

Dependency Injection effectively refers to injecting one object into the constructor when instantiating
another, in the next section we’ll cover how you can create functions which returns objects, instead of
us directly needing to instantiate structs.

Encapsulation
A key consideration in Object-oriented programming is around Encapsulation. Encapsulation is about
keeping internal methods hidden away, whilst exposing the interface that we want to expose.

Go does encapsulation at the package, there is no control of visibility within a package itself - but you
are able to control visibility from one package to another. This is one of the reasons.

Whilst some languages prefix the function name with the visibility (e.g. private sum), go does this
using the case of the first character of the method name; so for example, sum would be private as it
has a lowercase s but Sum would be public because it has an upper-case S . Let’s put this to the
test.

I’ve defined a simple Go package called user ; this package defines the User struct, and an
IsAdmin and a FirstName method. I’ve also added a New method which effectively acts as a

constructor and returns an instance of the object we’re after without needing to expose any of the
internal fields of the struct.

I’ve put this package in go/src/junade.com/icyapril/test/user ; whilst our main method lives in
go/src/junade.com/icyapril/test , the user directory acts as the sub-package:

package user

import "strings"

type User struct {

 name string

 admin bool

}

// IsAdmin - checks if the user is an admin

func (u User) IsAdmin() bool {

 return u.admin

}

// FirstName - get users first name

func (u User) FirstName() string {

 names := strings.Fields(u.name)

 if len(names) > 0 {

 return names[0]

 }

 return "Unnamed"

}

// Greeting - Returns a string with a friendly greeting

func (u User) Greeting(morning bool) string {

 if morning == true {

 return "Good Morning, " + u.FirstName()

 }

 return "Hello, " + u.FirstName()

}

// New user object

func New(userName string, userAdmin bool) User {

 return User{name: userName, admin: userAdmin}

}

To use this package, I have a simple main method in go/src/junade.com/icyapril/test that uses
the user package - I use the user.New method to get an instance of the user struct:

package main

import (

 "fmt"

 "junade.com/icyapril/test/user"

)

func main() {

 paul := user.New("Paul Smithson", false)

 fmt.Printf("First Name: %s\n", paul.FirstName())

 fmt.Printf("Admin? %t\n", paul.IsAdmin())

 fmt.Println(paul.Greeting(true))

}

The Go method therefore provides the following output:

First Name: Paul

Admin? false

Good Morning, Paul

If I now change all references for user.New to user.new and try re-running the program - Go will
not let us execute an unexpected method in a different class:

./main.go:10:10: cannot refer to unexported name user.new

./main.go:10:10: undefined: user.new

Conclusion
Go is undoubtably an Object-Oriented language and you can use Object-Oriented language features to
build a applications which are easy to extend (being resilient to the forces of change) and have a far
more maintainable codebase.

Tweet

IcyApril

func Hello(c client) string {

 adminStatus := "a normal user"

 if c.IsAdmin() == true {

 adminStatus = "an admin"

 }

 return "Hello, I am " + c.FirstName() + " and I am " + adminStatus + "."

}

IcyApril About Junade

mailto:mjsa@junade.com
https://twitter.com/IcyApril
https://github.com/IcyApril
https://icyapril.com/about.html
https://twitter.com/IcyApril
https://leanpub.com/object-orientedphp
https://www.packtpub.com/application-development/mastering-php-design-patterns
https://play.golang.org/p/bySbz69K9X
https://play.golang.org/p/JRxmMjhch2
https://www.javaworld.com/article/2073649/core-java/why-extends-is-evil.html
https://play.golang.org/p/jdCdrQd98I
https://www.reddit.com/submit?url=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html
https://www.reddit.com/submit?url=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html
https://www.reddit.com/submit?url=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html
https://www.reddit.com/submit?url=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html
https://twitter.com/intent/tweet?original_referer=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html&ref_src=twsrc%5Etfw&related=IcyApril&text=Object%20Oriented%20Go%20-%20The%20Basics&tw_p=tweetbutton&url=https%3A%2F%2Ficyapril.com%2Fgo%2Fprogramming%2F2017%2F12%2F17%2Fobject-orientation-in-go.html
https://icyapril.com/
https://icyapril.com/about.html

